A Die Menge C der komplexen Zahlen

Größe: px
Ab Seite anzeigen:

Download "A Die Menge C der komplexen Zahlen"

Transkript

1 A Die Menge C der komplexen Zahlen (Vgl. auch Abschnitt C) A.1 Definition Wir erweitern R um eine Zahl i / R (genannt imaginäre Einheit) mit der Eigenschaft i 2 i i = 1. (653) Unter einer komplexen Zahl z C versteht man einen Ausdruck der Form z = x+ iy = x+yi = yi +x = iy +x (x,y R). (654) Die reellen Zahlen x und y heißen Real- bzw. Imaginärteil von z, z = x+ iy : Re[z] = x, Im[z] = y. (655) Addition und Multiplikation in C werden erklärt durch z 1 +z 2 (x 1 + iy 1 )+(x 2 + iy 2 ) := (x 1 +x 2 )+ i(y 1 +y 2 ), (656) z 1 z 2 (x 1 + iy 1 ) (x 2 + iy 2 ) := x 1 x 2 + iy 1 x 2 + ix 1 y 2 + i 2 y 1 y 2 (x 1 x 2 y 1 y 2 )+ i(x 1 y 2 +y 1 x 2 ). (657) Diekomplexen Zahlenohne Imaginärteil, x+0i C, lassen sich alsomit denrellen Zahlen x R identifizieren, denn es gilt (x 1 +0i)+(x 2 +0i) = (x 1 +x 2 )+0i, (x 1 +0i) (x 2 +0i) = (x 1 x 2 )+0i. (658) Damit gilt R C. Insbesondere ist C eine Körpererweiterung von R. Zur Division zweier komplexer Zahlen erweitert man den Bruch mit dem konjugiert Komplexen z := x iy des Nenners z = x+ iy, 2+5i 3+4i = (2+5i) (3 4i) (3+4i) (3 4i) = (6+20)+(15 8)i = i. (659) Probe: Multiplikation des Resultats mit 3+4i ergibt wieder 2+5i. 109

2 A.2 Geometrische Deutung der Rechenoperationen Man kann die komplexen Zahlen z = x+ iy mit den Punkten der xy-ebene identifizieren, die dann Gaußsche Zahlenebene genannt wird. Die reelle Zahlengerade R entspricht dabei der x-achse. A.2.1 Deutung der Addition Ordnet man den komplexen Zahlen Ortsvektoren zu, die vom Ursprung der Zahlenebene, also der Zahl z = 0 ausgehen, so ist die Addition (656) zweier Zahlen nichts anderes als die Vektoraddition ihrer Ortsvektoren. Um auch für die Multiplikation (657) eine geometrische Deutung zu finden, führen wir eine neue Darstellung komplexer Zahlen ein: A.2.2 Polardarstellung komplexer Zahlen DasProduktderZahlz = x+iy mitderzuihrkomplex-konjugiertenzahlz := x iy, zz (x+ iy)(x iy) = x 2 +y 2, (660) ist immer reell und nicht-negativ. Die positive Wurzel daraus, zz = x 2 +y 2 =: z, (661) ist die Länge des Ortsvektors der Zahl z in der Zahlenebene, also ihr geometrischer Abstand von der Zahl 0. Dieser Abstand heißt der Betrag z von z. Der Winkel φ, den dieser Ortsvektor (im mathematisch positiven Gegenuhrzeigersinn) mit der positiven x-achse einschließt, heißt das Argument arg(z) von z. Es gilt also z = r, arg(z) = φ z = rcosφ }{{} =x + i rsinφ }{{} =y ( ) r cosφ+ i sinφ. (662) Diese Polardarstellung ist die Alternative zur kartesischen Darstellung z = x + i y einer komplexen Zahl. A.2.3 Deutung der Multiplikation In der Polardarstellung ergibt sich für das Produkt zweier komplexer Zahlen ( ) ( ) z 1 z 2 r 1 cosφ 1 + i sinφ 1 r 2 cosφ 2 + i sinφ 2 = r 1 r 2 [( cosφ 1 cosφ 2 sinφ 1 sinφ 2 )+ i 110 )] (cosφ 1 sinφ 2 +sinφ 1 cosφ 2 (663).

3 Nach den Additionstheoremen für Sinus und Cosinus gilt also ] z 1 z 2 = r 1 r 2 [cos(φ 1 +φ 2 )+ i sin(φ 1 +φ 2 ). (664) Satz: Bei der Multiplikation (657) zweier komplexer Zahlen z 1 und z 2 multiplizieren sich die Beträge der Faktoren, während sich deren Argumente addieren, z 1 z 2 = r 1 r 2 z 1 z 2, arg(z 1 z 2 ) = arg(z 1 )+arg(z 2 ). (665) Bsp.: Man zeichne die Zahlen z 1 = 4+ i und z 2 = 1+ i in die Zahlenebene. Mit z 1 z 2 = und φ 1 +φ = 60 kann man aus dieser Zeichnung ablesen, daß z 1 z 2 3+5i. Dies ist sogar das exakte Ergebnis! A.3 Die komplexe Exponentialfunktion A.3.1 Rein-imaginäre Zahlen Für eine reelle Zahl φ definieren wir mit der Exponentialreihe aus Kapitel 1 e iφ := (iφ) n. (666) n! n=0 Zwar ist zunächst völlig unklar, was unter der Exponentialfunktion einer komplexen Zahl iφ zu verstehen ist, doch auf der rechten Seite ist jeder Term der Reihe wohldefiniert, wenn wir i 0 := 1 festlegen und beachten, daß aus i 2 = 1 folgt: i 3 = i, i 4 = 1, etc., (iφ) n n=0 n! = i 0φ0 0! + i 1φ1 1! + i 2φ2 2! + i 3φ3 3! + i 4φ4 4! + i 5φ5 5! +... = 1+ iφ φ2 2! i φ3 3! + φ4 4! + i φ5 5! ) ) = (1 φ2 2! + φ4 4! i (φ φ3 3! + φ5 5! +... = cosφ+ i sinφ, (667) mit den bekannten Reihen für cosφ und sinφ. Es gilt also die bemerkenswerte Beziehung e iφ = cosφ+ i sinφ. (668) Die Zahlen e iφ mit 0 φ < 2π bilden den Einheitskreis in der Zahlenebene, e iφ = cos 2 φ+sin 2 φ = 1. (669) 111

4 Man kann dieses Ergebnis graphisch illustrieren, indem man, etwa für φ = 1 oder φ = π 2, die Zahlen 1, iφ, 1 2 φ2, 1 6 φ3 i, etc. vektoriell in der Zahlenebene aufsummiert. Wir verstehen jetzt auch die enge gegenseitige Verwandtschaft der Taylorreihen (53) (55) für e x, cosx und sinx. Jetzt können wir die Polardarstellung schreiben in der Form z = x+ iy r(cosφ+ i sinφ) = re iφ. (670) Bsp. 5: Man beachte die wichtigen Polardarstellungen i = e i π 2, 1 = e iπ, i = e i 3 2 π, 1 = e 2πi = e 0. (671) Weitere Beispiele sind 1+ i = 2e i π 4, 1 i = 2e i 7 4 π, e i = cos1+ i sin1 0, i. (672) A.3.2 Beliebige komplexe Zahlen In Verallgemeinerung obiger Reihenentwicklung kann man für beliebiges u = λ+ iφ C (mit λ,φ R) definieren e u e λ+iφ := e λ e iφ e λ (cosφ+ i sinφ). (673) z = e u ist also die komplexe Zahl mit Real- und Imaginärteil bzw. mit Betrag und Argument Re[z] = e λ cosφ, Im[z] = e λ sinφ, (674) z = e λ, arg(z) = φ. (675) A.4 Wurzeln komplexer Zahlen A.4.1 Definition Jede Lösung w C der Gleichung w n = z heißt eine n-te Wurzel der komplexen Zahl z. Aus der geometrischen Deutung der Multiplikation ergibt sich der 112

5 Satz: Jede komplexe Zahl z = z e iφ mit z 0 hat genau n paarweise verschiedene n-te Wurzeln. Unter ihnen heißt die Zahl w 1 = n z e iφ/n (676) der Hauptwert der n-ten Wurzeln. Die übrigen n-ten Wurzeln bilden zusammen mit dem Hauptwert in der Zahlenebene ein reguläres n-eck mit Mittelpunkt im Ursprung. A.4.2 Fundamentalsatz der Algebra Eine Verallgemeinerung des letzten Satzes ist der Satz (FS der Algebra): Die allgemeine komplexe algebraische Gleichung z n +a n 1 z n a 1 z +a 0 = 0 (677) hat genau n Lösungen z 1,...,z n, die allerdings nicht paarweise verschieden sein müssen. Genauer gesagt: Jedes komplexe Polynom n-ten Grades zerfällt über C in genau n Linearfaktoren, z n +a n 1 z n a 1 z +a 0 = (z z 1 ) (z z n ) = n (z z k ). (678) k=1 Bsp. 1: Das Polynom z 2 +1 läßt sich nicht als Produkt z 2 +1 = (z z 1 )(z z 2 ) (679) mit reellen Konstanten z 1 unf z 2 darstellen. Sehr wohl gilt aber z 2 +1 = (z i)(z + i) (680) mit den komplexen Konstanten z 1 = i unf z 2 = i Bsp. 2: Kompliziertere Beispiele sind z 3 2z 2 +9z 18 = (z 2 +9)(z 2) = (z 3i)(z +3i)(z 2), z 2 4z +13 = [ z (2 3i) ][ z (2+3i) ]. (681) 113

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen 2 Komplexe Zahlen 2.1 Definition Die omplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen z 1 + z 2 (x 1, y 1 ) + (x 2, y 2 ) :=

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013 Einführung Seite 8 Vorlesung 1 3. bzw. 4. Oktober 013 Komplexe Zahlen Seite 9 Lösung von x + 1 = 0, pq-formel liefert x 1/ = ± 1 ; }{{} verboten Definition Imaginäre Einheit i := 1 Dann x 1/ = ±i; i =

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation In den reellen Zahlen haben nicht alle Polynome Nullstellen. Der einfachste Fall einer solchen Nullstellen-Gleichung ist x 2 + 1 = 0. Die komplexen Zahlen ("C") sind

Mehr

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres Analysis, Woche 3 Komplexe Zahlen I A 3. Etwas Imaginäres Zusätzlich zu den reellen Zahlen führen wir das Symbol i ein und wir vereinbaren: i. Wir möchten die reellen Zahlen erweitern mit i. Das heißt,

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr

KAPITEL 1. Komplexe Zahlen

KAPITEL 1. Komplexe Zahlen KAPITEL Komplexe Zahlen. Lernziele im Abschnitt: Komplexe Zahlen............... Was sind komplexe Zahlen?......................3 Komplexe Zahlenebene....................... 3.4 Grundrechenarten in C.......................

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1/60

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra 11 Komplexe Zahlen Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra Addition ebener Vektoren Sei Ê 2 = {(x, y) : x, y Ê}. Ê 2 können wir als Punkte in der Ebene

Mehr

viele weitere Anwendungen wie zum Beispiel Schwingungsvorgänge. 4.1 Die algebraische Struktur der komplexen Zahlen

viele weitere Anwendungen wie zum Beispiel Schwingungsvorgänge. 4.1 Die algebraische Struktur der komplexen Zahlen 4 Komplexe Zahlen In diesem Kapitel wollen wir uns erneut mit dem R 2 beschäftigen, diesmal aber mit einer anderen algebraischen Struktur. Dies erlaubt uns weitere Anwendungen in der Geometrie die Lösung

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Körper sind nullteilerfrei

Körper sind nullteilerfrei Mathematik I für Informatiker Komplexe Zahlen p. 1 Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a = 0 oder b = 0. Beweis: Aus a b = 0 und a 0 folgt also b =

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen Komplexe Zahlen Mathe I / 12.11.08 1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen gezogen werden können (in nicht möglich!).

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

29 Komplexe Zahlen und Polynome

29 Komplexe Zahlen und Polynome 29 Komplexe Zahlen und Polynome 30 Komplexe Zahlen und Polynome 147 Lernziele: Konzepte: Komplexe Zahlen Resultate: Fundamentalsatz der Algebra Methoden: Polarkoordinaten Kompetenzen: Lösung kubischer

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Die komplexen Zahlen Wir haben gesehen, dass die Menge R der reellen Zahlen einen angeordneten Körper bildet und dass für die Menge Q der rationalen Zahlen entsprechendes gilt. In beiden Körpern sind Gleichungen

Mehr

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion 7. KOMPLEXE ZAHLEN und die KOMPLEXE e-funktion 1 Wir gehen aus von der Ebene, versehen mit einem Koordinatensystem und x, y-koordinaten. Dann entsprechen Punkte z in der Ebene Zahlenpaaren: z = (x, y)

Mehr

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003 Komplexe Zahlen Axel Schüler, Leipzig schueler@mathematikuni-leipzigde Juli 2003 Da die komplexen Zahlen nicht mehr im Lehrplan stehen, sollen hier die Grundlagen gelegt werden Eine sehr schöne Einführung

Mehr

2.6 Der komplexe Logarithmus und allgemeine Potenzen

2.6 Der komplexe Logarithmus und allgemeine Potenzen 2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =

Mehr

Ergänzungen in Mathematik Studierende Nanowissenschaften

Ergänzungen in Mathematik Studierende Nanowissenschaften Hans Walser Ergänzungen in Mathematik Studierende Nanowissenschaften Komplexe Zahlen Hans Walser: Komplexe Zahlen ii Inhalt 1 Die imaginäre Einheit... 1 2 Rechenregeln... 1 3 Quadratische Gleichungen...

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Potenzen und Wurzeln komplexer Zahlen. Eulersche Identität. Polardarstellung. Additionstheoreme. Vollständige Faktorisierung von Polynomen

Potenzen und Wurzeln komplexer Zahlen. Eulersche Identität. Polardarstellung. Additionstheoreme. Vollständige Faktorisierung von Polynomen Potenzen und Wurzeln komplexer Zahlen. Eulersche Identität. Polardarstellung. Additionstheoreme. Vollständige Faktorisierung von Polynomen Jörn Loviscach Versionsstand: 3. Dezember 200, 20:42 Die nummerierten

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

Exkurs Zahlbereichserweiterungen zu den Komplexen Zahlen

Exkurs Zahlbereichserweiterungen zu den Komplexen Zahlen MT1 Einführung in die Höhere Mathematik 1 THM Friedberg IEM/MND Medieninformatik Thomas Eckert MT1 Einführung in die Höhere Mathematik WS 2014/2015 Exkurs Zahlbereichserweiterungen zu den Komplexen Zahlen

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

z + b ) 2 2a 4a 2 Nach Ausklammern des linken Terms mittels binomischer Formel ergibt sich = b2 4ac

z + b ) 2 2a 4a 2 Nach Ausklammern des linken Terms mittels binomischer Formel ergibt sich = b2 4ac Kapitel 3 Komplexe Zahlen Komplexe Zahlen gehören mit zu den nützlichsten Abstraktionen der Mathematik. Obwohl sie zunächst nur als Erweiterung des reellen Zahlenkörpers eingeführt wurden, um Gleichungen

Mehr

Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit

Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit Komplexe Zahlen Dieses Kapitel widmet sich den komplexen Zahlen. Die in den folgenden Kapiteln dargestellten Themen können damit komplex gelesen werden. Allerdings ist diese Sichtweise nicht unbedingt

Mehr

Komplexe Zahlen. Gerald und Susanne Teschl. 15. Januar 2014

Komplexe Zahlen. Gerald und Susanne Teschl. 15. Januar 2014 Komplexe Zahlen Gerald und Susanne Teschl 15 Januar 014 1 Die komplexen Zahlen C Für unsere Zahlenmengen gilt bisher N Z Q R und man könnte wirklich glauben, dass wir nun in der Lage sind, jede Gleichung

Mehr

Einiges über komplexe Zahlen

Einiges über komplexe Zahlen Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht

Mehr

Aufgaben zu Kapitel 5

Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5. Geben Sie zu folgenden komplexen Zahlen die Polarkoordinatendarstellung an z i z + i z 3 + 3i). r 5 ϕ 5 4 3 π bzw. r 6 3 ϕ 6 4 5

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahlen Lernziele dieses Abschnitts sind: (1) Analytische und geometrische Darstellung komplexer Zahlen, () Grundrechenarten fur komplexe Zahlen, (3) Konjugation und Betrag komplexer

Mehr

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik Mathematik I für das MW und VIW Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik karsten.eppler@tu-dresden.de http://www.math.tu-dresden.de/ eppler Vorlesungsassistent:

Mehr

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik Mathematik I für das MW und VIW Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik karsten.eppler@tu-dresden.de http://www.math.tu-dresden.de/ eppler Vorlesungsassistent:

Mehr

= 2 i 2= 2 2 i, z 4. = 1.5, z 8

= 2 i 2= 2 2 i, z 4. = 1.5, z 8 Mathematik 1 - Übungsblatt 11 Aufgabe 1 (komplexe Zahlen) Gegeben sind folgende komplexe Zahlen in der Darstellung als Normalform mit Real- und Imaginärteil z=x i y - oder wegen der Vertauschbarkeit von

Mehr

5.A Die Konstruktion der komplexen Zahlen

5.A Die Konstruktion der komplexen Zahlen 5. Komplexe Zahlen 49 5. Komplexe Zahlen Nachdem wir die reellen Zahlen genau charakterisiert haben, wollen wir nun noch einen weiteren Körper einführen, der in der gesamten Mathematik sehr wichtig ist:

Mehr

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C 1 Komplexe Zahlen 1.1 Übersicht N = {1, 2, 3,... } Menge der natürlichen Zahlen ohne 0 N = {0, 1, 2, 3,... } Menge der natürlichen Zahlen mit 0 N N Z = {..., 2, 1, 0, 1, 2,... } Menge der ganzen Zahlen

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Kapitel 9 Die komplexen Zahlen Der Körper der komplexen Zahlen Die Gauß sche Zahlenebene Algebraische Gleichungen Anwendungen Der Körper der komplexen Zahlen Die Definition der komplexen Zahlen Definition

Mehr

Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen

Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen Prof. Dr. Duco van Straten Blatt 8 - Lösungen Oliver Labs 8. Dezember 2003 Konrad Möhring Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen. Skizzieren Sie die folgenden Teilmengen der GAUSSschen

Mehr

Brückenkurs Mathematik für Studierende der Chemie

Brückenkurs Mathematik für Studierende der Chemie Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 2015/2016) Institut für Chemie und Biochemie Freie Universität Berlin 20 September 2016 1 Teil:

Mehr

2 Komplexe Funktionen

2 Komplexe Funktionen 2 Komplexe Funktionen Wir betrachten komplexwertige Funktionen f einer komplexen Variablen. 2.1 Begriff und geometrische Deutung Definition: Eine komplexe Funktion ist eine Funktion, deren Definitions-

Mehr

Zusammenfassung Zahlbereiche

Zusammenfassung Zahlbereiche Zusammenfassung Zahlbereiche Ekkehard Batzies 7. Mai 2008 1 Die rationalen Zahlen 1.1 Zahlbereiche in der Schule Als Zahlbereiche kennt man aus der Schule die natürlichen Zahlen, N = {0, 1, 2, 3,...},

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Kapitel 5 Komplexe Zahlen

Kapitel 5 Komplexe Zahlen Kapitel 5 Komplexe Zahlen 5 5 5 Komplexe Zahlen.................................... 191 5.1 Darstellung komplexer Zahlen... 194 5.1.1 Algebraische Normalform... 194 5.1.2 Trigonometrische Normalform...

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Eigenschaften von Winkelfunktionen

Eigenschaften von Winkelfunktionen Eigenschaften von Winkelfunktionen Satz.7.: Für x,y R und n Z gelten stets: i. cosx = j=0 ( j xj x = (j!! + x4 4!, ii. sinx = j=0 ( j x j+ x = x (j +!! + x5 5!, iii. cos( x = cosx, iv. sin( x = sinx, v.

Mehr

Leitprogramm. Komplexe Zahlen

Leitprogramm. Komplexe Zahlen Leitprogramm Komplexe Zahlen Torsten Linnemann Kantonsschule Solothurn Tel.: 032/6214331 e-mail:tolinnemann@vtxmail.ch homepage: http://home.tiscalinet.ch/tolinnemann 1. Juli 2006 Inhaltsverzeichnis 1

Mehr

17 Grundrechenarten für komplexe Zahlen

17 Grundrechenarten für komplexe Zahlen 7 Grundrechenarten für komplexe Zahlen Jörn Loviscach Versionsstand: 2. September 203, 5:58 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Dieses Projekt wurde im Rahmen der Lehrveranstaltung Logik als Arbeitssprache im Sommersemester 2004 verfasst.

Dieses Projekt wurde im Rahmen der Lehrveranstaltung Logik als Arbeitssprache im Sommersemester 2004 verfasst. Printed from the Mathematica Help Browser 1 Komplexe Zahlen Autoren: Frank Elisabeth 4063 Hörsching li-fra@gmx.at Nachbagauer Karin 4490 St. Florian Karin_N@gmx.net Dieses Projekt wurde im Rahmen der Lehrveranstaltung

Mehr

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen.

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen. SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

Facharbeit. Clemens-Brentano-Gymnasium in Dülmen. Schuljahr 2000/2001

Facharbeit. Clemens-Brentano-Gymnasium in Dülmen. Schuljahr 2000/2001 Facharbeit Clemens-Brentano-Gymnasium in Dülmen Schuljahr 000/00 Komplexe Zahlen Definition, das Rechnen mit komplexen Zahlen und ihre Darstellung Leistungskurs Mathematik bei Herrn Strohtkämper Verfasserin:

Mehr

Vorlesung Mathematik 3 KI Bachelor 1

Vorlesung Mathematik 3 KI Bachelor 1 Vorlesung Mathematik 3 KI Bachelor 1 B.Grabowski 19. Oktober 2012 1 (C) Prof.Dr.B.Grabowski, HTW des Saarlandes, 3/2012, Skript zur Vorlesung Mathematik 3 KI Bachelor Zusammenfassung Das vorliegende Papier

Mehr

ANALYSIS 1 für Lehramt Ma Regelschullehrer SS 2008

ANALYSIS 1 für Lehramt Ma Regelschullehrer SS 2008 ANALYSIS 1 für Lehramt Ma Regelschullehrer SS 2008 Prof. Dr. Thomas Runst Friedrich Schiller Universität Jena Fakultät für Mathematik und Informatik Mathematisches Institut 1 Ziel der Vorlesung: Der Modul

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Die komplexen Zahlen. Kapitel 1. Kapitel Historisches

Die komplexen Zahlen. Kapitel 1. Kapitel Historisches Die komplexen Zahlen 1.1 Historisches 1.2 Definition und Modelle komplexer Zahlen 1.3 Elementare Operationen und Regeln 1.4 Argument, geometrische Veranschaulichung 1.5 Wurzeln 1.6 Riemannsche Zahlenkugel

Mehr

Technische Universität München

Technische Universität München Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder

Mehr

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h.

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h. 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

2 Geometrie und Vektoren

2 Geometrie und Vektoren Geometrie und Vektoren Vorbemerkung: Begriffe wie die folgenden werden hier als bekannt vorausgesetzt: Punkt, Strecke, Strahl, Gerade, Ebene, Kreis, Winkel, rechter Winkel, etc..1 Grundlegende Sätze Satz

Mehr

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches Annelie Heuser, Jean-Luc Landvogt und Ditlef Meins im 1. Semester Komplexe Zahlen Will man nur addieren und subtrahieren, multiplizieren und dividieren, kommt man uneingeschränkt mit reellen Zahlen aus.

Mehr

1. Körper und Körpererweiterungen

1. Körper und Körpererweiterungen . Körper und Körpererweiterungen 7. Körper und Körpererweiterungen Wir beginnen nun mit dem eigentlichen Studium von Gruppen, Ringen und Körpern. Die in der Einleitung vorgestellten Probleme haben dabei

Mehr

TEIL 1 (ohne Rechner)

TEIL 1 (ohne Rechner) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Dozent: Roger Burkhardt Klasse: Studiengang ST Lösungen Repetition Algebra Büro:.63 Semester: 2 Modul:

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK7 vom 29.9.2016 Komplexe Zahlen und trigonometrische Funktionen VK7.1: exp und ln Denition 1: Für

Mehr

Komplexe Zahlen. Bekannte Zahlenmengen. Natürliche Zahlen. Die Zahlenmenge ist IN = {0, 1, 2, 3,...}. Es gelten die folgenden Gesetze:

Komplexe Zahlen. Bekannte Zahlenmengen. Natürliche Zahlen. Die Zahlenmenge ist IN = {0, 1, 2, 3,...}. Es gelten die folgenden Gesetze: Mathematik/Informatik Gierhardt Komplexe Zahlen Komplexe Zahlen Bekannte Zahlenmengen Natürliche Zahlen Die Zahlenmenge ist IN = {0,,,,} Es gelten die folgenden Gesetze: Addition: a + b IN, wenn a,b IN

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Argumentationstechniken Direkter Beweis einer Implikation A B (analog Äquivalenz A B): A C 1 C 2... B Beweis von A B durch Gegenbeispiel

Mehr

Es gibt eine Heuristik, mit der sich die Primzahldichte

Es gibt eine Heuristik, mit der sich die Primzahldichte Es gibt eine Heuristik, mit der sich die Primzahldichte 1 ln(x) für großes x N plausibel machen lässt. Die Idee besteht darin, das Änderungsverhalten der Primzahldichte bei x zu untersuchen. Den Ansatz

Mehr

3. DIE EXPONENTIALFUNKTION UND VERWANDTES

3. DIE EXPONENTIALFUNKTION UND VERWANDTES 3. DIE EXPONENTIALFUNKTION UND VERWANDTES (1) DIE KOMPLEXE EXPONENTIALFUNKTION Für α = (a n ) n=0mit a n := 1, (n IN) gilt r α = lim n (n + 1)! = lim n (n + 1) =. Damit konvergiert die zugehörige Potenzreihe

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

Potenzgesetze und Logarithmengesetze im Komplexen

Potenzgesetze und Logarithmengesetze im Komplexen Potenzgesetze und Logarithmengesetze im Komplexen Man kennt die Potenzgesetze und die Logarithmengesetze gewöhnlich schon aus der Schule und ist es gewohnt, mit diesen leicht zu agieren und ohne große

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7

Mehr

z k k! = 1 + z + z2 2! + z3 k=0

z k k! = 1 + z + z2 2! + z3 k=0 Kapitel 5 Spezielle Funktionen 5.1 Exponentialfunktion 5. Natürlicher Logarithmus und allgemeine Potenz 5.3 Sinus und Cosinus 5.4 Trigonometrische Umkehrfunktionen 5.5 Polarkoordinaten 5.6 Der Fundamentalsatz

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

3.5. DIE EXPONENTIALREIHE 73

3.5. DIE EXPONENTIALREIHE 73 3.5. DIE EXPONENTIALREIHE 73 wichtigen Formeln auf, ohne diese Zahl ist die Analysis nicht denkbar! Wir werden ihr oft begegnen und dadurch wird diese Bedeutung offenbar werden. Will man diese Zahl mittels

Mehr

10. Die komplexen Zahlen.

10. Die komplexen Zahlen. 10-1 Funktionen 10 Die kompleen Zahlen Dies ist ein Thema, das unberechtigter Weise als schwer gilt! Die Konstruktion der kompleen Zahlen ist viel einfacher zu verstehen ist, als einige der bisherigen

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Ungleichungen Inhalt: 1. Grundlegendes 2. Lineare Ungleichungen 3. Ungleichungen mit

Mehr

KOMPLEXE ZAHLEN UND LINEARE GLEICHUNGSSYSTEME

KOMPLEXE ZAHLEN UND LINEARE GLEICHUNGSSYSTEME KOMPLEXE ZHLEN UND LINERE GLEICHUNGSSYSTEME Vektoren Definition: Parallelverschiebung, Pfeil(e) mit Länge und Richtung. Darstellung Eigenschaften Komponenten Graphisch Länge, Betrag Zwischenwinkel Vektorarten

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 18 In dieser Vorlesung führen wir weitere wichtige Funktionen über ihre Potenzreihen ein. Die Hyperbelfunktionen Der Verlauf

Mehr

Ferienkurs Analysis 1. Tag 2 - Lösungen zu Komplexe Zahlen, Vollständige Induktion, Stetigkeit

Ferienkurs Analysis 1. Tag 2 - Lösungen zu Komplexe Zahlen, Vollständige Induktion, Stetigkeit Ferienurs Analysis Tag - Lösungen zu Komplee Zahlen, Vollständige Indution, Stetigeit Pan Kessel 4.. 009 Inhaltsverzeichnis Komplee Zahlen. Darstellung einer ompleen Zahl.....................................

Mehr

Dezimalzahlen. Analysis 1

Dezimalzahlen. Analysis 1 Dezimalzahlen Definition. Eine endliche Dezimalzahl besteht aus - einem Vorzeichen +,, oder 0 - einer natürlichen Zahl d 0 - einer endlichen Folge von Ziffern d 1,...,d l von 0 bis 9. Die Länge l kann

Mehr

Komplexe Zahlen. Facharbeit. vorgelegt am von. Florian Hennig. Berufliches Schulzentrum Mittweida

Komplexe Zahlen. Facharbeit. vorgelegt am von. Florian Hennig. Berufliches Schulzentrum Mittweida Komplexe Zahlen Facharbeit vorgelegt am 23.03.2010 Fach: Mathematik Klasse: LTa09 von Florian Hennig Fachoberschule: Berufliches Schulzentrum Mittweida Betreuer: Herr Laurinat II Inhaltsverzeichnis Abbildungsverzeichnis......................................

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr