v R n ist Abstiegsrichtung in x R n wenn f(x) v < 0 v R n ist Abstiegsrichtung in x R n wenn i=1,,d: f i

Größe: px
Ab Seite anzeigen:

Download "v R n ist Abstiegsrichtung in x R n wenn f(x) v < 0 v R n ist Abstiegsrichtung in x R n wenn i=1,,d: f i"

Transkript

1 MOP: Pareto-Gradientenabstiegsverfahren Annahme: Zielfunktion differenzierbar Wintersemester 2007/08 Praktische Optimierung (Vorlesung) d = 1: (monokriteriell) v R n ist Abstiegsrichtung in x R n wenn f(x) v < 0 d > 1: (multikriteriell) v R n ist Abstiegsrichtung in x R n wenn i=1,,d: f i (x) v < 0 bzw. max { f i (x) v : i=1,,d } < 0 Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering (LS XI) Fachgebiet Computational Intelligence Bewegung von x in Richtung v mit geeigneter Schrittweite s führt zu einer Lösung y = x + s v, die x dominiert: f(y) f(x) Rudolph: PO (WS 2007/08) 2 MOP: Pareto-Gradientenabstiegsverfahren Berechnung einer Abstiegsrichtung v für gegebenes x Arbeitsdefinition: Ansatz: max { f i (x) v : i=1,,d } min! Metaheuristik = def unter v 1 v 0 min! Algorithmischer Rahmen für eine Lösungsstrategie, bei der viele Bestandteile initial unspezifiziert sind. unter i=1,,d: f i (x) v v 0 lineares Optimierungsproblem (LP) viele algorithmische Bestandteile können ausgetauscht werden, ohne die generelle Lösungsstrategie zu verändern i=1,,d: 1 v i 1 viele verschiedene Algorithmen Bestimmung der Schrittweite s Aufbau einer Theorie mühsam finde größtes s mit f(x + s v) f(x) + s J(x) v, J(x) Jacobi-Matrix bzw. i=1,,d: f i (x + s v) f i (x) + s f i (x) v und echt kleiner für mindestens ein i Rudolph: PO (WS 2007/08) 3 Rudolph: PO (WS 2007/08) 4 1

2 Beispiel: Monokriterieller (1+1) EA ( evolutionärer Algorithmus ) Multikriterieller (1+1)-EA: Was wäre zu ändern? Mutation Selektion : Zufallsvektor (hier: unspezifiziert) R Zielfunktion ( min!) Zielwerte, die besser als sind Rudolph: PO (WS 2007/08) 5 1. Mutationsvektoren keine Änderung nötig! 2. Selektion Neudefinition: = { z F : z ¹ } keine Änderung an der Rahmenstruktur des Algorithmus! Rudolph: PO (WS 2007/08) 6 I = { z F : z ¹ } better than = { z F : z } incomparable to = { z F : ¹ z } worse than Multikriterieller (1+1)-EA: Beispiel: Monokriterielles Threshold Accepting (TA) : Zufallsvektor (hier: unspezifiziert) Threshold 0 R Zielfunktion ( min!) monoton fallend 0 Zielwerte, die besser als sind Rudolph: PO (WS 2007/08) 7 Rudolph: PO (WS 2007/08) 8 2

3 Idee bei monokriteriellem Threshold Accepting (TA) Multikriterielles Threshold Accepting: Was wäre zu ändern? Akzeptiere jede Verbesserung Akzeptiere zu Anfang der Suche auch große Verschlechterungen Akzeptiere danach immer geringere Verschlechterungen am Ende nahezu keine Akzeptanz von Verschlechterungen mehr Verlassen von lokalen Optima durch Akzeptanz von Verschlechterungen Regeln für : = c -1, c (0,1) = T 0 / (k+1) a a > 0 = T 0 / log(k+1) weitere Regeln denkbar und wohl auch im Einsatz 1. wird m-dimensionaler Vektor (ein Threshold je Zielgröße oder einer für alle) 2. ggf. m verschiedene Verringerungsregeln Rudolph: PO (WS 2007/08) 9 Rudolph: PO (WS 2007/08) 10 I = { z F : z ¹ } better than = { z F : z } incomparable to = { z F : ¹ z } worse than Multikriterielles TA: Alternative Akzeptanzregeln für multikriterielles TA > 0 Verschlechterung bzgl. Ziel i Sei = f i (y k ) f i (x k ). < 0 Verbesserung bzgl. Ziel i 1. max{ : i = 1,,m} f(y k ) B( f(x k ) + (1,,1) ) 2. i max{, 0 } Konvexkombination w 1, w m 3. i 4. Rudolph: PO (WS 2007/08) 11 Rudolph: PO (WS 2007/08) 12 3

