3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1

Größe: px
Ab Seite anzeigen:

Download "3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1"

Transkript

1 Kapitel 3. Folgen und Reihen 3.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als a = (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt an, an welcher Stelle in der Folge die Zahl a n steht. Beispiel Mit a n = n 2 ist a = (a n ) = (1,4, 9,16,...) die Folge der Quadratzahlen in N. 2. Mit b n = 1 n ist b = (b n) n N = (1, 1 2, 1 3, 1 4,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ Mit c n = ( 1) n ist c = (c n ) n N = ( 1, 1, 1, 1, 1,...). 4. Mit d n = 2 n ist d = (d n ) n N = (2, 4,8, 16, 32,64, 128,...) die Folge der Zweierpotenzen. 5. Mit y n = ( 1 3) n ist y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1 243,...). 6. Ist x n = (1 + 1 n )n, dann ist x = (x n ) n N = ( 2, 9 4, 64 27, ,...) Mathematik I WiSe 2005/

2 Einige weitere Folgenglieder sind in der folgenden Tabelle angegeben: n x n n x n Die sogenannte Fibonacci-Folge ist die Folge (a n ) n N mit a 1 = a 2 = 1 und a n = a n 1 + a n 2 für n 3. Die ersten Folgenglieder sind a = (1,1, 2, 3,5, 8,13, 21, 34,...). Mathematik I WiSe 2005/ Die Zahl a n heißt die n-te Fibonaccizahl. Folgen lassen sich auch als Abbildungen auffassen. Eine Folge ist eine Abbildung a : N R mit Definitionsbereich N. Für den Wert a(n) an der Stelle n schreibt man üblicherweise a n. Der Wert a n heißt n-tes Folgenglied von a. Die Fibonacci-Folge heißt rekursiv definiert, da man zur Berechnung eines Folgenglieds a n die vorherigen Folgenglieder benötigt (und Anfangswerte). Die anderen Folgen hingegen sind explizit definiert, da sich jedes a n direkt aus dem Index n berechnen läßt. Man kann auch für die Fibonacci-Folge eine explizite Formel angeben. Die n-te Mathematik I WiSe 2005/

3 Fibonacci-Zahl a n ist nämlich a n = ( 1+ ) n ( ) n Wir können eine Folge a = (a n ) n N graphisch veranschaulichen, indem wir die Punkte mit den Koordinaten (n, a n ) für einige Werte von n in ein Koordinatensystem zeichnen. Wir tun dies hier für die ersten sechs Beispiele. Mathematik I WiSe 2005/ Beispiel Beispiel x x Mathematik I WiSe 2005/

4 Beispiel Beispiel x x Mathematik I WiSe 2005/ Beispiel fuer n<100 Beispiel fuer n< x x Mathematik I WiSe 2005/

5 Eine Folge a = (a n ) n N mit a n 0 für alle n N heißt geometrisch, wenn der Quotient aufeinanderfolgender Glieder konstant ist, wenn es also eine Zahl q R gibt, so dass gilt a n+1 a n = q für alle n N. Beispiel 3.2 Die Folge aus Beispiel ist geometrisch, denn d n+1 = 2n+1 = 2 für alle n N. d n 2n Ebenso ist jede Folge mit der Vorschrift d n = q n für ein festes q R geometrisch. Mathematik I WiSe 2005/ Die anderen Folgen in Beispiel 3.1 sind nicht geometrisch. So ist etwa für die Folge mit b n = 1 n b 3 = 2 b 2 3, aber b 4 = 3 b 3 4. Beispiel 3.3 Ein Anfangskapital K 0 wird zum Zinssatz von p = 0.05 (also 5%) jährlich verzinst. Dann ist nach n Jahren das Kapital angewachsen auf den Wert K n, der sich wie folgt berechnet (Zinseszinz!); K 1 = K 0 + pk 0 = (1 + p)k 0, K 2 = K 1 + pk 1 = (1 + p)k 1 = (1 + p) 2 K 0, K 3 = K 2 + pk 2 = (1 + p)k 2 = (1 + p) 3 K 0, und allgemein K n = (1 + p) n K 0. Mathematik I WiSe 2005/

6 Die Folge der jährlichen Kapitalmenge (K n ) n N ist also geometrisch, da K n+1 K n = 1 + p für alle n N. Für eine geometrische Folge mit dem konstanten Quotienten a n+1 a n = q gilt a n+1 = qa n und daher a 2 = qa 1, a 3 = qa 2 = q 2 a 1, a 4 = qa 3 = q 3 a 1 und allgemein a n = a 1 q n 1 oder a n = a 0 q n Mathematik I WiSe 2005/ wobei a 0 := a 1 q. Wir können a 0 als das nullte Folgenglied auffassen. Eine geometrische Folge ist also vollständig durch den Quotienten q und einen Anfangswert a 0 (oder a 1 ) bestimmt. Eine Folge a = (a n ) n N heißt arithmetisch, wenn die Differenz aufeinanderfolgender Glieder konstant ist, wenn es also eine Zahl d R gibt, so dass gilt a n+1 a n = d für alle n N. Beispiel 3.4 Die Folge a = (a n ) n N mit a n = 3n 7 ist arithmetisch, denn a n+1 a n = 3(n + 1) 7 ( 3n 7 ) = 3 für alle n N. Mathematik I WiSe 2005/

7 Die ersten Folgenglieder sind 4, 1, 2, 5, 8,... Ist eine Folge a = (a n ) n N arithmetisch mit der konstanten Differenz a n+1 a n = d für alle n N, dann gilt a n+1 = d + a n und die einzelnen Folgenglieder ergeben sich durch a 2 = d + a 1, a 3 = d + a 2 = d + d + a 1 = 2d + a 1, a 4 = d + a 3 = 3d + a 1 und allgemein a n = (n 1)d + a 1 oder a n = nd + a 0 Mathematik I WiSe 2005/ wobei a 0 = a 1 d wie bei der geometrischen Folge als nulltes Folgenglied interpretiert werden kann. Eine arithmetische Folge ist also vollständig durch die Differenz d und einen Anfangswert a 0 (oder a 1 ) bestimmt. Ähnlich wie für Abbildungen wollen wir nun die Begriffe Monotonie und Beschränktheit für Folgen erklären. Zusätzlich gibt es noch den Begriff der alternierenden Folge (machen Sie sich klar, dass die Begriffe Monotonie und Beschränktheit sowohl für Folgen als auch reelle Funktionen sinnvoll sind, alternierend aber für Abbildungen auf R nicht sinnvoll definiert werden kann). Mathematik I WiSe 2005/

8 Eine Folge a heißt konstant, falls a n+1 = a n für alle n N gilt. Eine Folge (a n ) n N heißt monoton wachsend bzw. streng monoton wachsend, falls a n+1 a n bzw. a n+1 > a n für alle n N. Eine Folge (a n ) n N heißt monoton fallend bzw. streng monoton fallend, falls a n+1 a n bzw. a n+1 < a n für alle n N. Mathematik I WiSe 2005/ Eine Folge heißt alternierend, falls a n+1 > 0 ist wenn a n < 0 ist und a n+1 < 0 wenn a n > 0 ist. Anders gesagt: a n+1 a n < 0 für alle n N (die Folgenglieder wechseln also in jedem Schritt das Vorzeichen). Beispiel 3.5 Betrachte die Folgen aus Beispiel 3.1 Die Folgen a und d mit a n = n 2 und d n = 2 n sowie die Fibonacci-Folge sind streng monoton wachsend. Die Folge b mit b n = 1 n ist streng monoton fallend. Mathematik I WiSe 2005/

9 Die Folge c mit c n = ( 1) n ist weder monoton wachsend noch monoton fallend. Sie ist alternierend. Die Folge x mit x n = (1 + 1 n )n ist streng monoton wachsend. Das wird zumindest durch den Graphen angedeutet und es lässt sich auch nachrechnen. Außerdem ist auch die Folge der Kapitalmengen in Beispiel 3.3 bei konstanter jährlicher Verzinsung streng monoton wachsend. Das sollte natürlich auch so sein! Beachte, dass es auch Folgen gibt, die weder monoton wachsend noch monoton fallend noch alternierend sind. Wenn wir mit t n die Anzahl der verschiedenen Primteiler von n bezeichnen, so sieht der Graph der Folge ( 1) t(n) t(n) für 1000 n 1100 so aus: Mathematik I WiSe 2005/ Für die besonders wichtigen geometrischen Folgen ist das Monotonieverhalten wie folgt: Mathematik I WiSe 2005/

10 Sei a 0 > 0. Die geometrische Folge a mit a n = a 0 q n ist streng monoton wachsend, wenn q > 1 ist, streng monoton fallend, wenn q (0, 1) ist, und konstant, wenn q = 0 oder q = 1 ist. Für q < 0 ist die geometrische Folge a n = a 0 q n alternierend. Sei a 0 < 0. Die geometrische Folge a mit a n = a 0 q n ist streng monoton fallend, wenn q > 1 ist, streng monoton wachsend, wenn q (0, 1) ist, und konstant, wenn q = 0 oder q = 1 ist. Für q < 0 ist die geometrische Folge a n = a 0 q n alternierend. Beispiel 3.6 Die Folge a n = 5 ( 1 2) n ist streng monoton fallend. Die ersten Folgenglieder sind a 1 = 5 2, a 2 = 5 4, a 3 = 5 8, a 4 = 5 16, a 10 = Mathematik I WiSe 2005/ Für a n = 5 ( 1 2) n erhalten wir a 1 = 5 2, a 2 = 5 4, a 4 = 5 16, a 5 = 5 32, a 10 = Die Folge ist alternierend. Wir halten fest, dass die Folge ( a n ) der Beträge von a n monoton fallend ist. Eine Folge (a n ) n N heißt beschränkt, falls es eine Konstante M R gibt, so dass a n M für alle n N, d. h. alle Folgenglieder liegen im Intervall [ M,M]. Mathematik I WiSe 2005/

11 Beispiel 3.7 Die Folgen a und d mit a n = n 2 und d n = 2 n sowie die Fibonacci-Folge aus Beispiel 3.1 sind nicht beschränkt. Die Folge b mit b n = 1 n ist beschränkt, denn 1 < 1 für alle n N. Die Folge c mit c n = ( 1) n ist beschränkt: ( 1) n = 1 für alle n N. Die Kapitalzuwachsfolge aus Beispiel 3.3 ist unbeschränkt. Wenn man nur lange genug wartet, wird das Kapital beliebig groß. Eine geometrische Folge a mit a n = a 0 q n ist unbeschränkt, wenn q > 1 ist und beschränkt, wenn q [ 1,1] ist. Zur Beschreibung des Verhaltens einer Folge bei wachsendem Index wird, wie schon bei Funktionen, der Begriff Konvergenz eingeführt. n Mathematik I WiSe 2005/ Zunächst einige anschauliche Beispiele von Konvergenz. Beispiel 3.8 Die Folgenglieder aus Beispiel 3.1.1, und werden für wachsende n immer größer. Anders gesagt: sie gehen nach +. Die Folgenglieder aus Beispiel kommen für wachsende n immer näher an die x-achse, anders: die Werte kommen der Null immer näher. In der Folge aus Beispiel wechseln sich die Werte 1 und 1 ab. Die Folge kommt weder dem Wert 1 noch dem Wert 1 beliebig nahe, weil immer wieder der jeweils andere Wert angenommen wird. Die Folgenglieder aus Beispiel wechseln sich mit dem Vorzeichen ab, aber wie in Beispiel 2 kommen die Werte der Null, also der x-achse, immer näher. Der Graph der Folge aus Beispiel deutet an, dass die Folgenglieder zwar Mathematik I WiSe 2005/

12 stets anwachsen, aber nicht beliebig groß werden, sondern sich einem Wert nähern. Was ist der genaue Wert? Diesen Wert nennen wir den Grenzwert der Folge: Mathematik I WiSe 2005/ Grenzwert (Limes) von Folgen Eine reelle Zahl a heißt Grenzwert oder Limes einer Folge (a n ) n N, wenn es zu jedem vorgegebenen ǫ > 0 einen von ǫ abhängigen Index n(ǫ) N gibt, so dass a n a ǫ für alle n n(ǫ). Eine Folge (a n ) n N heißt konvergent wenn sie einen Grenzwert a R besitzt. In diesem Fall schreiben wir: lim a n = a oder a n a für n. n Sprechweise: Limes n gegen unendlich von a n ist gleich a, oder: a n konvergiert Mathematik I WiSe 2005/

13 gegen a für n gegen unendlich. Ist der Grenzwert a = 0, so heißt die Folge eine Nullfolge. Ist eine Folge nicht konvergent, so heißt sie divergent. Man sagt auch die Folge divergiert. Wir können auch noch verschiedene Arten der Divergenz unterscheiden. Die Folge a n = n verhält sich sicherlich anders als die Folge ( 1) n n oder ( 1) n. Mathematik I WiSe 2005/ Eine Folge (a n ) n N heißt bestimmt divergent nach, falls es zu jedem M ein n 0 so gibt, dass a n M für alle n n 0, gilt, d.h. die Folgenglieder werden beliebig groß. Entsprechend wird bestimmte Divergenz nach erklärt. Schreibweise: lim a n =, bzw. lim a n =. n n Achtung: Wir sagen nicht, dass die Folge gegen konvergiert. Wenn wir von Konvergenz sprechen, meinen wir stets Konvergenz gegen eine reelle Zahl, nie gegen ±! Man kann sich die Konvergenz gegen a auch folgendermaßen klar machen: Mathematik I WiSe 2005/

14 Eine Folge (a n ) n N konvergiert gegen ein a R genau dann, wenn für alle ǫ > 0 nur endlich viele Folgenglieder nicht im Intervall [a ǫ,a + ǫ] liegen; ein solches Intervall heißt auch eine ǫ-umgebung von a. Alternative Sprechweise: fast alle Folgenglieder (d.h. mit Ausnahme von höchstens endlich vielen) liegen im Intervall [a ǫ, a + ǫ]. Insbesondere gibt es also nur einen Grenzwert für eine konvergierende Folge. Beispiel 3.9 Die Folge a mit a n = n 2 aus Beispiel ist divergent (bestimmte Divergenz nach ). Die Folge b mit b n = 1 n ist eine Nullfolge. Die Folge c mit c n = ( 1) n ist divergent. Mathematik I WiSe 2005/ Die Folge d mit d n = 2 n ist bestimmt divergent nach. Die Folge y mit y n = ( 1 3) n ist eine Nullfolge. Die Folge x mit x n = (1 + 1 n )n ist konvergent, ihr Grenzwert ist die Eulersche Zahl e, also ( 1) n e := lim n n Wir gehen darauf später noch genauer ein. Die Fibonacci-Folge ist bestimmt divergent gegen. Aus der Definition der Konvergenz folgt sofort Jede konvergente Folge ist beschränkt. Mathematik I WiSe 2005/

15 Wir wollen im nächsten Beispiel das Konvergenzverhalten der arithmetischen und geometrischen Folgen sowie der Folgen 1 ( 1)n n und n zusammenfassen. Beispiel 3.10 ( 1) n n a n a + nd aq n 1 (a > 0) n (1) d 0 q 1 nein nein (1a) d > 0 q > 1 nein nein (2) d 0 0 q 1 ja nein (2a) d < 0 0 < q < 1 ja nein (3) d = 0 1 q 1 ja ja (4) d = 0 1 < q < 1 q = 1 ja ja Limes a 0 a 0 0 Mathematik I WiSe 2005/ Die Zeileneinträge bedeuten dabei folgendes: (1): monoton steigend; (1a): streng monoton steigend (2): monoton fallend; (2a): streng monoton fallend (3): beschränkt (4): konvergent Wir geben jeweils an, für welche Werte von a, d,q die Folgen die entsprechende Eigenschaft haben. Mathematik I WiSe 2005/

16 Ein sehr wichtiges Konvergenzkriterium ist das folgende: Jede beschränkte und monotone Folge (a n ) n N konvergiert, d.h. es gibt ein a R, so dass lim n a n = a. Beispiel 3.11 Die Folge 3 (n+1) ist monoton (fallend) und beschränkt, also konvergent, und der Grenzwert ist 0. Die Folge ( 1)n2 7n ist nicht monoton (aber beschränkt). Diese Folge ist auch konvergent (ihr Grenzwert ist ebenfalls 0). Es kann also durchaus nicht monotone Folgen geben, die konvergieren. Unbeschränkt kann eine konvergente Folge aber nicht sein! Mathematik I WiSe 2005/ Rechenregeln für Grenzwerte Seien (a n ) n N, (b n ) n N konvergente Folgen mit lim n a n = a und lim n b n = b. Dann gilt: 1. (a n ± b n ) n N ist konvergent mit 2. (a n b n ) n N ist konvergent mit lim (a n ± b n ) = a ± b. n lim (a n b n ) = a b. n Mathematik I WiSe 2005/

17 3. Sei b 0. Dann ( gibt ) es ein n 0 N mit b n 0 für alle n n 0, an und die Folge ist konvergent mit b n n n 0 a n lim = a n b n b. 4. Sei λ R. Dann ist auch die Folge (λa n ) n N konvergent mit lim (λa n) = λa. n Mathematik I WiSe 2005/ Satz 3.1 Sei f eine auf (a,b) stetige Funktion. Ferner sei x (a,b) und x n eine Folge reeller Zahlen mit x n (a,b) für alle n. Wenn dann lim n x n = x gilt, so ist lim f(x n) = f(x). n Es genügt hier sogar, x n (a, b) nur für alle n > n 0 für eine Zahl n 0 N zu verlangen. Dieser Satz hat z.b. wegen der Stetigkeit der Wurzelfunktion folgende Konsequenz: Mathematik I WiSe 2005/

18 Ist a n 0 für alle n N und lim n a n = a, dann ist lim an = a. n Wir geben gleich eine Menge an Beispielen an, wie wir die oben angegebenen Sachverhalte ausnutzen können. Wir müssen, grob gesagt, den algebraischen Ausdruck, der die Folgenglieder a n definiert, in Teilausdrücke zerlegen, von denen wir dann jeweils die Grenzwerte kennen. Bevor wir zu den Beispielen kommen, hier ein weiteres wichtiges Konvergenzkriterium: Mathematik I WiSe 2005/ Ausquetschen Seien (a n), (a n) konvergente Folgen mit lim n a n = a = lim n a n. Ist (a n ) eine Folge mit a n a n a n für alle n, dann gilt auch lim a n = a. n Als Spezialfall erhalten wir für Nullfolgen: Mathematik I WiSe 2005/

19 Sei (a n) eine Nullfolge. Ist (a n ) eine Folge mit a n a n für alle n, dann ist auch (a n ) eine Nullfolge. Beispiel 3.12 (1) Für k N ist lim n 1 n k = 0. Mathematik I WiSe 2005/ (2) 3n lim n n 2 = lim (3 + 1 n n2) = lim 3 + lim 1 n n n 2 = 3. (3) Für a R mit a < 1 ist lim n an = 0. (4) Sei a n = n + 1 n, n N. Bei dieser Folge hilft ein Umformungstrick weiter: n + 1 n = ( n+1 n)( n+1+ n) n+1+ n und daher ist = n+1 n n+1+ n = 1 n+1+ n lim n ( n + 1 n) = 0. Mathematik I WiSe 2005/

20 Warnung: Bei einem Grenzwert lim n n + 1 n versuchen viele Anfänger etwa wie folgt zu argumentieren: lim ( n + 1 n) = lim n + 1 lim n = = 0. n n n Das geht aber so nicht, weil der Grenzwert der Summe zweier Folgen nur dann die Summe der Grenzwerte dieser beiden Folgen ist, wenn die beiden Grenzwerte existieren. Das ist aber in unserem Beispiel nicht der Fall.Außerdem macht ein Ausdruck der Form keinen Sinn! Die oben angegebene Umformung ist somit falsch!!! Überlegen Sie sich bitte, dass man mit so einem Argument zeigen könnte lim n ((n + 1) n) = lim n (n + 1) lim n (n) = 0, obwohl natürlich lim (n + 1 n) = lim (1) = 1 gilt. n n Mathematik I WiSe 2005/ Beispiel 3.13 Als einen etwas komplizierteren Grenzwert wollen wir hier zeigen lim n n n = 1 Dazu benötigen wir den binomischen Lehrsatz (a + b) n = n i=0 ( ) n a i b n i i Hier ist (gelesen: n über i), wobei ( ) n = i n! i!(n i)! m! = m (m 1) (m 2) Mathematik I WiSe 2005/

21 die Fakultät von m ist (das ist das Produkt aller natürlichen Zahlen m). Machen wir uns dies an einem Beispiel klar: (a + b) 3 = (a + b) 2 (a + b) = (a 2 + 2ab + b 2 )(a + b) = = a 3 + 3a 2 b + 3ab 2 + b 3 Der binomische Lehrsatz verallgemeinert die binomischen Formeln (Spezialfall n = 2). Wir wollen etwas über die Konvergenz von a n = n n aussagen. Dazu definieren wir b n = a n 1 und berechnen (b n + 1) n mit Hilfe des binomischen Lehrsatzes: n = (b n + 1) n = n i=0 ( ) n b i i n1 n i = n i=0 ( ) n b i i n, (3.1) Mathematik I WiSe 2005/ weil ja b n + 1 = n n. Die Gleichung (3.1) zeigt weil b n 0 (beachte: a n 1), also ( ) n bn 2 n, 2 Wegen b n 0 erhalten wir somit n(n 1) 2 b 2 n n, also b n 2 n 1. 0 b n 2 n 1 Mathematik I WiSe 2005/

22 und deshalb ( Ausquetschen ) lim b n = 0, also lim (b n + 1) = lim n n n n n = 1. Wir haben bereits ein Beispiel einer Folge gesehen, die die Entwicklung eines Anfangskapitals K 0 bei einer p prozentigen Verzinsung beschreibt. Wenn x = p/100 ist, gilt für das Kapital nach m Jahren K n = (1 + x) m K 0 nach einem Jahr also (1 + x)k 0. Nun könnte man es doch als fair empfinden, wenn man statt einmal jährlich p Prozent Zinsen zu bekommen, monatlich p/12 Mathematik I WiSe 2005/ Prozent gutgeschrieben bekommt. Dann wäre das Kapital nach einem Jahr ( 1 + x 12) 12 K0 Bei einer täglichen Verzinsung ist das schon ( 1 + x ) 365 K0 365 Vergleichen wir, wie stark sich das Kapital bei den diversen Verzinsungssmodellen und x = 0.05, d.h. bei einer p prozentigen Verzinsung, vergrössert: 1 + x ( 1 + x ) 12 ( 1 + x ) Mathematik I WiSe 2005/

23 Genauere Untersuchungen zeigen: und ( lim n = e n n) ( lim 1 + x ) n = e x n n Die Zahl e heißt Eulersche Zahl. Interessant ist, dass Banken bei Krediten eher eine monatliche Verzinsung wählen, bei Zinszahlungen aber eher nur jährlich abrechnen. Die unterschiedlichen Modelle können sich nach mehreren Jahren schon bemerkbar machen, wenn auch nicht sehr dramatisch. Wir können die Exponentialfunktion e x oder, wenn es um das Wachstum in m Jahren geht, die Funktion e mx = (e x ) m Mathematik I WiSe 2005/ als eine Grenzfunktion interpretieren, die das Wachstum bei einer kontinuierlichen oder stetigen Verzinsung beschreibt. Wir setzen wieder x = 0.05: Abschreibungen (1 + x) m ( 1 + x 12) 12m e mx m = m = m = m = m = m = Folgen treten in der Ökonomie auch beim Thema Abschreibungen auf. Wichtig sind hier die folgenden drei Größen: Mathematik I WiSe 2005/

24 A: Anschaffungsaufwendungen R: Restwert am Ende der Nutzungsdauer T: Nutzungsdauer (in Jahren) a n Abschreibungsbetrag im n-ten Jahr, n = 1,...,T Wir unterscheiden drei Typen von Abschreibungen: Lineare Abschreibung Arithmetisch-degressive Abschreibung Geometrisch-degressive Abschreibung Beginnen wir mit der linearen Abschreibung. In diesem Fall wird in jedem Jahr derselbe Betrag a abgeschrieben, wir erhalten also a = A R. T Mathematik I WiSe 2005/ Die Abschreibungsbeträge sind also konstant. Bei der arithmetisch-degressiven Abschreibung bilden die a n eine arithmetische Folge, d.h. a n = a 1 (n 1)d Wenn hier A, R und T bekannt sind, kann nicht unmittelbar auf a 1 und d geschlossen werden. Man kann die Abschreibung aber genau bestimmen, wenn der letzte Abschreibungsbetrag genau d sein soll, also a T = d. Dann gilt nämlich d = A R 1 2T(T + 1). Der Grund für diese Formel ist folgender: Im ersten Jahr wird Td abgeschrieben, dann (T 1)d, dann (T 2)d usw, bis im T-ten Jahr d abgeschrieben wird. Mathematik I WiSe 2005/

25 Insgesamt gilt dann A R = T (i d) = d i=1 T i. i=1 Man kann zeigen woraus die Formel für d folgt. T i = i=1 T(T + 1), 2 Bei der geometrisch-degressiven Abschreibung bilden die Abschreibungsbeträge a n eine geometrische Folge. Es sollen jährlich 100p Prozent des Buchwertes abgeschrieben werden (0 < p < 1: Abschreibunsgprozentsatz). Der Buchwert nach einem Jahr ist A Ap = Aq, wobei wir q = 1 p setzen, nach zwei Jahren Mathematik I WiSe 2005/ Aq Aqp = Aq 2 und nach T Jahren Aq T, also R = A(1 p) T. Man kann diese Formel auch nach p auflösen: p = 1 T R A. Man sieht, dass die Abschreibungsbeträge a n hier eine geometrische Folge bilden a n = Apq n 1, ebenso der Zeitwert A n nach n Jahren A n = Aq n. Mathematik I WiSe 2005/

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II Heinrich Voß Institut für Angewandte Mathematik der Universität Hamburg 99 Inhaltsverzeichnis Folgen und Reihen 2. Einführende

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler)

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler) 1 Handreichung zur Mathematikvorlesung für Wirtschaftswissenschaftler) Dr.Dr. Christina Schneider 2 Hinweis Das vorliegende Manuskript versteht sich als kurze und kompakte Handreichung zu meiner Vorlesung

Mehr

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

Aufgabensammlung zur Vorlesung. Höhere Mathematik für Wirtschaftswissenschaftler

Aufgabensammlung zur Vorlesung. Höhere Mathematik für Wirtschaftswissenschaftler Aufgabensammlung zur Vorlesung Höhere Mathematik für Wirtschaftswissenschaftler Freiberg, den 7. Juni 0 Inhaltsverzeichnis Kapitel. Folgen und Reihen 5. Folgen, Reihen, Grenzwerte 5. Finanzmathematik

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

Formelsammlung Grundlagen der Wirtschaftsmathematik

Formelsammlung Grundlagen der Wirtschaftsmathematik Ausgabe 2007-09 Formelsammlung Grundlagen der Wirtschaftsmathematik 1 Stichwortverzeichnis (mit Seitenzahlen) Abschreibungen 14 Formelzeichen 2 Grenzerlös, Grenzumsatz 6 Grenzfunktionen, weitere 7 Grenzgewinn

Mehr

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig) (K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

Funktionaler Zusammenhang. Lehrplan Realschule

Funktionaler Zusammenhang. Lehrplan Realschule Funktionaler Bildungsstandards Lehrplan Realschule Die Schülerinnen und Schüler nutzen Funktionen als Mittel zur Beschreibung quantitativer Zusammenhänge, erkennen und beschreiben funktionale Zusammenhänge

Mehr

Grundlagen: Folgen u. endliche Reihen Zinsrechnung Renten-/Investitionsrechnung Tilgungsrechnung Abschreibungen. Finanzmathematik. Fakultät Grundlagen

Grundlagen: Folgen u. endliche Reihen Zinsrechnung Renten-/Investitionsrechnung Tilgungsrechnung Abschreibungen. Finanzmathematik. Fakultät Grundlagen Finanzmathematik Fakultät Grundlagen September 2011 Fakultät Grundlagen Finanzmathematik Grundlagen: Folgen und endliche Reihen Rentenrechnung Fakultät Grundlagen Finanzmathematik Folie: 2 Folgen Reihen

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen,

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, 1 Die reellen Zahlen 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, präzise und logisch zu denken, komplexe Strukturen schnell und gründlich zu erfassen, Dinge kritisch zu hinterfragen

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Rekursion und Iteration - Folgen und Web-Diagramme

Rekursion und Iteration - Folgen und Web-Diagramme Rekursion und Iteration - Folgen und Web-Diagramme Ac Einführungsbeispiel Quadratpflanze Ein Quadrat mit der Seitenlänge m wächst wie in der Grafik beschrieben: Figur Figur2 Figur3 Täglich kommt eine Generation

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45.

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45. Mathematik I für Wirtschaftswissenschaftler Klausur am 8.6.4, 5.45 7.45. Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. b) Lösungswege und Begründungen sind anzugeben. Die

Mehr

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung 4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor

Mehr

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung 6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion

Mehr

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis I III Vorlesungsskriptum WS 2005/06 WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Aufbau des Zahlsystems 5 I.1. Die natürlichen Zahlen

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 193 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei einer Abschreibung werden eines Gutes während der Nutzungsdauer festgehalten. Diese Beträge stellen dar und dadurch

Mehr

Lernzettel Mathe Inhaltsverzeichnis

Lernzettel Mathe Inhaltsverzeichnis Lernzettel Mathe Inhaltsverzeichnis Aufgabe 1 - Vollständige Induktion 2 Aufgabe 2 - Grenzwertbestimmung 2 Aufgabe 3 - Lin/Log 2 Aufgabe 4 - Barwert/Endwert 3 Aufgabe 5 - Maximalstellen, steigend/fallend

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Eine Einführung zum numerischen Programmieren mit Excel

Eine Einführung zum numerischen Programmieren mit Excel Eine Einführung zum numerischen Programmieren mit Excel Bastian Groß Nina Weiand Universität Trier 23. Juni 2014 Groß, Weiand (Universität Trier) Excel/OpenOffice Kurs 2014 1/38 23. Juni 2014 1 / 38 Inhaltsverzeichnis

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................

Mehr

1 Logarithmische Skalierung

1 Logarithmische Skalierung Stephan Peter Wirtschaftsingenieurwesen WS 5/6 Mathematik Serie 3 Zinsrechnung Kaufmännisches Rechnen Da sind diese zwei Typen, die eine Lastwagenladung Wassermelonen zu einem Dollar das Stück gekauft

Mehr

Zusammenfassung - Mathematik

Zusammenfassung - Mathematik Mathematik Seite 1 Zusammenfassung - Mathematik 09 October 2014 08:29 Version: 1.0.0 Studium: 1. Semester, Bachelor in Wirtschaftsinformatik Schule: Hochschule Luzern - Wirtschaft Author: Janik von Rotz

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Programmieren in JavaScript

Programmieren in JavaScript Lineare Programme 1. Euro a) Schreiben Sie ein Programm, dass Frankenbeträge in Euro umrechnet. Der Benutzer gibt dazu den aktuellen Kurs ein, worauf das Programm einige typische Werte (z.b. für Fr 10,

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Wirtschafts mathematik

Wirtschafts mathematik Helge Röpcke Markus Wessler Wirtschafts mathematik Methoden Beispiele Anwendungen Röpcke Wessler Wirtschaftsmathematik Quantitative Methoden hrsg. von Prof. Dr. rer. pol. Robert Galata Prof. Dr. rer. nat.

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 17 Crash Course Brownsche Bewegung (stetige Zeit, stetiger Zustandsraum); Pricing & Hedging von Optionen in stetiger Zeit Literatur Kapitel 17 * Uszczapowski:

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Kirsten Wüst. Finanzmathematik. Vom klassischen Sparbuch zum modernen Zinsderivat GABLER

Kirsten Wüst. Finanzmathematik. Vom klassischen Sparbuch zum modernen Zinsderivat GABLER Kirsten Wüst Finanzmathematik Vom klassischen Sparbuch zum modernen Zinsderivat GABLER I Inhaltsverzeichnis VORWORT V INHALTSVERZEICHNIS VII ABBILDUNGSVERZEICHNIS XV TABELLENVERZEICHNIS XVII 1 ZINSFINANZINSTRUMENTE

Mehr

Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte

Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte Anwendungen in der elementaren Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p= Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q =1+i Diskontfaktor (Abzinsungsfaktor) v =1/(1 + i) =q 1 Laufzeit n

Mehr

[FINANZMATHEMATIK] :(1 + i) n. aufzinsen. abzinsen

[FINANZMATHEMATIK] :(1 + i) n. aufzinsen. abzinsen [FINANZMATHEMATIK] Mag. Michael Langer 1. Zinseszinsrechnung Zinseszins Wird ein Kapital K 0 zum Jahreszinssatz i so angelegt, dass es jedes Jahr um die Zinsen vermehrt wird, dann beträgt das Kapital nach

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

Jurgen Muller Analysis I-IV

Jurgen Muller Analysis I-IV Jurgen Muller Analysis I-IV Skriptum zur Vorlesung Wintersemester 5/6 bis Sommersemester 7 Universitat Trier Fachbereich IV Mathematik/Analysis Dank an Elke Gawronski und Judith Wahlen fur die Mithilfe

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

ToDo-Liste für s Mathe-Abi 2009

ToDo-Liste für s Mathe-Abi 2009 ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004 Höhere Mathεmatik für Informatiker Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2 24 ii Inhaltsverzeichnis I Eindimensionale

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

II* III* IV* Niveau. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 8 LU Nr nhaltliche Allg. Buch Arbeitsheft AB * * V* Zins, Gewinn / Verlust und Steuern MB 8 LU 10 nhaltliche Allg. Buch Arbeitsheft AB Prozentwerte mit verschiedenen Methoden bestimmen 1 den Jahreszins,

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Eingangstest Mathematik Musterlösungen

Eingangstest Mathematik Musterlösungen Fakultät für Technik Eingangstest Mathematik Musterlösungen 00 Fakultät für Technik DHBW Mannheim . Arithmetik.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Wahlfach Mathematik: Funktionen

Wahlfach Mathematik: Funktionen Wahlfach Mathematik: Funktionen In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert)

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Hinweise zum Schreiben einer Ausarbeitung

Hinweise zum Schreiben einer Ausarbeitung Seite 1 Hinweise zum Schreiben einer (Physikalisches Praktikum für Physiker) Autor: M. Saß Fakultät für Physik Technische Universität München 24.11.14 Inhaltsverzeichnis 1 Struktur einer 2 1.1 Die Einleitung..............................

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr