Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Größe: px
Ab Seite anzeigen:

Download "Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:"

Transkript

1 Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) b) c) [Lösung] 1 a) b) c) 4/5 1/5 1/5 1/5 1/5 4/5 1/5 1/5 1/5 1/5 4/5 1/5 1/5 1/5 1/5 4/5 35/11 16/11 13/ /11 3/11 1/ /11 7/11 5/ [Aufgabe] Sei A eine der folgenden Matrizen über R: Bestimmen Sie alle Lösungen der Gleichungen Ax = für x R 3

2 2 [Lösung] Wir geben die Lösungsmenge L = {x R 3 Ax = } in den jeweiligen Fällen an : L = 1 + µ λ, µ R : L = λ R : L = : L = 2 + µ λ, µ R : L = : L = λ R 3 [Aufgabe] Wir fixieren n > l > und schreiben alle n n-matrizen in Blockform A11 A A =, A 21 A wobei A 11 eine l l-matrix und A, A 21, A jeweils eine Matrix in passender Grösse ist (nämlich welcher?) a) Zeige, dass für beliebige Matrizen A11 A A = A 21 A gilt: B11 B und B = B 21 B A11 B A B = 11 + A B 21 A 11 B + A B A 21 B 11 + A B 21 A 21 B + A B b) Sei A eine n n-matrix in oberer Blockdreiecksform bezüglich l, das heisst, mit A 21 gleich der Nullmatrix Zeige, dass A invertierbar ist genau dann, wenn A 11 und A invertierbar sind, und dann ist A 1 = ( A 1 11 A 1 11 A A 1 O A 1 ) Berechnen Sie als Anwendung die inversen Matrizen von D 1 = 5 8 4, D 2 =

3 3 [Lösung] Die Matrizen A, A 21, A haben jeweils die Grössen l (n l), (n l) l und (n l) (n l) a) Der Koeffizient von A B an der Stelle (i, j) ist gegeben durch (A B) ij = n ( l ) ( n a ik b kj = a ik b kj + k=l+1 a ik b kj ) Für 1 k l gilt (A 11 ) ik (B 11 ) kj falls 1 i, j l (A 11 ) ik (B ) k,j l falls 1 i l und l + 1 j n a ik b kj = (A 21 ) i l,k (B 11 ) kj falls l + 1 i n und 1 j l (A 21 ) i l,k (B ) k,j l falls l + 1 i, j n Für l + 1 k n gilt (A ) i,k l (B 21 ) k l,j falls 1 i, j l (A ) i,k l (B ) k l,j l falls 1 i l und l + 1 j n a ik b kj = (A ) i l,k l (B 21 ) k l,j falls l + 1 i n und 1 j l (A ) i l,k l (B ) k l,j l falls l + 1 i, j n Im Fall 1 i, j l erhalten wir deshalb (A B) ij = l (A 11 ) ik (B 11 ) kj + n (A ) i,k l (B 21 ) k l,j k=l+1 n l = (A 11 B 11 ) ij + (A ) ik (B 21 ) kj = (A 11 B 11 ) ij + (A B 21 ) ij Das zeigt die Aussage für den ersten Matrixblock In den anderen Fällen erhält man mit demselben Argument (A 11 B ) i,j l + (A B ) i,j l falls 1 i l und l + 1 j n (A B) ij = (A 21 B 11 ) i l,j + (A B 21 ) i l,j falls l + 1 i n und 1 j l (A 21 B ) i l,j l + (A B ) i l,j l falls l + 1 i, j n Das zeigt die Aussage für die restlichen Blöcke b) Nehme zuerst an, dass A 1 und A 2 invertierbar sind Dann gilt für A 1 11 A 1 11 A B := A 1 O A 1 mit Aufgabenteil a) A11 A 1 11 A A B = 11 ( A 1 11 A A 1 ) + A A 1 Il A A 1 = = I I n n l

4 Es folgt, dass A invertierbar ist und B = A 1 gilt Angenommen A ist invertierbar mit Inverse B := A 1 Schreiben wir B11 B B = B 21 B wie in Aufgabenteil a), so folgt A11 B A B = 11 + A B 21 A 11 B + A B Il = A B 21 A B I n l Wegen A B = I n l ist A invertierbar Aus A B 21 = folgt deshalb B 21 = Da A 11 B 11 + A B 21 = I l und B 21 = ist, gilt A 11 B 11 = I l, also ist auch A 11 invertierbar In den Anwendungen erhalten wir 8 3 D1 1 = 5 2 1/4, 1/2 D 1 2 = [Aufgabe] Zeigen Sie, dass jede invertierbare m m-matrix ein Produkt von Matrizen der Form I m + λe ij für i j und λ K, und Diagonalmatrizen ist 4 [Lösung] Sei A eine beliebige invertierbare Matrix und sei A = L P R eine Zerlegung von A in eine untere Dreiecksmatrix L, eine Permutationsmatrix P und eine obere Dreiecksmatrix R In der Vorlesung wurde gezeigt, dass jede obere Dreiecksmatrix sich als Produkt von Matrizen der Form I m + λi ij für i < j und λ K schreiben lässt Durch Anwenden der Transponierten folgt, dass jede untere Dreiecksmatrix sich als Produkt von Matrizen der Form (I m + λi ij ) T = I m + λi ji für i < j und λ K schreiben lässt Wähle solche Produktdarstellungen für L und R Wegen A = L P R genügt es daher, die folgende Behauptung zu beweisen Behauptung: Jede Permutationsmatrix P lässt sich als Produkt von Matrizen der Form I m + λi ij für i j und λ K, und Diagonalmatrizen schreiben Beweis Wir beweisen die Aussage zuerst für eine beliebige m m Permutationmatrix, bei der auf der Diagonalen genau zwei Einträge nicht gleich 1 sind (eine sogenannte Transpositionsmatrix) Wegen = 1 1 (1)

5 gilt dies im Fall m = 2 Für beliebiges m 2 und für eine solche Matrix T, seien (i, i) und (j, j) mit i < j die Stellen auf der Diagonalen an denen eine Null steht Indem man eine zu (1) analoge Multiplikation bezüglich des Blockes (i, j) ausführt, erhält man die Aussage für alle m Wir verwenden nun Induktion um die Behauptung im allgemeinen Fall zu zeigen Im Basisfall m = ist die -Matrix eine Diagonalmatrix und die Aussage gilt Angenommen, die Aussage gilt für ein beliebiges m und sei eine beliebige Permutationsmatrix P der Grösse (m+1) (m+1) gegeben Sei 1 i m+1 der eindeutige Index, sodass der (i, m+1)-te Eintrag von P gleich 1 ist Sei T = (t ij ) 1 i,j m+1 die Permutationsmatrix mit den nicht-verschwindenen Einträgen t i,m+1 = t m+1,i = 1 und t jj = 1 für alle j i, m + 1 Für i m + 1 ist T eine Transpositionsmatrix und für i = m + 1 ist T die Identität Insbesondere gilt die Aussage der Behauptung für die Matrix T Die Matrix P = T P (2) ist die Matrix die aus P durch Vertauschen der i-ten und (m + 1)-ten Zeile entsteht (siehe pdf zu den Linearen Gleichungssystemen) Insbesondere ist P eine Permutationsmatrix und der Eintrag an Position (m + 1, m + 1) ist 1 Wir schreiben P als Blockmatrix Q P = 1 für eine m m-permutationsmatrix Q und Nullmatrizen geeigneter Grösse Bei Induktionsvoraussetzung lässt sich Q als Produkt von Matrizen der Form I m + λi ij für i j und λ K, und Diagonalmatrizen schreiben Aus der Aufgabe 3 folgt nun, dass dies auch für P mit solchen (m + 1) (m + 1)- Matrizen gilt Da T eine Transpositionsmatrix oder die Identität ist, ist T invertierbar mit Inverse T 1 = T Aus (2) folgt daher P = T P Da T als auch P sich als Produkt von Matrizen der Form I m +λi ij für i j und λ K, und Diagonalmatrizen schreiben lassen, gilt dies auch für P Das zeigt die Aussage für alle Permutationsmatrizen der Grösse (m + 1) (m + 1) 5 [Aufgabe] Zeigen Sie, dass für jede Matrix A eine Permutationsmatrix P und eine untere Dreiecksmatrix U existiert, so dass U P A Zeilenstufenform hat 5 [Lösung] Satz: Für jede Matrix A existieren eine Permutationsmatrix P und eine invertierbare untere Dreiecksmatrix U, so dass U P A Zeilenstufenform hat

6 Beweis: Beim Entwickeln des Beweises stellt sich heraus, dass die geplante Induktion besser funktioniert, wenn man gleich eine stärkere Aussage beweist, nämlich: Satz: Für jede m n-matrix A existieren eine Permutationsmatrix P und eine invertierbare untere Dreiecksmatrix U, so dass U P A Zeilenstufenform hat und für jeden Index 1 i m, für den die i-te Zeile von UP A identisch Null ist, die Matrix U in der i-ten Spalte mit der Einheitsmatrix übereinstimmt Dies beweisen wir durch Induktion nach n Induktionsanfang: n = : Die gesuchte Aussage gilt mit U = P = I m Induktionsvoraussetzung: Es ist n > und die gesuchte Aussage gilt für alle Matrizen der Grösse m (n 1) Induktionsschritt: Sei A eine beliebige m n-matrix Sei A die durch Streichen der letzten Spalte von A entstehende m (n 1)-Matrix Nach Induktionsvoraussetzung existieren dann eine Permutationsmatrix P und eine invertierbare untere Dreiecksmatrix U, so dass UP A Zeilenstufenform hat und für jeden Index 1 i m, für den die i-te Zeile von UP A identisch Null ist, die i-te Spalte von U mit der i-ten Spalte der Einheitsmatrix übereinstimmt Sei 1 k m + 1 minimal, so dass für alle k i m die i-te Zeile von UP A gleich Null ist (Also k := m + 1, wenn alle Zeilen von UP A ungleich Null sind) Dann sind die Zeilen 1,, k 1 von UP A alle ungleich Null, und nach Definition der Zeilenstufenform beginnen die von Null verschiedenen Terme in jeder dieser Zeilen später als in der vorigen Da die Matrix UP A auch durch Streichen der letzten Spalte von U P A entsteht, gelten dieselben beiden Aussagen dann auch für die Zeilen 1,, k 1 von UP A In diesen Zeilen hat U P A also schon die gewünschte Zeilenstufenform Schreibe nun UP A = b ij 1 i m mit Koeffizienten b ij K Wir unterscheiden 1 j n die folgenden beiden Fälle: 1 Fall: k i m: b in = Dies bedeutet, dass die Zeilen k,, m von UP A schon ganz gleich Null sind Dann ist U P A schon insgesamt in Zeilenstufenform, und dieselben Matrizen P und U erfüllen alle geforderten Bedingungen 2 Fall: k i m: b in (Also insbesondere k m) Sei dann k l m minimal mit b ln Wir wenden die folgenden elementaren Zeilenoperationen auf UP A an, in der genannten Reihenfolge: Vertauschen der k-ten und l-ten Zeile, bzw nichts im Fall k = l Sei P die Permutationsmatrix, deren Linksmultiplikation diese Vertauschung induziert Addieren von b in b ln mal der k-ten Zeile zur i-ten Zeile für alle l < i m Diese Zeilenoperation wird durch Linksmultiplikation mit I m b in b ln E ik induziert Der Gesamteffekt dieser Additionen entspricht (Nachrechnen!) der Linksmultiplikation mit der invertierbaren unteren Dreiecksmatrix U := I m m b in i=l+1 b ln E ik

7 Die durch diese Zeilenoperationen entstehende Matrix ist dann U P UP A Da die Zeilen 1,, k 1 von UP A durch die Operationen nicht geändert wurden, ist die Matrix U P UP A dort schon in Zeilenstufenform Ausserdem ist ihre k-te Zeile gleich Null ausser im letzten Eintrag b ln, welcher ungleich Null ist Da im Fall k > 1 die (k 1)-te Zeile schon einen früheren Eintrag ungleich Null hat, gilt auch hier die Bedingung der Zeilenstufenform Schliesslich sind die Zeilen k + 1,, m alle identisch gleich Null Somit ist U P UP A insgesamt in Zeilenstufenform Setze U := P U(P ) 1 Dann gilt P U = U P, und die gefundene Matrix ist gleich U P UP A = U U P P A = (U U ) (P P ) A Hier ist P P ein Produkt zweier Permutationsmatrizen, also nach Aufgabe 5 von Serie 4 selbst eine Permutationsmatrix Andererseits wissen wir von oben, dass U eine invertierbare untere Dreiecksmatrix ist, deren i-te Spalte mit der i-ten Spalte der Einheitsmatrix I m übereinstimmt für alle k i m Da die Linksmultiplikation mit P auf jede Spalte einer Matrix separat wirkt, stimmt für alle k i m also auch die i-te Spalte von P U mit der i-ten Spalte von P I m = P überein Ausserdem ist P ihre eigene Inverse; die Rechtsmultiplikation mit (P ) 1 bewirkt also die Vertauschung der Spalten k und l Da die Indizes k und l beide k sind, stimmt daher für alle k i m die i-te Spalte von U = P U(P ) 1 mit der i-ten Spalte von P (P ) 1 = I m überein Weiter ist U = I m m b in i=l+1 b ln E ik eine invertierbare untere Dreiecksmatrix, die in allen Spalten ausser der k-ten mit I m übereinstimmt Als Produkt zweier invertierbarer unterer Dreiecksmatrizen ist somit auch U U eine invertierbare untere Dreiecksmatrix Ausserdem stimmen für alle k < i m die i-ten Spalten von U und U mit denen der Einheitsmatrix überein Daraus folgt dasselbe auch für das Produkt, nämlich durch direktes Nachrechnen, vorzugsweise mit Blockmatrizen wie in Aufgabe 3 der vorliegenden Serie mit (k, m) anstelle von (l, n) Die Indizes k < i m sind aber genau diejenigen, für welche die i-ten Zeilen von U P UP A = (U U ) (P P ) A gleich Null sind Somit ist also die gesuchte Zusatzbedingung erfüllt für die gegebene Matrix A, die Permutationsmatrix P P, und die untere Dreiecksmatrix U U Der Induktionsschritt ist damit abgeschlossen, und die Aussage in allen Fällen bewiesen

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 95 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Dreiecksmatrizen. Die Treppennormalform

Dreiecksmatrizen. Die Treppennormalform Dreiecksmatrizen. Die Treppennormalform Lineare Algebra I Kapitel 4-5 8. Mai 202 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Gegeben seien die folgenden geordneten Basen B = (v, v, v, v ) und C = (w, w,

Mehr

6.2 Rechnen mit Matrizen

6.2 Rechnen mit Matrizen 62 Rechnen mit Matrizen 62 Rechnen mit Matrizen 103 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Invertierbarkeit von Matrizen

Invertierbarkeit von Matrizen Invertierbarkeit von Matrizen Lineare Algebra I Kapitel 4 24. April 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 2 Rechenoperationen und Gesetze Gleichheit

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten 6.1 Symmetrische Gruppe Definition: Eine bijektive Abbildung von einer Menge X auf sich selbst heisst eine Permutation von X. Satz-Definition:

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( ) Ferienkurs Mathematik für Physiker I WS 2016/17 Ferienkurs Mathematik für Physiker I Skript Teil 3 (29032017) 1 Lineare Gleichungssysteme Oft hat man es in der Physik mit unbekannten Größen zu tun, für

Mehr

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung D-MATH Lineare Algebra I/II HS 07/FS 08 Dr Meike Akveld Lösung 3: Sylvesters Trägheitssatz & Singulärwertzerlegung Wir wissen, dass eine Basis B von R n existiert, sodass p [β Q ] B I I q 0 n p q gilt

Mehr

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren.

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 8 1. [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. a 1 A 1 a 2 A 2 a 3

Mehr

7 Matrizen über R und C

7 Matrizen über R und C $Id: matrix.tex,v. 0/0/0 5:7:7 hk Exp $ 7 Matrizen über R und C 7. Inverse Matrizen und reguläre lineare Gleichungssysteme In der letzten Sitzung hatten wir eine quadratische Matrix A regulär oder invertierbar

Mehr

Lineare Algebra I - Prüfung Winter 2019

Lineare Algebra I - Prüfung Winter 2019 Lineare Algebra I - Prüfung Winter 209. (20 Punkte) Kreuzen Sie auf dem Abgabeblatt ihre Antwort an. Pro Teilaufgabe ist genau eine der vier Antwortmöglichkeiten richtig. Für jede richtig beantwortete

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 018 Prof Dr N Hungerbühler Serie 8: Online-Test Schicken Sie Ihre Lösung bis spätestens Freitag, den 3 November um 14:00 Uhr ab Diese Serie besteht nur aus Multiple-Choice-Aufgaben

Mehr

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5

Mehr

Kapitel 16. Invertierbare Matrizen

Kapitel 16. Invertierbare Matrizen Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Matrizen. Lineare Algebra I. Kapitel April 2011

Matrizen. Lineare Algebra I. Kapitel April 2011 Matrizen Lineare Algebra I Kapitel 2 26. April 2011 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/~holtz Email: holtz@math.tu-berlin.de Assistent: Sadegh

Mehr

Lösung 13: Unitäre Vektorräume und normale Abbildungen

Lösung 13: Unitäre Vektorräume und normale Abbildungen D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Lösung 13: Unitäre Vektorräume und normale Abbildungen 1. a) Im Folgenden sei γ : V V C die Abbildung γ(v, w) v + w 2 v w 2 i v + iw 2 + i v iw 2. : Wir

Mehr

Lösungsskizze zur Wiederholungsserie

Lösungsskizze zur Wiederholungsserie Lineare Algebra D-MATH, HS Prof. Richard Pink Lösungsskizze zur Wiederholungsserie. [Aufgabe] Schreibe die lineare Abbildung f : Q Q 5, x +x +x x x +x +6x f x := x +x +8x x x +x +x. x +x +5x als Linksmultiplikation

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

(c) x 2 + 3x 3 = 1 3x 1 + 6x 2 3x 3 = 2 6x 1 + 6x x 3 = 5

(c) x 2 + 3x 3 = 1 3x 1 + 6x 2 3x 3 = 2 6x 1 + 6x x 3 = 5 Musterlösungen zu Mathematik II (Elementare Lineare Algebra) Blatt Nathan Bowler A: Präsenzaufgaben. Zeilenstufenform und reduzierte Zeilenstufenform erkennen Welche der folgenden Matrizen sind in Zeilenstufenform?

Mehr

Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen

Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen Prof. Dr. Duco van Straten Blatt 8 - Lösungen Oliver Labs 8. Dezember 2003 Konrad Möhring Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen. Skizzieren Sie die folgenden Teilmengen der GAUSSschen

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 7 Was die Menschen verbin, ist nicht der Glaube, sondern der Zweifel Peter Ustinow Universelle Eigenschaft der

Mehr

Spezielle Matrizen. Invertierbarkeit.

Spezielle Matrizen. Invertierbarkeit. Spezielle Matrizen. Invertierbarkeit. Lineare Algebra I Kapitel 4 2. Mai 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen 2.5. SMITH-NORMALFORM FÜR MATRIZEN ÜBER EUKLIDISCHEN RINGEN73 2.5 Smith-Normalform für Matrizen über Euklidischen Ringen Bemerkung 2.74. Sei K ein Körper und A K n m, b K n 1. Das lineare Gleichungssystem

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

3.9 Elementarmatrizen

3.9 Elementarmatrizen 90 Kapitel III: Vektorräume und Lineare Abbildungen 3.9 Elementarmatrizen Definition 9.1 Unter einer Elementarmatrix verstehen wir eine Matrix die aus einer n n-einheitsmatrix E n durch eine einzige elementare

Mehr

Lösung zu Serie 9. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 9. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 9 1. [Aufgabe] Sei f : V W eine lineare Abbildung. Zeige: a) Die Abbildung f ist injektiv genau dann, wenn eine lineare Abbildung g :

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

g 1 g = e, (1) (g 1 ) 1 g 1 = e, (2) Unter Verwendung des Assoziativgesetzes ist nach (1), und weil e neutrales Element ist. Nach (2) folgt nun

g 1 g = e, (1) (g 1 ) 1 g 1 = e, (2) Unter Verwendung des Assoziativgesetzes ist nach (1), und weil e neutrales Element ist. Nach (2) folgt nun Stefan K. 1.Übungsblatt Algebra I Aufgabe 1 1. zu zeigen: (g 1 ) 1 = g g G, G Gruppe Beweis: Aus dem Gruppenaxiom für das Linksinverse zu g haben wir und für das Linksinverse zu g 1 Unter Verwendung des

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen

Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen D-MATH Lineare Algebra II FS 7 Dr. Meike Akveld Lösung 5: Gram-Schmidt Orthogonalisierung, adjungierte Abbildungen. a) Wegen der Linearität im ersten Argument gilt sicherlich w S :, w =. Somit ist S und

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme 3 Lineare Gleichungssysteme 3 Fortsetzung des Matrizenkalküls Als erstes beweisen wir einen einfachen Satz über den Rang von Matrizenprodukten Satz 3 (a) Für Matrizen A : Ã l m, B : Ã m n gilt rang AB

Mehr

Lösung Serie 13: Determinanten (Teil 2)

Lösung Serie 13: Determinanten (Teil 2) D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr Meike Akveld Lösung Serie 13: Determinanten (Teil 2 1 a Wir zeigen die gewünschten Eigenschaften: 1 Es ist 2 Es ist ε(τ σ ε(id ( ε(σ id(j id(i τ(σ(j τ(σ(i ( τ(σ(j

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

7 Matrizen über R und C

7 Matrizen über R und C Mathematik für Physiker I, WS 06/07 Montag 9 $Id: matrixtex,v 7 06//9 :58: hk Exp $ 7 Matrizen über R und C 7 Addition und Multiplikation von Matrizen In der letzten Sitzung haben wir begonnen uns mit

Mehr

Die Treppennormalform

Die Treppennormalform Die Treppennormalform Lineare Algebra I Kapitel 5 9 Mai 22 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: wwwmathtu-berlinde/ holtz Email: holtz@mathtu-berlinde Assistent: Sadegh

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh Die Determinante Blockmatrizen Bemerkung: Für zwei 2 2-Matrizen gilt a b e f a b c d g h c d e g a b, c d f h a c b e + d a g, c f + ae + bg a f + bh ce + dg c f + dh b d h Sind die Einträge der obigen

Mehr

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $ $Id: matrixtex,v 14 2008/12/02 21:08:55 hk Exp $ $Id: vektortex,v 12 2008/12/05 11:27:45 hk Exp hk $ II Lineare Algebra 6 Die Matrixmultiplikation 63 Inverse Matrizen und reguläre lineare Gleichungssysteme

Mehr

Numerik für Informatiker und Bioinformatiker. Daniel Weiß

Numerik für Informatiker und Bioinformatiker. Daniel Weiß Numerik für Informatiker und Bioinformatiker Daniel Weiß SS 202 Folgende Literatur bildet die Grundlage dieser Vorlesung: P Deuflhard, A Hohmann, Numerische Mathematik, Eine algorithmisch orientierte Einführung,

Mehr

Lösung zu Serie 3. Lineare Algebra D-MATH, HS Prof. Richard Pink. Sei K ein beliebiger Körper.

Lösung zu Serie 3. Lineare Algebra D-MATH, HS Prof. Richard Pink. Sei K ein beliebiger Körper. Lineare Algebra D-MATH, HS 204 Prof. Richard Pink Lösung zu Serie 3 Sei K ein beliebiger Körper.. [Aufgabe] Sei n Z 0 eine gegebene nicht-negative ganze Zahl. Übersetzen Sie die folgenden Aussagen in eine

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

UE Einführung in die Algebra und Diskrete Mathematik KV Algebra und Diskrete Mathematik

UE Einführung in die Algebra und Diskrete Mathematik KV Algebra und Diskrete Mathematik UE Einführung in die Algebra und Diskrete Mathematik KV Algebra und Diskrete Mathematik 6. Übungszettel, 30. April 2013 Lösungen 1. Zeigen Sie detailliert: Das homomorphe Bild einer zyklischen Gruppe ist

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Zwölfte Woche, Rang(f) := dim Bild(f).

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Zwölfte Woche, Rang(f) := dim Bild(f). Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 204 Lineare Algebra Zwölfte Woche, 256204 8 Der Rang einer Linearen Abbildung Auch in diesem Abschnitt

Mehr

Matrixoperationen. Einige spezielle Matrizen: Nullmatrix: n-te Einheitsmatrix: E n := 0 d. TU Dresden, WS 2013/14 Mathematik für Informatiker Folie 1

Matrixoperationen. Einige spezielle Matrizen: Nullmatrix: n-te Einheitsmatrix: E n := 0 d. TU Dresden, WS 2013/14 Mathematik für Informatiker Folie 1 Matrixoperationen Einige spezielle Matrizen: 0 0... 0 Nullmatrix:....... 0 0... 0 1 0... 0 0 1... 0 n-te Einheitsmatrix: E n :=....... 0 0... 1 d 1 0... 0 0 d 2... 0 Diagonalmatrix: diag(d 1,..., d n)

Mehr

Lineare Gleichungssysteme, LR-Zerlegung

Lineare Gleichungssysteme, LR-Zerlegung Prof Thomas Richter 2 Juni 27 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomasrichter@ovgude Material zur Vorlesung Algorithmische Mathematik II am 22627 Lineare Gleichungssysteme,

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

a i j (B + C ) j k = n (a i j b j k + a i j b j k ) =

a i j (B + C ) j k = n (a i j b j k + a i j b j k ) = Lösungen Lineare Algebra für Physiker, Serie 2 Abgabe am 25.10.2007 1. Es seien A K m n, B,C K n p und D K p q gegeben. 9 P (a) Beweisen Sie das Distributivgesetz A(B + C ) = A B + AC. (b) Beweisen Sie

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a.

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a. Determinanten - II. Berechnung von Determinanten Wir erinnern, dass für A M(n n; K) gilt : det A = σ S n signσ a σ() a 2σ(2)...a nσ(n). Falls n =, gibt es offenbar nur die identische Permutation, und für

Mehr

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)

Mehr

IV.3. RANG VON MATRIZEN 81

IV.3. RANG VON MATRIZEN 81 IV3 RANG VON MATRIZEN 8 Ist b,,b n eine Basis des reellen Vektorraums V, dann bildet b,,b n auch eine Basis des komplexen Vektorraums V C Mit V ist daher auch V C endlichdimensional und es gilt dim C V

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lösung zu Serie Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen

Lösung zu Serie Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen Lineare Algebra D-MATH, HS 4 Prof. Richard Pink Lösung zu Serie. Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen Polynom ist. Lösung: Das charakteristische Polynom eines

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 0 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do -4 und nv jokar@mathtu-berlinde Kapitel Die Determinante

Mehr

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Serie Sei V ein Vektorraum. Man nennt eine lineare Abbildung P : V V eine Projektion, falls P 2 = P gilt. Zeigen Sie:

Serie Sei V ein Vektorraum. Man nennt eine lineare Abbildung P : V V eine Projektion, falls P 2 = P gilt. Zeigen Sie: Prof Emmanuel Kowalski Lineare Algebra II Serie 3 Sei V ein Vektorraum Man nennt eine lineare Abbildung P : V V eine Projektion, falls P 2 = P gilt Zeigen Sie: a Der Kern und das Bild einer Projektion

Mehr

Lösung zu Serie 10. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 10. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 10 1. [Aufgabe] a) Sei V ein Unterraum eines K-Vektorraums V. Zeige, dass jede Linearform auf V eine Fortsetzung zu einer Linearform auf

Mehr

7 Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme Gauß-Algorithmus Anwendungen Determinanten

7 Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme Gauß-Algorithmus Anwendungen Determinanten 7 Lineare Gleichungssysteme und Determinanten Lineare Gleichungssysteme Gauß-Algorithmus Anwendungen Determinanten 7.1 Dreiecks- und Diagonalmatrizen Linke untere bzw. rechte obere Dreiecksmatrizen sind

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure Wintersemester 8/9 Kapitel 4: Matrizen, lineare Abbildungen und Gleichungssysteme Volker Kaibel Otto-von-Guericke Universität Magdeburg Version vom 5. November 8 Page-Rank

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

32 2 Lineare Algebra

32 2 Lineare Algebra 3 Lineare Algebra Definition i Die Vektoren a,, a k R n, k N, heißen linear unabhängig genau dann, wenn für alle λ,, λ k R aus der Eigenschaft λ i a i λ a + + λ k a k folgt λ λ k Anderenfalls heißen die

Mehr