4 = { z F : z ¹ } better than = { z F : z ¹ } better than I = { z F : z } incomparable to I = { z F : z } incomparable to = { z F : ¹ z } worse than = { z F : ¹ z } worse than MTA: i max{, 0 } MTA: i Rudolph: PO (WS 2007/08) 13 Rudolph: PO (WS 2007/08) 14 Beispiel: Monokriterielles Simulated Annealing (SA) Idee beim monokriteriellem Simulated Annealing: Akzeptiere auch schlechtere Lösungen mit abnehmender Wahrscheinlichkeit, um aus lokalen Optima zu entkommen! Satz (Hayek 1988, Haario & Saksman 1991) = T 0 / log(k + 1), m k mit beschränktem Träger SA konvergiert gegen globales Optimum mit W keit 1 sehr langsame Temperaturverringerung! Praxis: +1 = c mit c (0,1) : Zufallsvektor u U[0,1], 0 monoton fallend Zielwerte, die besser als sind Zielwerte, die schlechter als sind Satz (Belisle 1992) = c k T 0, c (0,1) und supp(m k ) = R n SA konvergiert zum globalen Optimum mit W keit 1 Rudolph: PO (WS 2007/08) 15 Rudolph: PO (WS 2007/08) 16 4

5 Multikriterielles Simulated Annealing: Was wäre zu ändern? I = { z F : z ¹ } better than = { z F : z } incomparable to = { z F : ¹ z } worse than Multikriterielles SA: (k) = f i (y k ) f i (x k ) Δ k = max{ (k) : i = 1,..,m } Zielwerte, die besser als sind Zielwerte, die schlechter als sind Rudolph: PO (WS 2007/08) 17 Rudolph: PO (WS 2007/08) 18 Multikriterielles Simulated Annealing: Serafini (1992) MSA (Serafini 1992) ϑ: R m x R + [0,1] δ (k) = ( δ 1 (k),, δ m (k) ) mit (k) = f i (y k ) f i (x k ) supp(m k ) kann beschränkt sein Rudolph: PO (WS 2007/08) 19 zzgl. zusammengesetzte Regeln: Rudolph: PO (WS 2007/08) 20 5

6 MSA (Engrand et al. 1998) MSA (Engrand et al. 1998) Ersatzzielfunktion Skalarisierung! Ersatzzielfunktion erfordert i : x: f i (x) > 0 vermutlich nicht alle Lösungen erreichbar! Ansatz: g i (x) = exp(f i (x)) i : x : g i (x) > 0 lokale und globale Minimalstellen identisch! Ersatzzielfunktion mit = 1/m kann nur Pareto-optimale Lösungen im konvexen Zielbereich finden! Rudolph: PO (WS 2007/08) 21 Rudolph: PO (WS 2007/08) 22 Beispiel: Monokriterielles Tabu Search (TS) Bisher: Ein Lauf ein Lösungskandidat Erwünscht: Approximation der Paretomenge Ansatz: Einsammeln nicht-dominierter Lösungen Tabu-Liste L k mit max. Länge Nachbarschaft N(x) von x X auch schlechtere neue Punkte werden akzeptiert! zugeschnitten für diskrete Probleme Knowles & Corne (2000): Pareto-Archived ES (PAES) Rudolph: PO (WS 2007/08) 23 Rudolph: PO (WS 2007/08) 24 6

7 (1+1)-PAES (Knowles & Corne 2000) (1+1)-PAES (Knowles & Corne 2000) A k : Archiv zum Zeitpunkt k Rudolph: PO (WS 2007/08) 25 Rudolph: PO (WS 2007/08) 26 (1+1)-PAES (Knowles & Corne 2000) Idee: Zielraum unterteilen in Raster mit 2 d s Zellen (cells); d = dim(f) f 2 most crowded (size = 3) Speichereffiziente Implementierung möglich quadtree f 1 Rudolph: PO (WS 2007/08) 27 7

Synthese Eingebetteter Systeme. 16 Abbildung von Anwendungen: Optimierung mit DOL

Synthese Eingebetteter Systeme. 16 Abbildung von Anwendungen: Optimierung mit DOL 12 Synthese Eingebetteter Systeme Sommersemester 2011 16 Abbildung von Anwendungen: Optimierung mit DOL 2011/06/24 Michael Engel Informatik 12 TU Dortmund unter Verwendung von Foliensätzen von Prof. Lothar

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen

Mehr

Logistik: Rundreisen und Touren

Logistik: Rundreisen und Touren Logistik: Rundreisen und Touren 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Von Universitätsprofessor Dr. Wolfgang

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II Aufgaben und Lösungen SS 2005 Aufgaben Aufgabe 41 Ein Betrieb stellt zwei Produkte P 1 und P 2 her, die die

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Optimal Control in Air Traffic Management

Optimal Control in Air Traffic Management Optimal Control in Air Traffic Management DGLR Workshop Bestimmung optimaler Trajektorien im Air Traffic Management 23.04.2013 Deutsche Flugsicherung GmbH, Langen 23.04.2013 1 Inhalt. Hintergrund und Motivation.

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Heuristiken im Kontext von Scheduling

Heuristiken im Kontext von Scheduling Heuristiken im Kontext von Scheduling Expertenvortrag CoMa SS 09 CoMa SS 09 1/35 Übersicht Motivation Makespan Scheduling Lokale Suche Weitere Metaheuristiken Zusammenfassung Literatur CoMa SS 09 2/35

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

UNIVERSITÄT DORTMUND FACHBEREICH INFORMATIK

UNIVERSITÄT DORTMUND FACHBEREICH INFORMATIK UNIVERSITÄT DORTMUND FACHBEREICH INFORMATIK Thomas Fober Experimentelle Analyse Evolutionärer Algorithmen auf dem CEC 2005 Testfunktionensatz Diplomarbeit 01.07.2006 I N T E R N E B E R I C H T E I N T

Mehr

Maximizing the Spread of Influence through a Social Network

Maximizing the Spread of Influence through a Social Network 1 / 26 Maximizing the Spread of Influence through a Social Network 19.06.2007 / Thomas Wener TU-Darmstadt Seminar aus Data und Web Mining bei Prof. Fürnkranz 2 / 26 Gliederung Einleitung 1 Einleitung 2

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg Universität Regensburg Wintersemester 2012/13 1 Einführung Anwendungen Finanzwirtschaft: maximale Gewinnrate unter Beschränkungen an das Risiko; Portfolio von Investments Produktion: maximiere Gewinn bei

Mehr

Nichtlineare Optimierungsprobleme mit Komplexität

Nichtlineare Optimierungsprobleme mit Komplexität Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

4. Dynamische Optimierung

4. Dynamische Optimierung 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

Evolutionäre Algorithmen Software

Evolutionäre Algorithmen Software Evolutionäre Algorithmen Software Prof. Dr. Rudolf Kruse Pascal Held {kruse,pheld}@iws.cs.uni-magdeburg.de Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut für Wissens- und Sprachverarbeitung

Mehr

Hochflexibles Workforce Management: Herausforderungen und Lösungsverfahren

Hochflexibles Workforce Management: Herausforderungen und Lösungsverfahren Hochflexibles Workforce Management: Herausforderungen und Lösungsverfahren Dissertation zur Erlangung des akademischen Gerades eines Doktors der Wirtschaftswissenschaften ( Doctor rerum politicarum") an

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Offene Fragen Warum ist ein ET bereit, für eine Feuerversicherung mit einer Versicherungshöhe von 1 Million und einer Jahreseintrittswahrscheinlichkeit

Mehr

Outer Approximation für konvexe MINLP-Probleme

Outer Approximation für konvexe MINLP-Probleme Outer Approximation für konvexe MINLP-Probleme im Rahmen des Sears Globale Optimierung unter Leitung von Dr. Johannes Schlöder und Dr. Ekaterina Kostina, Sommersemester 2005, Universität Heidelberg Hans

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

LINGO: Eine kleine Einführung

LINGO: Eine kleine Einführung LINGO: Eine kleine Einführung Jun.-Prof.Dr. T. Nieberg Lineare und Ganzzahlige Optimierung, WS 2009/10 LINDO/LINGO ist ein Software-Paket, mit dessen Hilfe (ganzzahlige) lineare Programme schnell und einfach

Mehr

Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) SS 2002. Aufgabe 7

Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) SS 2002. Aufgabe 7 Rheinisch Westfälische Technische Hochschule Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) SS 2002 Prof. Dr. Wolfgang Dahmen Dr. Karl Heinz Brakhage Aufgabe 7 Bearbeitungszeit:

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Kommunikation, Information und mobile verteilte Systeme (KIS)

Kommunikation, Information und mobile verteilte Systeme (KIS) Qualifikationsziele Heutzutage sind nahezu alle wichtigen Informationssysteme verteilt, d.h., fast immer erbringt nicht nur ein Computer alleine eine bestimmte Dienstleistung, sondern es sind mehrere Rechner,

Mehr

Realtime Human Body Tracking

Realtime Human Body Tracking Realtime Human Body Tracking Vortrag im Rahmen des Seminars Ausgewählte Themen zu Bildverstehen und Mustererkennung Lehrstuhl: Professor Dr. X. Jiang Referenten: Dipl.-Math. Kai Rothaus Dipl.-Inform. Steffen

Mehr

Statische Optimierung unter Gleichungsrestriktionen (Lagrange)

Statische Optimierung unter Gleichungsrestriktionen (Lagrange) Kapitel 2 Statische Optimierung unter Gleichungsrestriktionen (Lagrange) 21 Einleitung/Ziel/Bedeutung/Übersicht Viele ökonomischen Fragestellungen bestehen im Kern zwar aus einem statischen Optimierungsproblem,

Mehr

e d m m = D d (E e (m)) D d E e m f c = f(m) m m m 1 f(m 1 ) = c m m 1 m c = f(m) c m c m b b 0, 1 b r f(b, r) f f(b, r) := y b r 2 n, n = pq ggt (p, q) = 1 p q y n f K f(x + y) = f(x) + f(y) f(x y) =

Mehr

Aufbau und Operatoren evolutionärer Verfahren

Aufbau und Operatoren evolutionärer Verfahren Aufbau und Operatoren evolutionärer Verfahren Darstellung der Gene im Chromosom (Codierung) Basisalgorithmus Partnerwahl Erzeugung von Nachkommen (Rekombination und Mutation) Bewertung Überlebensregeln

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

Bionische Methoden der Optimierung

Bionische Methoden der Optimierung Bionische Methoden der Optimierung Thema: KODIERUNG VON GENETISCHEN ALGORITHMEN UND SIMULATED ANNEALING Autoren: Dipl.-Ing. (FH) Christian Benjamin Ries Dipl.-Ing.

Mehr

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

(Lineare) stochastische Optimierung

(Lineare) stochastische Optimierung (Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Einführung in die Optimierung Sommersemester 2005. Anita Schöbel

Einführung in die Optimierung Sommersemester 2005. Anita Schöbel Einführung in die Optimierung Sommersemester 2005 Anita Schöbel 9. Juli 2010 Vorwort Das vorliegende Vorlesungsskript entstand aufgrund der Notizen der von mir im Sommersemester 2005 gehaltenen Vorlesung

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung)

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) Wintersemester 2007/08 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Methoden zur Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien

Methoden zur Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien Methoden zur Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien Katharina Witowski katharina.witowski@dynamore.de Übersicht Beispiel Allgemeines zum LS-OPT Viewer Visualisierung von Simulationsergebnissen

Mehr

Seminararbeit zum Thema Genetische Algorithmen

Seminararbeit zum Thema Genetische Algorithmen Seminararbeit zum Thema Genetische Algorithmen Seminar in Intelligent Management Models in Transportation und Logistics am Institut für Informatik-Systeme Lehrstuhl Verkehrsinformatik Univ.-Prof. Dr.-Ing.

