Analysis I. Partielle Integration. f (t)g(t)dt =

Größe: px
Ab Seite anzeigen:

Download "Analysis I. Partielle Integration. f (t)g(t)dt ="

Transkript

1 Prof. Dr. H. Brenner Osnbrück WS 3/4 Anlysis I Vorlesung 5 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln. Prtielle Integrtion Stz 5.. Es seien f,g: [,b] R stetig differenzierbre Funktionen. Dnn gilt f(t)g (t)dt fg b f (t)g(t)dt. Beweis. Aufgrund der Produktregel ist fg eine Stmmfunktion von fg +f g. Dher ist f(t)g (t)dt+ f (t)g(t)dt (fg +f g)(t)dt fg b. Bei der prtiellen Integrtion sind insbesondere zwei Dinge zu bechten. ErstensliegtdiezuintegrierendeFunktionimAllgemeinennichtinderFormfg vor, sondern einfch ls Produkt uv (wenn kein Produkt vorliegt, so kommt mn mit dieser Regel sowieso nicht weiter, wobei llerdings die trivile Produktzerlegung u mnchml helfen knn). Dnn muss mn einen Fktor integrieren und den nderen differenzieren. Wenn V eine Stmmfunktion von v ist, so lutet die Formel uv uv u V. Zweitens führt prtielle Integrtion nur dnn zum Ziel, wenn ds Integrl rechts, lso f (t)g(t)dt, integriert werden knn. Beispiel 5.. Wir bestimmen eine Stmmfunktion des ntürlichen Logrithmus ln mittels prtieller Integrtion, wobei wir ln ln schreiben und die konstnte Funktion integrieren und den Logrithmus bleiten. Dmit ist ln d ( ln ) b d ( ln ) b d ( ln ) b b. Eine Stmmfunktion ist lso ln.

2 Beispiel 5.3. Eine Stmmfunktion der Sinusfunktion sin ist cos. Um Stmmfunktionen zu sin n zu finden, verwenden wir prtielle Integrtion, um eine rekursive Beziehung zu kleineren Potenzen zu erhlten. Um dies präzise zu mchen, rbeiten wir mit Intervllgrenzen, und zwr sollen die Stmmfunktionen von usgehen, lso für den Wert besitzen. Für n ist mittels prtieller Integrtion sin n t dt sin n t sin t dt sin n t ( cos t)dt sin n t dt sin n t dt sinn t n (sin n t cos t) cos t dt cos t ( n Durch Multipliktion mit n und Umstellen erhält mn n sin n t dt (n ) Speziell ergibt sich für n sin n t dt sin n cos. sin t dt ( sin cos ). Die folgende Drstellung von π heißt Wllissches Produkt. ) sin n t dt. John Wllis (66-73) Korollr 5.4. Es gilt die Drstellung π 4k 4k lim m k m k 4k 4k. Beweis. Wir setzen n π sin n t dt.

3 Dies ist eine fllende Folge, für die ufgrund von Beispiel 5.3 die rekursive Beziehung n n n n und die Anfngsbedingungen π und gelten. Ausgeschrieben bedeutet dies für gerdes n und für ungerdes n n (n )(n 3) 3 n(n ) 4 n (n )(n 3) 4 n(n ) 5 3 Mit n m bzw. n m+ schreibt sich dies ls bzw. ls π m (m )(m 3) 3 m(m ) 4 m+ D die Folge fllend ist und n n+ n+ n+ n n+ gegen. Also ist insbesondere lim m m. π m(m ) 4 (m+)(m ) 5 3. m+ (m )(m 3) 3 m(m ) 4 π gilt, konvergieren die Quotienten lim m m(m ) 4 (m+)(m ) 5 3 (m+)(m ) (m 3) 5 3 lim m π (m(m ) 4 ). Hier knn mn den Zähler, indem mn zwei ufeinnder folgende Fktoren usmultipliziert, ls m k (4k ) und den Nenner ls m k 4k schreiben. Dher ist m k 4k m k (4k ) π. lim m 3 Integrtion der Umkehrfunktion Stz 5.5. Es sei f: [,b] [c,d] eine bijektive differenzierbre Funktion und es sei F eine Stmmfunktionvon f. Dnn ist G(y) : yf (y) F(f (y)) eine Stmmfunktion der Umkehrfunktion f.

4 4 Beweis. Ableiten unter Verwendung von Lemm 8.7 und Stz 8.9 ergibt (yf (y) F(f (y)) f (y)+y f (f (y)) f(f (y)) f (f (y)) f (y). Funktionsgrph mit Umkehrfunktion und Flächen zur Berechnung eines Integrls der Umkehrfunktion. Diese Aussge besitzt einen einfchen geometrischen Hintergrund. Wenn f: [,b] R + eine streng wchsende stetige Funktion ist (und dher eine Bijektion zwischen [, b] und [f(), f(b)] induziert), so besteht zwischen den beteiligten Flächeninhlten der Zusmmenhng bzw. f(b) f() f(s)ds+ f(b) f() f (t)dt bf(b) f() f (t)dt bf(b) f() f(s)ds. Für die Stmmfunktion G von f mit dem Strtpunkt f() gilt dher, wenn F die Stmmfunktion zu f bezeichnet, die Beziehung G(y) y f (t)dt f() f(f (y)) f() f (t)dt f (y)f(f (y)) f() f (y) yf (y) f() F(f (y))+f() yf (y) F(f (y)) f()+f(), wobei f() + F() eine Integrtionskonstnte ist. f(s)ds

5 Beispiel 5.6. Wir berechnen eine Stmmfunktion von rctn unter Verwendung von Stz 5.5. Eine Stmmfunktion des Tngens ist tn t dt ln(cos ). Also ist eine Stmmfunktion von rctn. rctn + ln(cos(rctn )) 5 Die Substitutionsregel Stz 5.7. Sei I ein reelles Intervll und sei eine stetige Funktion. Es sei stetig differenzierbr. Dnn gilt f: I R g: [,b] I f(g(t))g (t)dt g(b) g() f(s)ds. Beweis. Wegen der Stetigkeit von f und der vorusgesetzten stetigen Differenzierbrkeit von g eistieren beide Integrle. Es sei F eine Stmmfunktion von f, die ufgrund von Korollr 4.5 eistiert. Nch der Kettenregel ht die zusmmengesetzte Funktion t F(g(t)) (F g)(t) die Ableitung F (g(t))g (t) f(g(t))g (t). Dher gilt insgesmt g(b) f(g(t))g (t)dt (F g) b F(g(b)) F(g()) F g(b) g() f(s)ds. Beispiel 5.8. Typische Beispiele, wo mn sofort erkennen knn, dss mn die Substitutionsregel nwenden knn, sind beispielsweise g n g g() mit der Stmmfunktion n+ gn+ oder g mit der Stmmfunktion g ln g.

6 6 Häufig liegt ein bestimmtes Integrl nicht in einer Form vor, dss mn die vorstehende Regel direkt nwenden könnte. Häufiger kommt die folgende umgekehrte Vrinte zum Zug. Korollr 5.9. Es sei eine stetige Funktion und es sei f: [,b] R ϕ: [c,d] [,b], s ϕ(s), eine bijektive, stetig differenzierbre Funktion. Dnn gilt Beweis. Nch Stz 5.7 ist ϕ (b) ϕ () f(t)dt f(ϕ(s))ϕ (s)ds ϕ (b) ϕ () f(ϕ(s)) ϕ (s)ds ϕ(ϕ (b)) ϕ(ϕ ()) f(t)dt f(t)dt. Bemerkung 5.. Die Substitution wird folgendermßen ngewendet: Es soll ds Integrl f(t)dt berechnet werden. Mn muss dnn eine Idee hben, dss durch die Substitution t ϕ(s) ds Integrl einfcher wird (und zwr unter Berücksichtigung der Ableitung ϕ (t) und unter der Bedingung, dss die Umkehrfunktion ϕ berechenbr ist). Mit c ϕ () und d ϕ (b) liegt insgesmt die Sitution [c,d] ϕ f [,b] R vor. In vielen Fällen kommt mn mit gewissen Stndrdsubstitutionen weiter. Bei einer Substitution werden drei Opertionen durchgeführt. () Ersetze f(t) durch f(ϕ(s)). () Ersetze dt durch ϕ (s)ds. (3) Ersetze die Integrtionsgrenzen und b durch ϕ () und ϕ (b). Für den zweiten Schritt empfiehlt sich die Merkregel dt dϕ(s) ϕ (s)ds, der mn im Rhmen der Theorie der Differentilformen uch eine inhltliche Bedeutung geben knn.

7 Beispiel 5.. Die obere Kreislinie des Einheitskreises ist die Punktmenge { (,y) +y,, y }. Zugegebenem,,gibtesgenueiny,dsdieseBedingungerfüllt, nämlich y. Dher ist der Flächeninhlt des oberen Einheitskreises gleich der Fläche unter dem Grphen der Funktion über dem Intervll [, ], lso gleich Mit der Substitution d. cos t bzw. t rccos (wobei cos : [,π] [,] bijektiv ist), erhält mn d rccos b rccos rccos b rccos cos t( sin t)dt sin t dt b (sin t cos t t) rccos. Insbesondere ist ( sin (rccos ) rccos ) ( rccos ) eine Stmmfunktion zu. Dher ist d (sin + sin π +π) π/. Beispiel 5.. WirbestimmeneineStmmfunktionvon unterverwendung der Hyperbelfunktionen sinh t und cosh t, für die die Beziehung cosh t sinh t gilt. Die Substitution liefert d cosh t mit d sinh tdt rcosh b rcosh cosh t sinh t dt rcosh b rcosh 7 sinh t dt. Eine Stmmfunktion des Sinus hyperbolicus im Qudrt ergibt sich us ( ) sinh t (et e t ) 4 (et +e t ). Dher ist sinh u du 4 ( eu ) e u u 4 sinh u u

8 8 und somit d 4 sinh( rcosh ) rcosh. Beispiel 5.3. Wir wollen eine Stmmfunktion für die Funktion f() ( cos sin ) bestimmen. Als Vorüberlegung berechnen wir die Ableitung von cos sin. Diese ist cos sin cos sin ( cos sin ) ( cos sin ). Wir schreiben dher f ls ein Produkt f() sin ( cos sin ) sin und wenden druf prtielle Integrtion n, wobei wir den ersten Fktor integrieren und den zweiten Fktor bleiten. Die Ableitung des zweiten Fktors ist Dher ist f()d ( ) sin sin cos sin cos sin sin sin cos cos sin sin d cos sin sin + sin d cos sin sin. cot.

9 Abbildungsverzeichnis Quelle John Wllis.jpg, Autor Benutzer Gene.rboit uf Commons, Lizenz CC-by-s 3. Quelle FunktionUmkehrIntegrlOhne.svg, Autor Jonthn Steinbuch ( Benutzer Jonthn.Steinbuch uf Commons), Lizenz CC-BY-SA

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Mathematik. Ingo Blechschmidt. 22. Januar 2007

Mathematik. Ingo Blechschmidt. 22. Januar 2007 Mthemtik Ingo Blechschmidt 22. Jnur 2007 Inhltsverzeichnis I Mthemtik 2 1 Anlysis 2 1.1 Stetigkeit und Differenzierbrkeit........... 2 1.1.1 Stetigkeit..................... 2 1.1.2 Differenzierbrkeit................

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mthemtik 1 für Ingenieure (Sommersemester 2016) Kpitel 10: Integrlrechnung einer Veränderlichen Prof. Miles Simon Nch Folienvorlge von Prof. Dr. Volker Kibel Otto-von-Guericke Universität Mgdeburg.

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Unter einer Partition oder Zerlegung eines Intervalls [a, b] verstehen wir eine endliche Menge P = {x 0, x 1,..., x n } mit der Eigenschaft ...

Unter einer Partition oder Zerlegung eines Intervalls [a, b] verstehen wir eine endliche Menge P = {x 0, x 1,..., x n } mit der Eigenschaft ... Kpitel 7 Ds Riemnn Integrl 7.1 Unter und Obersummen 7.2 Riemnn Integrl 7.3 Riemnnsche Summen 7.4 Rechenregeln 7.5 Differentition und Integrtion 7.6 Die L p Normen 7.1 Unter und Obersummen Unter einer Prtition

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

4 Die Integralfunktion*

4 Die Integralfunktion* Übungsmteril 1 Die Integrlfuntion* In den vorigen Kpiteln hben wir bereits ds unbestimmte und ds bestimmte Integrl und deren Eigenschften ennengelernt. Ersteres liefert die Menge der Stmmfuntionen einer

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Ü b u n g s b l a t t 13. Organisatorisches:

Ü b u n g s b l a t t 13. Organisatorisches: MATHEMATIK FÜ INFOMATIKE I WINTESEMESTE 7/8 POF. D. FIEDICH EISENBAND D. KAI GEHS Ü b u n g s b l t t 13 Orgnistorisches: Dieses Übungsbltt wir nicht mehr korrigiert. D ie Aufgben ennoch klusurrelevnt

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Württemberg: Abitur 014 Whlteil A www.mthe-ufgben.com Huptprüfung Abiturprüfung 014 (ohne CAS) Bden-Württemberg Whlteil Anlysis Hilfsmittel: GTR und Formelsmmlung llgemeinbildende Gymnsien Alexnder

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

Analysis II. Universität Stuttgart, SS 06 M. Griesemer

Analysis II. Universität Stuttgart, SS 06 M. Griesemer Anlysis II Universität Stuttgrt, SS 06 M. Griesemer Inhltsverzeichnis 9 Ds Riemnnsche Integrl 3 9.1 Definition und Beispiele........................... 3 9.2 Elementre Eigenschften..........................

Mehr

Wir wollen den Inhalt A der Fläche bestimmen, den der Graph von f mit der x-achse und den zu a und b gehörendenden Ordinaten einschließt.

Wir wollen den Inhalt A der Fläche bestimmen, den der Graph von f mit der x-achse und den zu a und b gehörendenden Ordinaten einschließt. I. Integrlrechnung 1 ================================================================= 1.1 Oer- und Untersumme -------------------------------------------------------------------------------------------------------------

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

1 Integralsätze - Motivation

1 Integralsätze - Motivation Wolfrm Liebermeister 28.10.2013 Einführung: Integrle HU-Berlin - Institut für Theoretische Biophysik nlehnung n die Vorlesung Höhere Mthemtik 3 von Michel Eisermnn, www.igt.uni-stuttgrt.de/eiserm Tutoren:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Komplexe Kurvenintegrale

Komplexe Kurvenintegrale Komplexe Kurvenintegrle nlog zu Kurvenintegrlen: Sei : [, b] D R n ein stükweiser C Weg, f : D R und F : D R n gegeben. Dnn htten wir in Anlysis II/III die beiden Kurvenintegrle. und 2. Art f (x)ds = b

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

4 Stetigkeit. 4.1 Intervalle

4 Stetigkeit. 4.1 Intervalle 4 Stetigkeit Der Grenzwertbegriff für Zhlenfolgen lässt sich uf Funktionen übertrgen. Funktionen (oder Abbildungen) wren bereits im Kpitel über Mengen ufgetreten. Hier wird nun der Fll betrchtet, dss Definitionsbereich

Mehr

Mathematik: Vorwissen und Selbststudium

Mathematik: Vorwissen und Selbststudium Mthemtik: Vorwissen und Selbststudium Prof. Thoms Apel Studienjhr 00/ Lerning nything chnges people; lerning mth mkes big chnge it opens minds nd opens doors. [Hirsh Cohen, SIAM president 983-984] Vorwort

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzufgben zu Mthemtik I für ET/IT und ITS WS / Bltt 6. Bestimmen Sie zu vorgegebenem Volumen V > die Dose (Zylinder mit der kleinsten Oberfläche und ds Gls (Zylinder ohne Deckel mit

Mehr

Brückenkurs MATHEMATIK

Brückenkurs MATHEMATIK Brückenkurs MATHEMATIK Professor Dr. rer. nt. Bernd Bumnn Professor Dr. rer. nt. Ulrich Stein Hochschule für Angewndte Wissenschften Hmburg 5. März 008 VO R B E M E R K U N G E N Liebe Studentin, lieber

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

Thema 11 Vektorwertige Funktionen, Kurven

Thema 11 Vektorwertige Funktionen, Kurven Them 11 Vektorwertige Funktionen, Kurven Definition 1 Eine Kurve in R n ist eine stetige Abbildung uf einem Intervll I mit Werten in R n. Wir verwenden den Buchstben c für Kurven und schreiben c = (c 1,...,c

Mehr

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3 Mthemtik fu r Ingenieure (Mschinenu und Sicherheitstechnik). Semester Apl. Prof. Dr. G. Herort Dr. T. Pwlschyk SoSe6 Areitsheft Bltt Hinweis: Besuchen Sie die Vorlesung und vervollst ndigen Sie Areitsheft.

Mehr

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02 M LK HT Seite von Nme: Abiturprüfung 007 Mthemti, Leistungsurs Aufgbenstellung: Gegeben ist die Funtion f mit Ein Teil des Grphen von f ist für 0,0 t ft () = t e, t IR. 0 t 5 m Ende der Aufgbe uf Seite

Mehr

Orientierungstest Mathematische Grundlagen

Orientierungstest Mathematische Grundlagen Orientierungstest Mthemtische Grundlgen Lösungen:. Welche Zhlenmengen git es? Beispiele? Menge der ntürlichen Zhlen N {,,, } Menge der gnzen Zhlen Z {,, 0,,, } Menge der rtionlen Zhlen Q Menge ller ls

Mehr

2 Der Cauchysche Integralsatz

2 Der Cauchysche Integralsatz themtik für Physiker IV, SS 2013 ontg 6.5 $Id: cuchy.tex,v 1.11 2013/05/07 14:26:31 hk Exp hk $ 2 Der Cuchysche Integrlstz 2.3 Die Cuchysche Integrlformel In der letzten Sitzung htten wir eine erste Form

Mehr

Kurven und Bogenlänge

Kurven und Bogenlänge Kpitel 3 Kurven und Bogenlänge 3.1 Motivtion Der Begriff der Kurve in der Ebene oder im Rum spielt in den Nturwissenschften, insbesondere der Physik, Technik (Robotik) und der Informtik (Computergrphik)

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Vorlesungsskript. Brückenkurs. Felix von Oppen Abbildungen: Jens Koch. Wintersemester 2005/06

Vorlesungsskript. Brückenkurs. Felix von Oppen Abbildungen: Jens Koch. Wintersemester 2005/06 Vorlesungsskript Brückenkurs Feli von Oppen Abbildungen: Jens Koch Wintersemester 005/06 Inhltsverzeichnis Grundlgen 4 Vorbemerkungen..................................... 4 Bruchrechnung......................................

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mthemtisches Institut der Universität München Prof. Dr. Frnz Merkl Sommersemester 2013 Bltt 2 26.4.2013 Übungen zur Anlysis 2 2.1 Vernschulichung der Cuchy-Schwrz-Ungleichung. Gegeben seien die Vektoren

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10 Mthemtik I für E-Techniker C. Erdmnn WS /, Univerität Rotock,. Vorleungwoche Zutzmteril zur Mthemtik I für E-Techniker Übung Uneigentliche Integrle Die Funktion f ei für x definiert und in jedem Intervll

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

Mathematik für Naturwissenschaften Aufgaben mit Ergebnissen Differenzialrechnung

Mathematik für Naturwissenschaften Aufgaben mit Ergebnissen Differenzialrechnung Hans Walser Mathematik für Naturwissenschaften Aufgaben mit sen 3 3 4 4 5 5 6 6 7 Differenzialrechnung Differenzialrechnung, Aufgaben ii Inhalt Steigung... Beweis?... 3 Spiel mit Eponenten... 4 Ableitung...

Mehr

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014 Anlysis 2 Vorlesungsskript Sommersemester 214 Bernd Schmidt Version vom 15. Oktober 214 Institut für Mthemtik, Universität Augsburg, Universitätsstr. 14, 86135 Augsburg, bschmidt@mth.uni-ugsburg.de 1 Inhltsverzeichnis

Mehr

ANALYSIS II OLIVER C. SCHNÜRER

ANALYSIS II OLIVER C. SCHNÜRER ANALYSIS II OLIVER C. SCHNÜRER Zusmmenfssung. Bei diesem Mnuskript hndelt es sich um Notizen zu einer Vorlesung Anlysis II. Ich hbe sie im Sommersemester 215 in Konstnz benutzt. Inhltsverzeichnis 4. Differentition

Mehr

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

Kapitel 4 Differentialrechnung in mehreren Variablen. 4.1 Topologie des R n und Stetigkeit von Funktionen

Kapitel 4 Differentialrechnung in mehreren Variablen. 4.1 Topologie des R n und Stetigkeit von Funktionen Kpitel 4 Differentilrechnung in mehreren Vriblen 4.1 Topologie des R n und Stetigkeit von Funktionen Gegenstnd dieses Kpitels sind Funktionen in mehreren Vriblen. Wir können die Definitionsbereiche solcher

Mehr

Höhere Mathematik für Elektrotechniker II

Höhere Mathematik für Elektrotechniker II Vorlesungsmnuskript zu Höhere Mthemtik für Elektrotechniker II Werner Blser Institut für Angewndte Anlysis Sommersemester 2009 Inhltsverzeichnis 1 Integrlrechnung 4 11 Riemnn-Summen und Riemnn-Integrl

Mehr

Differentialgleichungen Gewöhnliche Differentialgleichungen

Differentialgleichungen Gewöhnliche Differentialgleichungen Differentilgleichungen Gewöhnliche Differentilgleichungen ( n) + + +... ++ Eplizite Form: (Gleichung lässt sich nch höchster Ableitung uflösen Implizite Form: + 0 Lösung: Durch eine Funktion Lösungsweg:

Mehr

Häufig in der Mathematik: Aussagen, die für eine beliebige natürliche Zahl gelten. 2 ist die Aussage A(n) für beliebige n IN.

Häufig in der Mathematik: Aussagen, die für eine beliebige natürliche Zahl gelten. 2 ist die Aussage A(n) für beliebige n IN. Seydel: Mthemtik I, Kp. 3, WS 008/09 Kpitel 3 Anlysis 3. Vollständige Induktion Häufig in der Mthemtik: Aussgen, die für eine beliebige ntürliche Zhl gelten. Beispiel: 3 + 3 +... + n 3 = [ n(n+) ] ist

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthemtik für Informtiker I (Wintersemester 00/00) Aufgbenbltt (. Oktober 00)

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Grenzwerte von Funktionen

Grenzwerte von Funktionen Grenzwert und Stetigkeit von Funktionen Methodische Bemerkungen H Hinweise und didktisch-methodische Anmerkungen zum Einstz der Areitslätter und Folien für den Themenkreis Grenzwert und Stetigkeit von

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Eigenschften Besonderheiten - Beispiele Kreis beknnt us Klsse 8: U Kreis = 2 π r A Kreis = r 2 π Kreissektor Bogenlänge b Flächeninhlt Kreissektor: Die Länge b des Kreisbogens und der Flächeninhlt

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Einführung in die Integrlrechnung Einführung in die Integrlrechnung In der Differentilrechung estnd die ufge u drin, zu einer gegeenen Funktion f deren leitungsfunktion

Mehr

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor Grundwissen Mthemtik 0.Klsse 0 / Die Kugel Volumen der Kugel: Oberfläche der Kugel: V O Kugel Kugel 4 πr 4πr Der Kreissektor (Kreisusschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : ϕ Bogenlänge: b

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Übungen zur Vorlesung Analysis II

Übungen zur Vorlesung Analysis II Sommersemester 3 Bltt 13 1) Mn verschiebe die Prbel y = x in R so, dß sie weiterhin den Nullpunkt enthält. Zu der hierdurch entstehenden Kurvenschr bestimme mn die orthogonlen Kurven. ) Mn bestimme lle

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

Kettenregel, Substitution und Methode der Trennung der Variablen

Kettenregel, Substitution und Methode der Trennung der Variablen Kettenregel, Substitution und Methode der Trennung der Variablen Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2015 11. April

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Funktionenfolgen. Kapitel 6

Funktionenfolgen. Kapitel 6 Kpitel 6 Funktionenfolgen Bemerkung 6.1 Motivtion. Dieser Abschnitt betrchtet die Konvergenz von Folgen von uf einem gemeinsmen Intervll definierten Funktionen. Dies ist eine wichtige Grundlge, um eine

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Einführung in die Analysis. Prof. Dr. René Grothmann

Einführung in die Analysis. Prof. Dr. René Grothmann Einführung in die Anlysis Prof. Dr. René Grothmnn 2011 2 Vorwort Es hndelt sich bei diesem Skript nur um eine Zusmmenfssung der Vorlesung. Beweise und Beispiele wurden uf ein Minimum reduziert. Auch eine

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr