Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker

Größe: px
Ab Seite anzeigen:

Download "Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker"

Transkript

1 REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich und den Definitionsbereich. 2 Welche Bezeichnung(en) treffen auf die Variable f(x) zu? a) f(x) bezeichnet man auch als Bild zu x. f(x) bezeichnet man auch als Argument. c) f(x) bezeichnet man auch als Funktionswert. GANZRATIONALE FUNKTIONEN BZW. POLYNOMFUNKTIONEN 1 Welche Struktur besitzt eine Polynomfunktion? a) f(x) ist ein Produkt aus Potenzen des Typs. f(x) ist ein Quotient aus Potenzen des Typs. c) f(x) ist eine Summe von Potenzen des Typs. 2 Wie viele Nullstellen kann ein Polynom dritten Grades höchstens besitzen? a) Zwei. Drei. c) Eine. GEBROCHEN-RATIONALE FUNKTIONEN 1 Was ist bei gebrochen-rationalen Funktionen besonders zu beachten? a) Das Nennerpolynom darf nicht das Nullpolynom sein. Die Nullstellen des Zählerpolynoms müssen aus dem Definitionsbereich ausgeschlossen werden. c) Die Nullstellen des Nennerpolynoms müssen aus dem Definitionsbereich ausgeschlossen werden. 2 Welche Aussage(n) stimmen? a) Die Funktion ist echt gebrochen. Die Funktion ist unecht gebrochen. c) Eine echt gebrochene Funktion kann durch Polynomdivision in einen ganzrationalen und einen unecht gebrochenen Teil zerlegt werden.

2 3 Ist eine gebrochen- rationale Funktion? a) Ja. Nein. WINKELFUNKTIONEN 1 Die Winkelfunkionen wie entstehen durch a) die Rotation eines Vektors im Einheitskreis. das Umkehren von Funktionen. c) das Einsetzen von Polstellen. 2 Die Funktionswerte von liegen im Intervall a) [0 ; 2π]. c) [-1 ; 1]. 3 Die Nullstellen von sind a)... die Nullstellen der Sinusfunktion.... die Nullstellen der Cosinusfunktion. c) immer Vielfache von π. BETRAGSFUNKTIONEN 1 Was gibt der Betrag generell an? a) Der Betrag gibt den Schnittpunkt mit der y-achse an. Der Betrag gibt den Abstand der Eingangsgröße zum Nullpunkt an. c) Der Betrag gibt die Steigung der Eingangsfunktion an. 2 Welche Funktionswerte liefert eine Betragsfunktion? a) Die Funktionswerte sind alle positiv. Die Funktionswerte sind alle negativ. c) Die Funktionswerte sind beliebige Elemente der Menge der reellen Zahlen.

3 3 Der Betrag von a)... existiert nicht.... besitzt als einziger Funktionswert zwei Vorzeichen. c) ist Null. WURZELFUNKTIONEN 1 Welche Funktion ist die Umkehrfunktion zur Wurzelfunktion? a) Die Logarithmusfunktion ist Umkehrfunktion zur Wurzelfunktion. Die Potenzfunktion ist Umkehrfunktion zur Wurzelfunktion. c) Es gibt keine Umkehrfunktion zur Wurzelfunktion. 2 Bei muss a) x eine natürliche Zahl sein. x eine natürliche Zahl kleiner Eins sein. c) x eine reelle Zahl größer Eins sein. 3 Welche Funktionswerte liefert eine ungerade Wurzelfunktion? a) Die Funktionswerte sind alle positiv. Die Funktionswerte sind alle negativ. c) Die Funktionswerte sind beliebige Elemente der Menge der reellen Zahlen. EXPONENTIALFUNKTIONEN 1 Eine Exponentialfunktion besitzt eine(n) a) festen Punkt bei P (0 ; 1). veränderliche Basis und einen konstanten Exponenten. c) festen Grenzwert für x. Dieser ist in jedem Fall gleich Null. 3 Welche Funktion ist die Umkehrfunktion zur Expontialfunktion? a) Es gibt keine Umkehrfunktion zur Exponentialfunktion. Die Potenzfunktion ist Umkehrfunktion zur Exponentialfunktion. c) Die Logarithmusfunktion ist Umkehrfunktion zur Exponentialfunktion. DEFINITIONS- UND WERTEBEREICH 1 Der Definitionsbereich beinhaltet a) die Menge aller y Werte. die Menge aller Definitionslücken. c) alle Elemente x, die in die Funktionsvorschrift eingesetzt werden können.

4 2 Der Wertebereich einer reellen Funktion ist immer a) Teilmenge der reellen Zahlen. beschränkt. c) abzählbar. 3 Wie sieht der Definitionsbereich von aus? a) c) NULLSTELLEN 1 Was beschreibt eine Nullstelle? a) Eine Nullstelle ist die erste Koordinate des Schnittpunktes mit der x Achse. Eine Nullstelle ist die erste Koordinate des Schnittpunktes mit der y Achse. c) Eine Nullstelle stellt eine Stelle, die keinen Funktionswert besitzt, dar. 2 Der zugehörige Punkt zur Nullstelle hat die Form a).. c) 3 Welche Nullstelle(n) hat die Funktion? a) Die Funktion besitzt keine Nullstelle. Die Funktion besitzt eine Nullstelle bei. c) Die Funktion besitzt eine Nullstelle bei und.

5 SCHNITTPUNKT MIT DER Y-ACHSE 1 Der Schnittpunkt mit der y-achse besitzt die Koordinaten a) und. und. c) und. 2 Hat die Funktion einen Schnittpunkt mit der Ordinate? Wenn ja, wo? a) Ja, im Punkt. Ja, im Punkt c) Nein. SCHNITTPUNKT MIT DER Y-ACHSE Berechnen Sie den Schnittpunkt mit der y-achse für, falls es ihn gibt. a) c) Es gibt keinen Schnittpunkt mit der y-achse. VERHALTEN AM DEFINITIONSRAND 2 Wohin tendieren die Funktionswerte der Funktion im Unendlichen? a) Sie tendieren in beiden Richtungen gegen Null. Sie tendieren in beiden Richtungen gegen Unendlich. c) Sie tendieren für positive x-werte gegen Null und negative x-werte gegen minus Unendlich. 3 Welches ist der Grenzwert der Funktion, wenn x gegen 2 strebt? a) Für x gegen 2 existiert kein Grenzwert. Der Grenzwert der Funktion entspricht an dieser Stelle dem Funktionswert von. c) Der Grenzwert der Funktion entspricht an dieser Stelle dem Wert 6.

6 STETIGKEIT 1Wann ist eine Funktion, grob gesprochen, stetig? a) Wenn sie im ganzen Intervall definiert ist und keine Sprungstellen aufweist. Wenn sie im ganzen Intervall definiert ist und keine Nullstellen besitzt. c) Wenn sie im ganzen Intervall definiert ist und mindestens zwei Sprungstellen aufweist. STETIGKEIT 2 Wann ist eine Funktion am Rand ihres Definitionsbereiches stetig? a) In keinem Fall. Wenn der einseitige Grenzwert gebildet werden kann und mit dem jeweiligen Funktionswert übereinstimmt. c) Immer. 3 Untersuchen Sie die Funktion auf Stetigkeit an der Stelle? a) Die Funktion ist an dieser Stelle stetig. Die Funktion ist an dieser Stelle nicht stetig. POLSTELLEN 1Was versteht man unter einer Polstelle? a) Eine Polstelle besitzt den höchsten Funktionswert der Funktion. Eine Polstelle ist eine Definitionslücke. c) Eine Polstelle gehört zu den Unstetigkeitsstellen. 2Wohin können die Funktionswerte tendieren, wenn man sich einer Polstelle nähert? a) Sie können gegen plus oder minus Unendlich tendieren. Sie können gegen plus und minus Unendlich tendieren. c) Sie können gegen einen bestimmten Wert tendieren.

7 DIFFERENZIERBARKEIT und ABLEITUNGENSFUNKTIONEN 1 Wann ist eine Funktion differenzierbar? a) Eine Funktion ist auf ihrem gesamten Defintionsbereich differenzierbar, wenn der Grenzwert des Differenzenquotienten an jeder Stelle des Definitionsbereiches existiert. Eine Funktion ist auf ihrem gesamten Definitionsbereich differenzierbar, wenn sie auf ihrem gesamten Definitionsbereich stetig ist. c) Eine Funktion ist differenzierbar, wenn es eine einheitlich Ableitungs-funktion zur Funktion gibt. 2 Wie wird die Ableitungsfunktion erklärt? a) Die Ableitungsfunktion ordnet jedem x die Funktionssteigung in x zu. Die Ableitungsfunktion ordnet jedem x den Anstieg der Tangente im Punkt zu. 3Wie lautet die Ableitungsfunktion zu? a) Die Ableitungsfunktion zu f lautet Die Ableitungsfunktion zu f lautet c) Es gibt keine Ableitungsfunktion zu f. EXTREMPUNKTE 1 Wann ist ein Punkt ein Extrempunkt? a) Wenn die y-koordinate dieses Punktes die größte oder kleinste unter den Punkten ist, die unmittelbar in der Umgebung des Punktes liegen. Wenn die x-koordinate dieses Punktes die größte oder kleinste unter den Punkten ist, die unmittelbar in der Umgebung des Punktes liegen. c) Wenn die Funktionssteigung in diesem Punktes die größte oder kleinste unter den Punkten ist, die unmittelbar in der Umgebung des Punktes liegen. EXTREMPUNKTE 2 Richtig oder Falsch : Eine Funktion kann nicht mehr als einen Extrempunkt besitzen. a) Richtig. Falsch.

8 Lösungen zum Multiple-Choice-Test Reelle Funktionen : 1b; 2a und 2c; Polynomfunktionen : 1c; 2b; Gebrochen-rationale Funktionen : 1a und 1c; 2b; 3b Winkelfunktionen : 1a; 2c; 3a Betragsfunktionen : 1b; 2a; 3c Wurzelfunktionen : 1b; -- ; 3c Exponentialfunktionen : 1a; 3c Definitions- und Wertebereich : 1c; 2a; -- Nullstellen : 1a; 2a ; 3c Schnittpunkt mit der y-achse : 1b; 2c ; 3a Verhalten am Definitionsrand : 2a ; 3b und 3c Stetigkeit : 1a; 2b; 3a Polstellen : 1b und 1c; 2a und 2b Differenzierbarkeit und Ableitungsfunktion : 1a und 1b und 1c; 2a und 2b; 3a Extrempunkte : 1a; 2b

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Zähler und Nenner eine ganzrationale Funktion (Polynom) befindet: Eigenschaften f(x) = g(x) h(x) Echt gebrochen-rationale

Mehr

5 Gebrochen rationale Funktionen

5 Gebrochen rationale Funktionen c 003, Thomas Barmetler FOS, 11 Jahrgangsstufe (technisch) 5 Gebrochen rationale Funktionen Unter einer gebrochen rationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen Dabei

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n . Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1 Analysis 1 Einführung Mathe-Squad GbR 22. März 2017 Einführung 1 y 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 910 2 x /* */ Einführung Allgemeines 2 Allgemeines Funktion f(x) bildet jeden

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

F u n k t i o n e n Zusammenfassung

F u n k t i o n e n Zusammenfassung F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.

Mehr

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4 Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte

Mehr

MatheBasics Teil 3 Grundlagen der Mathematik

MatheBasics Teil 3 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 3 Grundlagen der Mathematik Version vom 05.02.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Differentialrechnung

Differentialrechnung Katharina Brazda 5. März 007 Inhaltsverzeichnis Motivation. Das Tangentenproblem................................... Das Problem der Momentangeschwindigkeit.......................3 Differenzenquotient und

Mehr

Gebrochen rationale Funktionen

Gebrochen rationale Funktionen Gebrochen rationale Funktionen Anmerkung: Auf dieser Seite wurden LaTeX Formeln mit MathJa eingebaut die nötigen Formatierungen werden über einen eternen Server (cdn.mathja.org) bezogen. Keine Garantie,

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 3. Reelle Funktionen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

y2 keine eindeutige Zuordnung Reelle Funktionen gebrochen rationale Funktionen f(x)=(x²-1) / x³+1

y2 keine eindeutige Zuordnung Reelle Funktionen gebrochen rationale Funktionen f(x)=(x²-1) / x³+1 4 Reelle Funktionen in einer Veränderlichen 4.1 Definition Es seien M 1 und M 2 zwei Mengen reeller Zahlen. Ordnet man jedem Element 1 M 1 durch eine Zuordnungsvorschrift f genau ein Element M 2 zu, so

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl. auch nur in Intervallen) nicht. Knicke im Funktionsgraphen auftreten.

Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl. auch nur in Intervallen) nicht. Knicke im Funktionsgraphen auftreten. FOS, 11 Jahrgangsstufe (technisch) 6 Stetigkeit Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl auch nur in Intervallen) nicht abreißen und gezeichnet werden können, ohne den Zeichenstift

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN

GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN Graph von f mit Epsilonstreifen und Asymptoten.5.5 y-achse 0.5 6 0 8 6 0 6 8 0 6 0.5.5 -Achse Inhaltsverzeichnis Kapitel Inhalt Seite Einführung Der Grenzwertbegriff.

Mehr

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit Kapitel 6 Grenzwerte von Funktionen und Stetigkeit 225 Relle Funktionen Im Folgenden betrachten wir reelle Funktionen f : D R, mit D R. Wir suchen eine formale Definition für den folgenden Sachverhalt.

Mehr

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. 1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge

Mehr

F u n k t i o n e n Rationale Funktionen

F u n k t i o n e n Rationale Funktionen F u n k t i o n e n Rationale Funktionen Die erste urkundlich erwähnte Rechenmaschine wurde 163 von Wilhelm Schickard in einem Brief an Johannes Kepler knapp beschrieben. Die Maschine besteht aus einem

Mehr

Teil 3 -Analysis TEIL 3: ANALYSIS

Teil 3 -Analysis TEIL 3: ANALYSIS Mathematik Workshop TEIL 3: ANALYSIS Basis Funktionen Funktionsuntersuchung Nullstellen pq-formel, Diskriminanten Polynomdivision Mehrere Veränderliche Differenzieren Idee Regeln zum Rechnen Anwendung

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Vorlesung. Mathematik 1. Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER / 30

Vorlesung. Mathematik 1. Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER / 30 Vorlesung Mathematik 1 Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER 2016 1 / 30 Vorlesung Mathematik 1 Prof. Dr. M Herty Diese Vorlesung: Mengen Reelle Zahlen Elementare Funktionen Anwendungsbeispiel:

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Analysis 1 Grundlagen und Differenzialrechnung

Analysis 1 Grundlagen und Differenzialrechnung Hans-Jürgen Dobner, Bernd Engelmann Analysis Grundlagen und Differenzialrechnung ISBN-: -446-45- ISBN-: 978--446-45-9 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/978--446-45-9

Mehr

Dieses Kapitel vermittelt:

Dieses Kapitel vermittelt: 2 Funktionen Lernziele Dieses Kapitel vermittelt: wie die Abhängigkeit quantitativer Größen mit Funktionen beschrieben wird die erforderlichen Grundkenntnisse elementarer Funktionen grundlegende Eigenschaften

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden.

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. 49. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit a Grenzwerte von Funktionen Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. Einführende Beispiele: Untersuche

Mehr

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle

Mehr

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden.

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden. R. Brinkmann http://brinkmann-du.de Seite 0.0.008 Einführung: Funktionenklassen Bisher haben wir nur ganzrationale Funktionen kennen gelernt. Sie gehören zu der Klasse der Rationalen Funktionen. In der

Mehr

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Algebra Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch Algebra

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Der Graph einer Funktion ist eine Kurve in einem ebenen Koordinatensystem.

Der Graph einer Funktion ist eine Kurve in einem ebenen Koordinatensystem. . Reelle Funktionen. Grundbegriffe Wenn man den Elementen einer Menge D (Definitionsbereich) in eindeutiger Weise die Elemente einer Menge B (Bildbereich; Wertebereich; Wertevorrat) zuordnet, spricht man

Mehr

1. Teil Repetitionen zum Thema (bisherige) Funktionen

1. Teil Repetitionen zum Thema (bisherige) Funktionen Analysis-Aufgaben: Rationale Funktionen 2 1. Teil Repetitionen zum Thema (bisherige) Funktionen 1. Die folgenden Funktionen sind gegeben: f(x) = x 3 x 2, g(x) = x 4 + 4 (a) Bestimme die folgenden Funktionswerte/-

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen

Mehr

Nachhilfen: Algebra und Differentialrechnung Wiederholung: 2. Abschnitt mit Übungsaufgaben

Nachhilfen: Algebra und Differentialrechnung Wiederholung: 2. Abschnitt mit Übungsaufgaben Wiederholung:. Abschnitt mit Übungsaufgaben Grundwissen (GW) GW. Lösen Sie folgende algebraische Gleichungen bzw. Ungleichungen in der Grundmenge R: a) 5 = 0 a) 5 0 Teilergebnis: ] ;,5] b) Lösen Sie die

Mehr

27 Verhalten gebrochen rationaler Funktionen im Unendlichen; Asymptoten

27 Verhalten gebrochen rationaler Funktionen im Unendlichen; Asymptoten 7 Verhalten gebrochen rationaler Funktionen im Unendlichen; symptoten Wie wir schon gesehen haben schmiegt sich der Graph einer ganzrationalen Funktion an seiner Polstelle an eine senkrechte symptote (hier:

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

Basistext Kurvendiskussion

Basistext Kurvendiskussion Basistext Kurvendiskussion In einer Kurvendiskussion sollen zu einer vorgegebenen Funktion (bzw. Funktionsschar) Aussagen über ihrem Verlauf gemacht werden. Im Nachfolgenden werden die einzelnen Untersuchungspunkte

Mehr

Rationale Funktionen

Rationale Funktionen Rationale Funktionen ANALYSIS Kapitel 6 WRProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 15. August 2016 Überblick über die bisherigen ANALYSIS - Themen:

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Stetige Funktionen. 1-E1 Ma 1 Lubov Vassilevskaya

Stetige Funktionen. 1-E1 Ma 1 Lubov Vassilevskaya Stetige Funktionen Der Graph einer stetigen Funktion hat keine Sprungstellen und kann ohne Absetzen des Stiftes gezeichnet werden. 1-E1 Grenzwert einer stückweise definierten Funktion: Aufgabe 1 Abb. A1:

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

GF MA Differentialrechnung A2

GF MA Differentialrechnung A2 Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall

Mehr

Grenzwerte, Stetigkeit, Differenziation

Grenzwerte, Stetigkeit, Differenziation 0 Grenzwerte, Stetigkeit, Differenziation 0 Grenzwerte von Funktionen In 33Kapitel 9 wurden Folgen und deren Grenzwerte eingeführt Mittels der Konvergenz von Folgen wird der Begriff der Konvergenz für

Mehr

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Nenner befindet. f() = a h() Beispiel 1: f() = 1 Beispiel 2: f() = 1 ² Definitionsbereich und Definitionslücken Bei einer

Mehr

Gebrochen rationale Funktion f(x) = x2 +1

Gebrochen rationale Funktion f(x) = x2 +1 Gebrochen rationale Funktion f() = +. Der Graph der Funktion f ist punktsmmetrisch, es gilt: f( ) = ( ) + f() = f( ) = + = + = f(). An der Stelle = 0 ist f nicht definiert, an dieser Stelle liegt ein Pol

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a . Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

I. Verfahren mit gebrochen rationalen Funktionen:

I. Verfahren mit gebrochen rationalen Funktionen: I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang . Die Momentangeschwindigkeit eines Autos Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang s(t) = t gilt. Im s t Diagramm

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik Gerade, ungerade oder weder noch? Algebraische und graphische Beweise 4-E1 Symmetrie einer Funktion: Aufgabe 3 Bestimmen Sie algebraisch und graphisch, ob die Funktionen gerade oder ungerade sind, oder

Mehr

Lösungen Kapitel A: Wahrscheinlichkeiten

Lösungen Kapitel A: Wahrscheinlichkeiten Lösungen Kapitel A: Wahrscheinlichkeiten Arbeitsblatt 01: Kombinatorische Zählverfahren (1) Junge, Junge, Mädchen, Mädchen (2) Junge, Mädchen, Junge, Mädchen (3) Junge, Mädchen, Mädchen, Junge (4) Mädchen,

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

2 Funktionen einer Variablen

2 Funktionen einer Variablen 2 Funktionen einer Variablen 2.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000. Die sind

Mehr

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Funktionenlehre Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngmnasiums Bad Neustadt und des Kurt-Huber-Gmnasiums Gräfelfing J O H A N N

Mehr

Aufgabe 2 Berechne zur gegebenen Funktion die erste und zweite Ableitung. Wie groß ist die Steigung in den Punkten x = { 1,0,50}?

Aufgabe 2 Berechne zur gegebenen Funktion die erste und zweite Ableitung. Wie groß ist die Steigung in den Punkten x = { 1,0,50}? Testarbeit Mathematik Klasse Name Aufgabe Skizziere die Ableitung! Wie groß ist die Steigung ungefähr bei x =,0,,, { }? Kennzeichne lokale Minima, Maxima und den Wendepunkt. Was passiert beim Wendepunkt?

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen inkl. der 0 ganzen Zahlen rationalen

Mehr

Differenzialrechnung

Differenzialrechnung Mathematik bla Differenzialrechnung Ort - Zeit - Geschwindigkeit E:\1_GYMER\_Unterricht\AUFGABEN\0_3 Differenzialrechnung\00_differenzialrechnung.docx 1 Das Weg-Zeit-Diagramm und die Geschwindigkeit Ordne

Mehr

Gebrochen-Rationale Funktionen

Gebrochen-Rationale Funktionen Gebrochen-Rationale Funktionen Bernhard Scheideler Albrecht-Dürer-Gymnasium Hagen Hilfen zur Analysis (Q1) 20. Januar 2012 Inhalt: Die Diskussion einer gebrochen-rationalen Funktion wird an einem Beispiel

Mehr

Analysis. Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik

Analysis. Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik Analysis Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester 2013 Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik Vorwort Die modernen Wirtschaftswissenschaften nutzen in

Mehr

In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. N = {1,2,3,...}, p in Z,q in N}.

In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. N = {1,2,3,...}, p in Z,q in N}. Grundlagen. Zahlen, Mengen und Symbole In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. Zahlenmengen Die Menge N der natürlichen Zahlen ist gegeben durch N =

Mehr

Definitions- und Wertebereich von Funktionen und Relationen

Definitions- und Wertebereich von Funktionen und Relationen Definitions- und Wertebereich von Funktionen und Relationen -E -E2 -E3 Wiederholung: Definition einer Funktionen Definition: Unter einer Funktion versteht man eine Vorschrift, die jedem Element x aus einer

Mehr

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie

Mehr

a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) =

a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) = 50 Kapitel 2: Rationale Funktionen und ihre Anwendungen 2.2.5 Orthogonale Geraden Geraden, die senkrecht aufeinander stehen, werden als zueinander orthogonale Geraden bezeichnet. Der Graph von g entsteht

Mehr

Q11-Mathematik-Wissen kompakt (mit CAS-Befehlen)

Q11-Mathematik-Wissen kompakt (mit CAS-Befehlen) Q11-Mathematik-Wissen kompakt Jahrgang 2014/16 S. 1 Q11-Mathematik-Wissen kompakt (mit CAS-Befehlen) Gebrochen rationale Funktionen Funktionen der Form f(x) = p(x), p(x) und q(x) ganzrationale Funktionen

Mehr

Funktionen. Folgen und Reihen. Definitionen. Darstellung. Eigenschaften. Elementare reelle Funktionen und Kurven

Funktionen. Folgen und Reihen. Definitionen. Darstellung. Eigenschaften. Elementare reelle Funktionen und Kurven Funktionen Inhalt Funktionen Folgen und Reihen Definitionen Darstellung Eigenschaften Elementare reelle Funktionen und Kurven Funktionen Inhalt Funktionen Folgen und Reihen! Der Begriff der Folge! Eigenschaften

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1

Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Lehrplan: M 11.1.1 Graphen gebrochen-rationaler Funktionen M 11.1.2 Lokales Differenzieren Passende Kapitel im Schulbuch Fokus Mathematik 11:

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

Beispiele für eine vollständige Kurvendiskussion

Beispiele für eine vollständige Kurvendiskussion Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da

Mehr