Mehr

Umsetzung von DEA in Excel

Umsetzung von DEA in Excel Umsetzung von DEA in Excel Thorsten Poddig Armin Varmaz 30. November 2005 1 Vorbemerkungen In diesem Dokument, das als Begleitmaterial zum in der Zeitschrift,,Controlling, Heft 10, 2005 veröffentlichten

Mehr

Übersicht. 20. Verstärkungslernen

Übersicht. 20. Verstärkungslernen Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen 19. Lernen in neuronalen & Bayes

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Lineare Optimierung. Vorlesung von Prof. Christiane Tammer Author : Georg Kuschk (Quelle : www.rikuti.de)

Lineare Optimierung. Vorlesung von Prof. Christiane Tammer Author : Georg Kuschk (Quelle : www.rikuti.de) Lineare Optimierung Vorlesung von Prof Christiane Tammer Author : Georg Kuschk (Quelle : wwwrikutide) 11 August 2006 Inhaltsverzeichnis 1 Einleitung, Beispiele 2 2 Das allgemeine lineare Optimierungsproblem

Mehr

Optimierung mit Genetischen Algorithmen und eine Anwendung zur Modellreduktion

Optimierung mit Genetischen Algorithmen und eine Anwendung zur Modellreduktion METHODEN at 4/2004 Optimierung mit Genetischen Algorithmen und eine Anwendung zur Modellreduktion Optimization with Genetic Algorithms and an Application for Model Reduction Maik Buttelmann und Boris Lohmann

Mehr

Evolutionäre Algorithmen. SS 2015 Woche 01

Evolutionäre Algorithmen. SS 2015 Woche 01 Evolutionäre Algorithmen SS 2015 Woche 01 Inhalt Organisation der Übung Wiederholung Die Komponenten eines EA Zwei Minimal-Beispiele Besprechung des Übungsblatts Das Team Vorlesung Prof. Dr.-Ing. habil.

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Über die Analyse randomisierter Suchheuristiken und den Entwurf spezialisierter Algorithmen im Bereich der kombinatorischen Optimierung

Über die Analyse randomisierter Suchheuristiken und den Entwurf spezialisierter Algorithmen im Bereich der kombinatorischen Optimierung Über die Analyse randomisierter Suchheuristiken und den Entwurf spezialisierter Algorithmen im Bereich der kombinatorischen Optimierung Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Lösungsblatt zur Vorlesung. Kryptanalyse WS 2009/2010. Blatt 6 / 23. Dezember 2009 / Abgabe bis spätestens 20. Januar 2010, 10 Uhr (vor der Übung)

Lösungsblatt zur Vorlesung. Kryptanalyse WS 2009/2010. Blatt 6 / 23. Dezember 2009 / Abgabe bis spätestens 20. Januar 2010, 10 Uhr (vor der Übung) Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Mathias Herrmann, Alexander Meurer Lösungsblatt zur Vorlesung Kryptanalyse WS 2009/2010 Blatt 6 / 23. Dezember

Mehr

BINGO! Ein fokussierender Crawler zur Generierung personalisierter Ontologien

BINGO! Ein fokussierender Crawler zur Generierung personalisierter Ontologien BINGO! Ein fokussierender Crawler zur Generierung personalisierter Ontologien Martin Theobald Stefan Siersdorfer,, Sergej Sizov Universität des Saarlandes Lehrstuhl für Datenbanken und Informationssysteme

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Dieter SÜSS und Klaus MACHATA

Dieter SÜSS und Klaus MACHATA Globaler Optimierungsalgorithmus für überlagerungsfreie Darstellung von Objekten in der neuen Elektronischen Unfallsteckkarte des Kuratorium für Verkehrssicherheit Dieter SÜSS und Klaus MACHATA Zusammenfassung

Mehr

Partitionierung komplexer heterogener Systeme

Partitionierung komplexer heterogener Systeme Berichte aus der Elektrotechnik Thomas Hollstein Entwurf und interaktive Hardware-/Software- Partitionierung komplexer heterogener Systeme D17(Diss.TU Darmstadt) Shaker Verlag Aachen 2001 Inhaltsverzeichnis

Mehr

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination

Mehr

Optimierung mit Matlab

Optimierung mit Matlab Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Computerbasierte Mathematische Modellierung für Mathematiker, Wirtschaftsmathematiker, Informatiker im Wintersemester

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) Was ist eine Zufallsmatrix?

Mehr

Elementare Bildverarbeitungsoperationen

Elementare Bildverarbeitungsoperationen 1 Elementare Bildverarbeitungsoperationen - Kantenerkennung - 1 Einführung 2 Gradientenverfahren 3 Laplace-Verfahren 4 Canny-Verfahren 5 Literatur 1 Einführung 2 1 Einführung Kantenerkennung basiert auf

Mehr

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Ausarbeitung zum Vortrag im Seminar Stochastische Dynamische Optimierung vom 18.01.2008 Datum : 18.01.2008 Verfasser: Martin Schymalla

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Hierarchische Archimedische Copulas

Hierarchische Archimedische Copulas Hierarchische Archimedische Copulas Bachelorarbeit im Studiengang Wirtschaftsmathematik am Fachbereich Mathematik und Informatik der Philipps-Universität Marburg eingereicht von Yuriy Pinkhasik Marburg,

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

Diplomprüfung. Operations Research I WS 2007/2008 (4 Punkte)

Diplomprüfung. Operations Research I WS 2007/2008 (4 Punkte) Dr. Jörg Kalcsics 11.0.008 Diplomprüfung (Wiederholungsprüfung gem. NPO) Operations Research I WS 007/008 ( Punkte) Vorbemerkung: Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner. Beginnen

Mehr

2.4 Adaptive Verfahren mit Schrittweitensteuerung

2.4 Adaptive Verfahren mit Schrittweitensteuerung 0 0 0 Euler und RK4 fuer f(t,y) = t 0. Euler RK4 /N 0 0 f(t,y) =. t 0., graduiertes Gitter RK4 /N 4 Fehler bei T = 0 3 0 4 0 5 Fehler bei T = 0 5 0 0 0 6 0 7 0 0 0 0 2 0 3 0 4 0 5 Anzahl Schritte N 0 5

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Numerische Verfahren zur Lösung nichtlinearer Gleichungen

Numerische Verfahren zur Lösung nichtlinearer Gleichungen Kapitel 2 Numerische Verfahren zur Lösung nichtlinearer Gleichungen 21 Aufgabenstellung und Motivation Ist f eine in einem abgeschlossenen Intervall I = [a, b] stetige und reellwertige Funktion, so heißt

Mehr

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Beispiele wirtschaftsmathematischer Modellierung Lehrerfortbildung, Speyer, Juni 2004-1- Beispiele wirtschaftsmathematischer Modellierung

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Nichtlebenversicherungsmathematik Aus welchen Teilen besteht eine Prämie Zufallsrisiko, Parameterrisiko, Risikokapital Risikomasse (VaR, ES) Definition von Kohärenz Zusammengesetze Poisson: S(i) CP, was

Mehr

Molecular Modelling. Molekulare Mechanik-Simulationen am Beispiel von DNA-Ligand-Komplexen

Molecular Modelling. Molekulare Mechanik-Simulationen am Beispiel von DNA-Ligand-Komplexen Molecular Modelling Molekulare Mechanik-Simulationen am Beispiel von DNA-Ligand-Komplexen Florian Kamm, Dezember 2003 Halbkurs Algorithmen in der Bioinformatik Molecular Modelling Was ist das? Molecular

Mehr

Vom Gewitter-Nowcasting zur kurzfristigen Vorhersage der Bewölkung. Tobias Zinner, Hermann Mannstein Caroline Forster, Arnold Tafferner

Vom Gewitter-Nowcasting zur kurzfristigen Vorhersage der Bewölkung. Tobias Zinner, Hermann Mannstein Caroline Forster, Arnold Tafferner Vom Gewitter-Nowcasting zur kurzfristigen Vorhersage der Bewölkung Tobias Zinner, Hermann Mannstein Caroline Forster, Arnold Tafferner Wolken-Vorhersage Numerische Wettervorhersagemodelle Zeithorizont:

Mehr

Optimierungsverfahren in der Transportlogistik

Optimierungsverfahren in der Transportlogistik Optimierungsverfahren in der Transportlogistik Jakob Puchinger 1 1 Dynamic Transportation Systems, arsenal research Jakob Puchinger (arsenal research) Optimierungsverfahren in der Transportlogistik 1 /

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr