Computational Intelligence 1 / 28. Computational Intelligence Evolutionsstrategien 3 / 28

Größe: px
Ab Seite anzeigen:

Download "Computational Intelligence 1 / 28. Computational Intelligence Evolutionsstrategien 3 / 28"

Transkript

1 1 / 28 Gliederung 1 Evolutionsstrategien Selektion Rekombination Mutation Ablauf 2 Genetische Programmierung Repräsentation Genetische Operatoren Ablauf Überblick Evolutionsstrategien 3 / 28 Repräsentation Vektoren reeller Zahlen Jede Komponente wird als Koordinate eines n-dimensionalen Optimierproblems interpretiert Beschränkung auf numerische Optimierung Genetische Operatoren Mutation durch Addition normalverteilter Zufallszahlen Rekombination mehrerer Vektoren (bisher Crossover ) Selektion Elitistische, deterministische Selektion

2 Evolutionsstrategien 4 / 28 Beispiel (1+1)-Evolutionsstrategie Algorithmus 1 Erzeuge eine zufällige Anfangspopulation, d.h. Startpunkt x 0 2 Erzeuge einen normalverteilten Zufallsvektor z und bestimme den Nachkommen als x = x t + z 3 Berechne die Fitness der Individuen mit der Zielfunktion 4 Selektiere den Elter der nächsten Population { x (t+1) x (t) falls f ( x (t) ) f ( x ) = x sonst 5 Gehe zu Schritt 2 bis ein Abbruchkriterium erfüllt ist Evolutionsstrategien 5 / 28 Beispiel (1+1)-Evolutionsstrategie (1+1)-Evolutionsstrategie entspricht dem Verfahren des Zufallsabstieg Erste Variante einer Evolutionsstrategie (Rechenberg, 1964) Genutzt zur experimentellen Optimierung Tragflächenprofil Rohrkrümmer Frage: Wie stark soll das Individuum mutiert werden? Anmerkungen Erlaubt keine Rekombination Erweiterung auf µ Eltern in der Population ist möglich Erweiterung auf λ Nachkommen in der Population ist möglich Dann Mutation und Rekombination sind möglich Alternatives Selektionsverfahren ist möglich

3 Evolutionsstrategien 6 / 28 Mutation durch Addition eines Zufallsvektors Anforderungen Kleine Änderungen sollen mit hoher Wahrscheinlichkeit auftreten Große Änderungen sollen mit nur geringer Wahrscheinlichkeit auftreten Die Stärke der Mutation soll variabel sein Unter Abwesenheit von Selektion soll der Zufallsprozess stationär sein Normalverteilung Die Normalverteilung mit Erwartungswert µ und Varianz σ 2 erfüllt obige Anforderungen Ihre Dichte ist gegeben durch f X (z; µ, σ) = 1 2π σ exp ( ) (x µ)2 2σ 2, x R Die Mutationsstärke kann durch die Varianz σ 2 bzw. die Standardabweichung σ gesteuert Der Erwartungswert µ wird zu 0 gesetzt Normalverteilung Evolutionsstrategien 7 / 28 N 0,Σ Σ 1 2 Σ 1 Σ x Kleine Varianz: Kleine Änderungen des Chromosoms lokale Suche (Ausbeutung guter Individuen) Große Varianz: Große Änderungen des Chromosoms globale Suche (Erkundung des Suchraums)

4 Evolutionsstrategien 8 / 28 Anpassen der Varianz des Zufallsvektors 1/5-Erfolgsregel Wähle die globale Mutationsstärke (Standardabweichung σ) so, dass die Konvergenzgeschwindigkeit maximal ist Überprüfe dazu in regelmäßigen Abständen die Erfolgsrate p s, d.h. das Verhältnis der erfolgreichen Nachkommen (also der erfolgreichen Mutationen) zur Gesamtzahl der erzeugten Nachkommen p s misst also die Wahrscheinlichkeit, dass ein Nachkomme den Elter ersetzt Um in etwa die optimale (lokale) Konvergenzgeschwindigkeit zu erreichen, sollte die (gemessene) Erfolgsrate bei ungefähr 1/5 liegen Heuristisch aus Berechnungen des Kugelmodells abgeleitet Anmerkungen Wertet globale, über die Generationen gesammelte Information aus Steuerung nur einer einzigen globalen Mutationsschrittweite ist möglich 1/5-Erfolgsregel Evolutionsstrategien 9 / 28 Definition c σ (g), if p s < 1/5 σ (g+1) = σ (g), if p s = 1/5 σ (g) /c, if p s > 1/5, Die Wahl von c hängt von der Zielfunktion, der Dimension und der Anzahl der Generationen ab Empfehlung von Rechenberg: 0.85 c 1 Interpretation Ist die Erfolgsrate zu hoch, erhöhe die Mutationsstärke Annahme: Schnelleres Voranschreiten in Richtung des Optimums ist möglich Ist die Erfolgsrate zu niedrig, senke die Mutationsstärke Annahme: Feinere Analyse des Suchraums ist nötig

5 Selbstadaptation Evolutionsstrategien 10 / 28 Alle Individuen besitzen eigene Strategieparameter, wie bspw. die Mutationsstärke Die Strategieparameter werden nicht explizit eingestellt, sondern sind selbst Teil des evolutionären Geschehens Die Strategieparameter entwickeln sich mit den Individuen im Verlauf der Optimierung weiter (Koevolution) Realisierung Die Strategieparameter werden wie auch die Objektparameter im Chromosom kodiert Ein Individuum besteht somit aus dem Tupel ( x, s) Die Strategiekomponenten werden ebenso den genetischen Operationen unterzogen wie die Objektparameter Zunächst werden Strategiekomponenten eines Nachkommen erzeugt (Rekombination und Mutation) und mit diesen Strategiekomponenten dann entsprechend die Objektparameter Selbstadaptation Evolutionsstrategien 11 / 28 Anmerkungen Strategieparameter haben keinen direkten Einfluss auf die Fitnessberechnung Gute Strategieparameter pflanzen sich indirekt durch die gute Fitness ihrer Individuen fort Strategieparameter parametrisieren die genetischen Operatoren, im Wesentlichen die Mutation

6 Evolutionsstrategien Selektion 12 / 28 Selektion Übernehme nur die besten Individuen in die nächste Generation (deterministische, streng elitäre Selektion) Varianten + -Strategie ( Plus-Strategie ) Wähle aus den µ Eltern und den λ Nachkommen die µ besten Individuen aus, Notation: (µ + λ), -Strategie ( Komma-Strategie ) Wähle nur aus den λ Nachkommen die µ besten Individuen aus, d.h. die Eltern sterben auf jeden Fall aus. Notation: (µ, λ) Vergleich + -Variante garantiert, dass die Population sich nie verschlechtert + -Variante erhöht die Gefahr des Hängenbleibens in lokalem Optimum Wahl hängt auch von der Art des Suchraums (Granularität) ab Reproduktion Evolutionsstrategien Rekombination 13 / 28 Wähle zufällig 1 ρ µ Eltern aus der Population, die im folgenden ein neues Individuum erzeugen Alle Individuen werden mit der selben Wahrscheinlichkeit gewählt (Gleichverteilung) Anmerungen Im Falle ρ > 2 liegt Multirekombination vor, d.h. es sind mehr als zwei Eltern an der Erzeugung eines Nachkommen beteiligt Aus Gründen der einfacheren Implementierung werden bereits gewählte Individuen häufig nicht aus der Menge der potentiellen Eltern entfernt und können somit mehrfach gewählt werden

7 Evolutionsstrategien Rekombination 14 / 28 Rekombination Mische die genetische Information der ρ vorausgewählten Eltern Der Vektor v bezeichne das ρ-tupel der vorausgewählten Eltern Intermediäre ρ-rekombination Mittele über die Eltern, d.h. der rekombinierte Nachkomme entspricht dem Schwerpunkt der Eltern ρ r := 1 ρ i=1 v i Diskrete ρ-rekombination Wähle jede Komponente zufällig aus einem der Eltern r := dim x i=1 ( e T i v mi ) ei wobei m i := rand{1,..., ρ} eine gleichverteilte Zufallszahl und e i der Einheitsvektor in der i-ten Dimension sind Mutation Evolutionsstrategien Mutation 15 / 28 Variiere die genetische Information durch Addition normalverteilter Zufallszahlen Anmerkungen In ES tritt die Mutation wesentlich häufiger auf als in GA Verschiedenste Mutationsvariantionen sind üblich Isotropische Mutation: Eine Schrittweite für alle Dimensionen des Optimierproblems Skalierte Mutation: Eine dezidierte Schrittweite für jede Dimensionen Korrelierte Mutation: Variiere neben den Mutationsschrittweiten auch die Korrelationen der Zufallsvariablen Gerichtete Mutation: Bevorzuge bestimmte Richtungen durch den Einsatz schiefsymmetrischer Verteilungen

8 Isotropische Mutation Evolutionsstrategien Mutation 16 / 28 Eine einzige Mutationsschrittweite für alle Dimensionen des Optimierproblems Realisierung Zufallsvektor: z N ( 0, σ 2 I ) = σn ( 0, I ) ( I ist die Einheitsmatrix) Einzelne Komponente: z i σ N (0, 1), i = 1,..., n Eigenschaften Resultierende Verteilungen haben die Form von (Hyper-)Sphären Geringe Flexibilität die Verteilungsfunktion an die Topologie des Optimierproblems anzupassen Geringer zusätzlicher Aufwand da nur ein weiterer Strategieparameter pro Individuum zu adaptieren ist Skalierte Mutation Evolutionsstrategien Mutation 17 / 28 Je Dimensionen des Optimierproblems eine eigene Mutationsschrittweite Realisierung Zufallsvektor: z N ( 0, C) ( C = diag(σ 2 i,..., σ2 n) ist eine Diagonalmatrix) Einzelne Komponente: z i σ i N (0, 1), i = 1,..., n Eigenschaften Resultierende Verteilungen haben die Form von skalierten (Hyper-)Sphären Mittlere Flexibilität die Verteilungsfunktion an die Topologie des Optimierproblems anzupassen Mittlerer zusätzlicher Aufwand da n weitere Strategieparameter pro Individuum zu adaptieren sind

9 Evolutionsstrategien Mutation 18 / 28 Korrelierte Mutation Je Dimension des Optimierproblems eine eigene Mutationsschrittweite, zusätzlich frei einstellbare Lagewinkel zwischen den Koordinatenachsen Realisierung Zufallsvektor: z N ( 0, C) ( C ist eine vollständige Kovarianzmatrix) Eigenschaften Resultierende Verteilungen haben die Form von rotierten, skalierten (Hyper-)Sphären Große Flexibilität die Verteilungsfunktion an die Topologie des Optimierproblems anzupassen Großer zusätzlicher Aufwand da n + n(n 1)/2 weitere Strategieparameter (Schrittweiten und Kovarianzen) pro Individuum zu adaptieren sind Evolutionsstrategien Ablauf 19 / 28 Ablauf einer Evolutionsstrategie Algorithmus 1 Erzeuge eine zufällige Anfangspopulation 2 Erzeuge λ Nachkommen. Dazu jeweils: 1 Wähle ρ Eltern zur Erzeugung eines Nachkommen aus 2 Rekombiniere und mutiere die Strategieparameter 3 Rekombiniere und mutiere die Objektparameter 3 Bewerte die Individuen gemäß ihrer Fitness 4 Selektiere die µ Eltern der nächsten Population 5 Gehe zu Schritt 2 bis ein Abbruchkriterium erfüllt ist

10 Genetische Programmierung 21 / 28 Überblick Repräsentation Individuen repräsentieren Funktionen oder Programme Komplexe Chromosomen variabler Länge Genetische Operatoren Mutation durch Ersetzen von Teilbäumen Crossover durch Austausch von Teilbäumen verschiedener Individuen Selektion Wie bei Genetischen Algorithmen Genetische Programmierung Repräsentation 22 / 28 Repräsentation Grundlage: Formale Grammatiken zur Beschreibung der Sprache T : Menge der Terminalsymbole F: Menge der Funktionssymbole Die Wahl von T und F ist problemspezifisch Terminalsymbole: Benötigen keine Argumente Eingaben vom Benutzer Konstanten Kurzlebige Konstaneten ( ephemeral constants ) werden zu Beginn eines Laufs mit zulässigen Werten initialisiert und behalten diese Werte während des Laufs Veränderliche Konstanten ( mutable constants ) können durch die genetischen Operatoren geändert werden Funktionssymbole: Nichtterminale Symbole die Argumente benötigen Funktionen Operatoren (Wertzuweisungen,... ) Kontrollstrukturen (If-then-else, for, do-while, goto,... )

11 Genetische Programmierung Repräsentation 23 / 28 Beispiele Symbolische Regression Bestimme zu gegebenen Daten eine Näherungsfunktion, die die Summer der Fehlerquadrate minimiert Terminalsymbole T = {x 1,..., x m } R Funktionssymbole F = {+,,, /,, sin, cos, exp, log,... } Boolesche Funktionen Finde eine Funktion, die eine gegebene Wahrheitstabelle abbildet Terminalsymbole T = {b 1,..., b m } {0, 1} Funktionssymbole F = {and, or, not,... } Genetische Programmierung Repräsentation 24 / 28 Abgeschlossenheit der Funktionen Die verwendeten Funktionen müssen für alle Belegungen ihrer Argumente auswertbar sein Bei einigen Funktionen muss der Definitionsbereich sinnvoll erweitert werden Beispiel: x/0 liefere maximalen Wert zurück Weitere problematische Funktionen: log tan...

12 Genetische Programmierung Repräsentation 25 / 28 Kodierung der Individuen Die Gene der Chromosomen eines Individuums enthalten Elemente der Menge C = F T Zugelassen werden nur Ausdrücke gemäß folgender rekursiver Definition (Präfixnotation): Terminalsymbole sind gültige Ausdrücke Sind t 1,..., t n symbolische Ausdrücke und ist f F ein n-stelliges Funktionssymbol, dann ist auch (f t 1... t n ) ein symbolischer Ausdruck Symbolische Ausdrücke in Präfixnotation können als Bäume dargestellt werden Beispiele + 2 ist ein symbolischer Ausdruck, der 6 x + 2 repräsentiert Als Baum: x ist kein symbolischer Ausdruck Mutation Genetische Programmierung Genetische Operatoren 26 / 28 Ersetzt einen Teilausdruck (Teilbaum) durch einen zufällig erzeugten neuen x 7 Mutationen sollten eher selten sein Zu ersetzende Teilbäume sollten eher klein sein

13 Genetische Programmierung Genetische Operatoren 27 / 28 Crossover Tausche Teilausdrücke (Teilbaume) zwischen Individuen Operation ist hier variantenreicher als auf Vektoren, da selbst identische Individuen neue Nachkommen erzeugen können x 7 x x -. 7 x 7 Üblicherweise wird nur Crossover und keine Mutation verwendet Die Population muss dann groß genug sein, um hinreichende Variabilität garantieren zu können Genetische Programmierung Ablauf 28 / 28 Ablauf der Genetischen Programmierung Algorithmus 1 Erzeuge eine zufällige Anfangspopulation symbolischer Ausdrücke Parameter: Maximale Verschachtelungstiefe Wahrscheinlichkeiten der Terminalsymbole 2 Bewerte die Ausdrücke gemäß ihrer Fitness Symbolische Regression: Summe der Fehlerquadrate zu allen Datenpunkten Boolesche Funktionen: Anteil korrekter Ausgaben für die Menge der Eingaben 3 Selektiere die Individuen der Zwischenpopulation 4 Wende die genetischen Operatoren an 5 Gehe zu Schritt 2 bis ein Abbruchkriterium erfüllt ist

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen Teil II Evolutionsfenster durch Mutation und sexuelle Rekombination Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Evolutionäre Algorithmen

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen: Überlebenskampf und Evolutionäre Strategien Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Überblick Einleitung Adaptive Filter Künstliche

Mehr

Proseminar Genetische und Evolutionäre Algorithmen Evolutionsstrategien

Proseminar Genetische und Evolutionäre Algorithmen Evolutionsstrategien Proseminar Genetische und Evolutionäre Algorithmen Evolutionsstrategien Michael Stahl 4. Juni 2002 Inhaltsverzeichnis 1 Überblick 2 2 Generischer ES-Algorithmus 2 2.1 Initialisierung....................................

Mehr

Genetische und Evolutionäre Algorithmen (Vol. 2)

Genetische und Evolutionäre Algorithmen (Vol. 2) Vortrag über Genetische und Evolutionäre Algorithmen (Vol. 2) von Adam El Sayed Auf und Kai Lienemann Gliederung: 4) Rückblick 5) Allgemeine Einführung 6) Genauere Beschreibung von Evolutionären Strategien

Mehr

1. Evolutionsstrategien. 2. Genetische Algorithmen. Evolutionsstrategie / Genetischer Algorithmus. Dr. Markus Olhofer markus.olhofer(at)honda-ri.

1. Evolutionsstrategien. 2. Genetische Algorithmen. Evolutionsstrategie / Genetischer Algorithmus. Dr. Markus Olhofer markus.olhofer(at)honda-ri. Evolutionsstrategie / Genetischer Algorithmus 1. Evolutionsstrategien 200 150 100 (kontinuierliche Parameter) 50 0 10 2. Genetische Algorithmen 5 0-5 -10-10 -5 0 5 10 (diskrete Parameter in kombinatorischen

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen Einführung in die Methoden der Künstlichen Intelligenz Evolutionäre Algorithmen Dr. David Sabel WS 2012/13 Stand der Folien: 12. November 2012 Evolutionäre / Genetische Algorithmen Anwendungsbereich: Optimierung

Mehr

1. Inhaltsverzeichnis

1. Inhaltsverzeichnis 1. Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung 1.1. Darwins Evolutionstheorie 1.2. Darwins Evolutionstheorie als Inspiration für Evolutionäre Algorithmen 1.3. Die Unterschiede der verschiedenen

Mehr

10. Vorlesung Stochastische Optimierung

10. Vorlesung Stochastische Optimierung Soft Control (AT 3, RMA) 10. Vorlesung Stochastische Optimierung Genetische Algorithmen 10. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter"

Mehr

Populationsbasierte Suche. Evolutionäre Algorithmen (1)

Populationsbasierte Suche. Evolutionäre Algorithmen (1) Populationsbasierte Suche Bisherige Meta-Heuristiken: Simulated Annealing Tabu Search Ausgehend von einer Lösung wird gesucht Populationsbasierte Heuristiken Suche erfolgt ausgehend von mehreren Lösungen

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Von Valentina Hoppe und Jan Rörden Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Gliederung Biologische Evolution Genetischer Algorithmus Definition theoretischer

Mehr

Evolutionäre Algorithmen Genetische Programmierung

Evolutionäre Algorithmen Genetische Programmierung Evolutionäre Algorithmen Genetische Programmierung Prof. Dr. Rudolf Kruse Pascal Held {kruse,pheld}@iws.cs.uni-magdeburg.de Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut für

Mehr

Optimale Produktliniengestaltung mit Genetischen Algorithmen

Optimale Produktliniengestaltung mit Genetischen Algorithmen Optimale Produktliniengestaltung mit Genetischen Algorithmen 1 Einleitung 2 Produktlinienoptimierung 3 Genetische Algorithmen 4 Anwendung 5 Fazit Seite 1 Optimale Produktliniengestaltung mit Genetischen

Mehr

Evolutionäre / Genetische Algorithmen. Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre / Genetische Algorithmen (2) Beispiel

Evolutionäre / Genetische Algorithmen. Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre / Genetische Algorithmen (2) Beispiel Evolutionäre / Genetische Algorithmen Einführung in die Methoden der Künstlichen Intelligenz PD Dr. David Sabel SoSe 0 Anwendungsbereich: Optimierung von Objekten mit komplexer Beschreibung Objekte: Üblicherweise

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

Genetische und Evolutionäre Algorithmen (Vol. 1)

Genetische und Evolutionäre Algorithmen (Vol. 1) Vortrag über Genetische und Evolutionäre Algorithmen (Vol. ) von Adam El Sayed Auf und Kai Lienemann Gliederung: ) Einführung 2) Grundkonzept 3) Genaue Beschreibung des Genetischen Algorithmus Lösungsrepräsentation

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen Einführung in die Methoden der Künstlichen Intelligenz Prof. Dr. Manfred Schmidt-Schauß SoSe 2018 Stand der Folien: 9. Mai 2018 Evolutionäre / Genetische Algorithmen Anwendungsbereich: Optimierung von

Mehr

Evolutionsstrategien

Evolutionsstrategien Evolutionsstrategien zum Seminar Evolutionäre Algorithmen von Jana Schäfer INHALTVERZEICHNIS 1. Einführung... 3 2. Die Geschichte der Evolutionsstrategien...4 3. Grundlegendes... 6 3.1 Begriffe... 6 3.2

Mehr

InformatiCup 2009 EvolutionConsole

InformatiCup 2009 EvolutionConsole InformatiCup 2009 EvolutionConsole Wilhelm Büchner Hochschule 19. März 2010 1 1. Das Team Teammitglieder Ralf Defrancesco KION Information Services GmbH Systemadministrator Daniel Herken Scooter Attack

Mehr

Evolutionäre Strategien

Evolutionäre Strategien Evolutionäre Strategien Xun Zhao Inhaltsverzeichnis 1 Einleitung 2 1.1 Entwicklung 2 1.2 Eigenschaft 2 1.3 Anwendungen 2 2 ES-Theorie 3 2.1 ES-Zyklus 3 2.2 Mutation 4 2.3 Selektion 6 2.4 Rekombination

Mehr

Evolu&onäre+Algorithmen+ + Kapitel+7:+Gene&c+Programming+(GP)!

Evolu&onäre+Algorithmen+ + Kapitel+7:+Gene&c+Programming+(GP)! Evolu&onäre+Algorithmen+ + Kapitel+7:+Gene&c+Programming+(GP)! Sanaz!Mostaghim! Intelligente!Systeme!! Ins2tut!für!Wissens8!und!Sprachverarbeitung!(IWS)! SS!2015!! Outline Motivation Genetische Programmierung

Mehr

Fundamente der Computational Intelligence

Fundamente der Computational Intelligence Fundamente der Computational Intelligence Dozent: Günter Rudolph Vertretung: Nicola Beume Wintersemester 2006/07 Universität Dortmund Fachbereich Informatik Lehrstuhl für Algorithm Engineering (LS11) Fachgebiet

Mehr

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}. Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit

Mehr

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212 1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,

Mehr

Synthese Eingebetteter Systeme. Übung 6

Synthese Eingebetteter Systeme. Übung 6 12 Synthese Eingebetteter Systeme Sommersemester 2011 Übung 6 Michael Engel Informatik 12 TU Dortmund 2011/07/15 Übung 6 Evolutionäre Algorithmen Simulated Annealing - 2 - Erklären Sie folgende Begriffe

Mehr

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Simulation von Zufallszahlen Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Definition: Eine Folge von Pseudo-Zufallszahlen U i ist eine deterministische

Mehr

Grundlagen und Basisalgorithmus

Grundlagen und Basisalgorithmus Grundlagen und Basisalgorithmus Proseminar -Genetische Programmierung- Dezember 2001 David König Quelle: Kinnebrock W.: Optimierung mit genetischen und selektiven Algorithmen. München, Wien: Oldenbourg

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Computational Intelligence

Computational Intelligence / 4 Computational Intelligence Wintersemester 007/008 4. Genetische Algorithmen Stefan Berlik Fachgruppe Praktische Informatik FB, Elektrotechnik und Informatik Universität Siegen 5. November 007 Gliederung

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Hauptseminar Repräsentationen für Optimierungsalgorithmen

Hauptseminar Repräsentationen für Optimierungsalgorithmen Stefan Bens Hauptseminar Dresden, 03.07.2008 Inhalt 1. Motivation 2. Einleitung 3. Repräsentationsarten und Eigenschaften 4. Beispiel 5. Zusammenfassung Folie 2 Als Repräsentation bezeichnet man die Kodierung

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Vorlesung 9 und 10: Evolutionäre Standardalgorithmen 1/69 LERNZIELE Die gängigen Standardalgorithmen, aus der Anfangszeit bis heute, werden vorgestellt. Die bekannten Standardalgorithmen

Mehr

Evolution und Algorithmen

Evolution und Algorithmen Kapitel 6 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

Warum konvergieren Genetische Algorithmen gegen ein Optimum?

Warum konvergieren Genetische Algorithmen gegen ein Optimum? 1 / 21 Gliederung 1 Das Schematheorem Motivation Begriffe Herleitung Ergebnis Das Schematheorem Das Schematheorem Motivation 3 / 21 Warum konvergieren Genetische Algorithmen gegen ein Optimum? Theoretische

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Zufallszahlen und Monte Carlo Peter Frentrup Humboldt-Universität zu Berlin 17. Oktober 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 17. Oktober 2017 1 / 23

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr 1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsräumen Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von gleichwahrscheinlich nicht immer ganz klar sein muss. Bertrand

Mehr

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten?

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten? Übungsblatt LV Künstliche Intelligenz, Evolutionäre Algorithmen (), 204 Exercise. Evolution a) Finden Sie zwei Evolutionsbeispiele auÿerhalb der Biologie. Identizieren Sie jeweils Genotyp, Phänotyp, genetische

Mehr

Evolutionäre Algorithmen (EA) (1+1)-EA: Praktische Optimierung. Evolutionäre Algorithmen. Evolutionäre Algorithmen. > ε > 0, k = 0

Evolutionäre Algorithmen (EA) (1+1)-EA: Praktische Optimierung. Evolutionäre Algorithmen. Evolutionäre Algorithmen. > ε > 0, k = 0 (EA) Wintersemester 2007/08 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl für Algorithm Engineering (1+1)-EA: Wähle X (0) R n, s 0 > ε > 0, k = 0 while (s

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Prof. Dr. Ottmar Beucher Dezember 2001 Genetische Algorithmen 1 Optimierungsaufgaben Ein einfaches Beispiel Prinzipielle Formulierung Lösungsansätze Genetische Algorithmen Anwendungen

Mehr

Praktische Optimierung Wintersemester 2008/09

Praktische Optimierung Wintersemester 2008/09 Praktische Optimierung Wintersemester 2008/09 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund (1+1)-EA: Wähle X (0) R n, s 0 > ε > 0, k = 0 while (s k >

Mehr

Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen

Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen Jana Müller Seminar Das Virtuelle Labor Otto von Guericke Universität Magdeburg Gliederung 1. Motivation

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II Statistik II 1. Ergänzungen zur Wahrscheinlichkeitstheorie Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 1. Ergänzungen zur

Mehr

Die n-dimensionale Normalverteilung

Die n-dimensionale Normalverteilung U. Mortensen Die n-dimensionale Normalverteilung Es wird zunächst die -dimensionale Normalverteilung betrachtet. Die zufälligen Veränderlichen X und Y seien normalverteilt. Gesucht ist die gemeinsame Verteilung

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 19 1 Joachim Schauer ( Institut für

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 018 / 019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen 1 Optimierung Optimierungsprobleme Suche nach dem Maximum oder Minimum

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 6. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung:

Mehr

Multivariate Verteilungen. Gerhard Tutz LMU München

Multivariate Verteilungen. Gerhard Tutz LMU München Multivariate Verteilungen Gerhard Tutz LMU München INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Multivariate Normalverteilung 3 Wishart Verteilung 7 3 Hotellings T Verteilung 11 4 Wilks Λ 14 INHALTSVERZEICHNIS

Mehr

Bewertung von Optimierungs- und Zuverlässigkeitsalgorithmen für die virtuelle Produktauslegung

Bewertung von Optimierungs- und Zuverlässigkeitsalgorithmen für die virtuelle Produktauslegung Weimarer Optimierungs- und Stochastiktage 4.0 Bewertung von Optimierungs- und Zuverlässigkeitsalgorithmen für die virtuelle Produktauslegung Dr.-Ing. Andreas Plotzitza, PT/EST4 29. November 2007 1 Inhalt

Mehr

x x x x Repräsentation von Lösungen (2) Repräsentation von Lösungen (1)

x x x x Repräsentation von Lösungen (2) Repräsentation von Lösungen (1) Repräsentation von Lösungen () Repräsentation von Lösungen () Kontinuierliche Optimierung: x x x x n Binäre Optimierung: n = (,,, ) R x = ( x, x,, x ) {0,} n n Lokale Suche: x i = x i + ε Lokale Suche:

Mehr

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten?

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten? Übungsblatt LV Künstliche Intelligenz, Evolutionäre Algorithmen (1), 2015 Aufgabe 1. Evolution a) Finden Sie zwei Evolutionsbeispiele auÿerhalb der Biologie. Identizieren Sie jeweils Genotyp, Phänotyp,

Mehr

Kapitel IX - Mehrdimensionale Zufallsvariablen

Kapitel IX - Mehrdimensionale Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel IX - Mehrdimensionale Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 7. Vorlesung - 2018 Bemerkung: Sei X = X 1,..., X n Zufallsvektor. Der n dimensionale Vektor EX = EX 1,..., EX n ist der Erwartungswert des Zufallsvektors X. Beispiel: Seien X, Y N0, 1. X, Y sind die Koordinaten

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Prof. Dr. Fred Böker

Prof. Dr. Fred Böker Statistik III WS 2004/2005; 8. Übungsblatt: Lösungen 1 Prof. Dr. Fred Böker 07.12.2004 Lösungen zum 8. Übungsblatt Aufgabe 1 Die Zufallsvariablen X 1 X 2 besitzen eine gemeinsame bivariate Normalverteilung

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

4 Probabilistische Analyse und randomisierte Algorithmen

4 Probabilistische Analyse und randomisierte Algorithmen Algorithmen und Datenstrukturen 96 4 Probabilistische Analyse und randomisierte Algorithmen Bei der Algorithmenanalyse ist es sehr hilfreich, Aspekte berücksichtigen zu können, die vom Zufall abhängen.

Mehr

1.5 Mehrdimensionale Verteilungen

1.5 Mehrdimensionale Verteilungen Poisson eine gute Näherung, da np = 0 und 500p = 5 00 = n. Wir erhalten somit als Näherung Exakte Rechnung ergibt P(2 X 0) = k=2 0 k=2 π (k) = 0,26424. 0 ( ) 00 P(2 X 0) = 0,0 k 0,99 00 k = 0,264238. k.4.2.4

Mehr

Repräsentation von Lösungen (1)

Repräsentation von Lösungen (1) Repräsentation von Lösungen (1) Kontinuierliche Optimierung: Binäre Optimierung: x x1 x2 x n n = (,,, ) R x = ( x1, x2,, x ) {0,1} n n Lokale Suche: x i = x i + ε Lokale Suche: x i = 1-x i 0.5 0.9 0.2

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

2. Evolution als Optimierungsprinzip

2. Evolution als Optimierungsprinzip 2. Evolution als Optimierungsprinzip Biologen betrachten Evolution als Mechanismus, der in der Natur Lösungen für spezielle Probleme erzeugt Prinzipien der biologischen Evolution werden zur Lösung von

Mehr

Lokale Suche. 31. Januar / 28

Lokale Suche. 31. Januar / 28 Lokale Suche 31. Januar 2018 1 / 28 Lokale Suche Wir betrachten das allgemeine Minimierungsproblem min y f (x, y) so dass L(x, y). Wir nehmen an, dass zu jeder Lösung y auch eine Nachbarschaft N (y) benachbarter

Mehr

Evolutionsstrategien

Evolutionsstrategien Evolutionsstrategien Seminar Evolutionary Algorithms SS 2010 Cornelius Diekmann Lehrstuhl Robotics and Embedded Systems Veranstalter: Dipl.-Inf. Frank Sehnke Fakultät für Informatik Technische Universität

Mehr

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008 Genetische Algorithmen Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 8. Juli 2008 Inhalt Einführung Algorithmus Erweiterungen alternative Evolutions- und Lernmodelle Inhalt 1 Einführung

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung SS 18: Woche vom Übungsaufgaben 11. Übung SS 18: Woche vom 25. 6. 29. 6. 2016 Stochastik V: ZG; Momente von ZG; Zufallsvektoren Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

2.5 Evolutionäre (Genetische) Algorithmen

2.5 Evolutionäre (Genetische) Algorithmen KI 1, SS 2011, Kapitel 2, GA 1 2.5 Evolutionäre (Genetische) Algorithmen Das Ziel bzw. die Aufgabe von evolutionären Algorithmen ist eine Optimierung von Objekten mit komplexer Beschreibung, wobei es variable

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 21. Dezember 2011 1 Definition Binomialverteilung Geometrische Verteilung Poissonverteilung 2 Standardisierte Verteilung

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Optimierung und Entwurf mit Evolutionären Algorithmen

Optimierung und Entwurf mit Evolutionären Algorithmen Fakultät Informatik, Institut für Angewandte Informatik, Lehrstuhl für Technische Informationssysteme Optimierung und Entwurf mit Evolutionären Algorithmen Dresden, 01.02.2007 Gliederung natürliche Evolution

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2018

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2018 Prof. Dr. Christoph Karg 9.7.2018 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2018 Unterschrift: Klausurergebnis Aufgabe 1 (15 Punkte) Aufgabe 3 (10 Punkte)

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 6. Vorlesung - 2018 Diskrete ZG eine diskrete ZG X wird vollständig durch ihre Wahrscheinlichkeitsverteilung beschrieben ( ) x1 x X 2... x i... = p 1 p 2... p i... P(X (a, b]) = und die Verteilungsfunktion

Mehr

Evolutionäre (Genetische) Algorithmen

Evolutionäre (Genetische) Algorithmen Evolutionäre (Genetische) Algorithmen Ziel, Aufgabe von evolutionären Algorithmen: Optimierung von Objekten mit komplexer Beschreibung, wobei es Parameter gibt. Die Objekte kodiert man so als Bitstrings,

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Nr. 4: Pseudo-Zufallszahlengeneratoren

Nr. 4: Pseudo-Zufallszahlengeneratoren Proseminar: Finanzmathematische Modelle und Simulationen Martin Dieckmann WS 09/0 Nr. 4: Pseudo-Zufallszahlengeneratoren Begriff Pseudo-Zufallszahl Zufallszahlen im Rechner entstehen letztlich immer durch

Mehr

Kodierung Genetische Algorithmen und Simulated Annealing

Kodierung Genetische Algorithmen und Simulated Annealing Kodierung Genetische Algorithmen und Simulated Annealing Referenten Dipl.-Ing. (FH) Dipl.-Ing. (FH) 1 Agenda Erklärung des Genetischen Algorithmus f(x)=x² (2-dimensional) Verschiedene Codierungen Binärcode,

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Fortgeschrittene Ökonometrie: Maximum Likelihood

Fortgeschrittene Ökonometrie: Maximum Likelihood Universität Regensburg, Lehrstuhl für Ökonometrie Sommersemester 202 Fortgeschrittene Ökonometrie: Maximum Likelihood Poissonverteilung Man betrachte die poisson-verteilten Zufallsvariablen y t, t =, 2,...,

Mehr