INHALTSVERZEICHNIS XII

Größe: px
Ab Seite anzeigen:

Download "INHALTSVERZEICHNIS XII"

Transkript

1 Inhaltsverzeichnis I Gruppen 1 1 Halbgruppen, Gruppen und Untergruppen Innere Verknüpfungen und Halbgruppen Beispiele Definition einer Gruppe Abschwächung der Gruppenaxiome Translationen und Kürzungsregeln Definition einer Untergruppe Erzeugung von Untergruppen Untergruppen von Z, Kongruenzen und Restklassen Beispiele Homomorphismen und Normalteiler Definition eines Homomorphismus Beispiele Nebenklassen Ordnung und Index Beispiele Definition eines Normalteilers Homomorphismen und Normalteiler Faktorgruppen Beispiele Isomorphiesätze und Produkte von Gruppen Isomorphiesätze Äußeres direktes Produkt Inneres direktes Produkt Äußeres semidirektes Produkt Inneres semidirektes Produkt Beispiele Zyklische Gruppen Teilbarkeit ganzer Zahlen Produkte zyklischer Gruppen Untergruppen zyklischer Gruppen Die Eulersche ϕ-funktion Primrestklassengruppen... 63

2 X INHALTSVERZEICHNIS 3.13 Der euklidische Algorithmus Beispiele Operationen von Gruppen auf Mengen Definition einer Operation Beispiele und Satz von Cayley Bahnenraum und Standgruppe Die Klassengleichung Zyklenzerlegung einer Permutation Beispiele Symmetriegruppen Regelmäßige n-ecke und die Diedergruppe Endliche Untergruppen von O(2) Symmetrien des Tetraeders Symmetrien von Würfel und Oktaeder Symmetrien von Ikosaeder und Dodekaeder Die Klassengleichung der Ikosaedergruppe Endliche Untergruppen von SO (3) Symmetrien von Fußbällen Struktursätze Summen zyklischer Gruppen Zählung von zyklischen Summanden Primärzerlegung Zerlegung von endlichen abelschen p-gruppen Elementarteiler Beispiele Torsionsuntergruppen Freie abelsche Gruppen Endlich erzeugte abelsche Gruppen Beispiele Satz von Cauchy und p-gruppen Die Sätze von Sylow Beispiele Einfache und auflösbare Gruppen Einfache Gruppen Kommutatorgruppen Beispiele Auflösbare Gruppen Auflösbarkeit von p-gruppen Beispiele II Ringe Grundbegriffe Definition eines Rings Einheiten, Körper, Unterringe Ringhomomorphismen Beispiele

3 INHALTSVERZEICHNIS XI 1.5 Polynomringe Grad eines Polynoms Division mit Rest Nullstellen und Werte von Polynomen Einheitswurzeln in C Polynome in mehreren Veränderlichen Endliche Untergruppen der multiplikativen Gruppe eines Körpers Einbettung einer Halbgruppe in eine Gruppe Quotientenkörper Beispiele Ideale und Restklassenringe Definition von Idealen Ideale und Einheiten Restklassenringe Isomorphiesätze Beispiele Hauptidealringe und noethersche Ringe Euklidische Ringe Beispiele Der Hilbertsche Basissatz Operationen mit Idealen Der Chinesische Restesatz Beispiele Primideale und maximale Ideale Beispiele Existenz maximaler Ideale und das Lemma von Zorn Teilbarkeit in Integritätsringen Teiler und assoziierte Elemente Irreduzible Elemente und Primelemente Teilerketten Primzahlen Faktorielle Ringe Gemeinsame Teiler und Vielfache Polynomringe über faktoriellen Ringen Irreduzibilitätskriterien für Polynome Beispiele Ringe holomorpher Funktionen Quadratische Zahlkörper Quadratische Zahlringe Einheiten in quadratischen Zahlringen Euklidische quadratische Zahlringe Faktorzerlegung in quadratischen Zahlringen Ideale als ideale Zahlen

4 XII INHALTSVERZEICHNIS III Körpererweiterungen Grundbegriffe Charakteristik und Primkörper Grad einer Körpererweiterung Adjunktion von Elementen Algebraische und transzendente Elemente Das Minimalpolynom Beispiele Algebraische Körpererweiterungen Algebraisch abgeschlossene Körper Konstruktion von Körpererweiterungen Symbolische Adjunktion von Nullstellen Fortsetzung von Körperisomorphismen Zerfällungskörper eines Polynoms Beispiele Der algebraische Abschluss Einfache und mehrfache Nullstellen Vielfachheit von Nullstellen und formale Ableitung Separabilität Der Frobenius-Homomorphismus Endliche Körper Beispiele Algebraischer Abschluss eines endlichen Körpers Der Satz vom primitiven Element Beispiele Resultanten Diskriminanten Beispiele Galois-Erweiterungen Symmetrische Polynome Relative Automorphismen und Fixkörper Gruppenordnung und Körpergrad Galois-Erweiterungen Der Hauptsatz der Galois-Theorie Beispiele Der Fundamentalsatz der Algebra Diskriminante und Galois-Gruppe Galois-Theorie endlicher Körper Lösung von Polynomgleichungen Quadratische Gleichungen Kubische Gleichungen Beispiele Gleichungen vierten Grades Beispiele Kreisteilung in Charakteristik Null Kreisteilung in Charakteristik p>

5 INHALTSVERZEICHNIS XIII 5.8 Reine Polynome Zyklische Erweiterungen Lösbarkeit von Polynomgleichungen Die allgemeine Polynomgleichung Gleichungen fünften Grades und das Ikosaeder Darstellung von Einheitswurzeln Beispiele Das Umkehrproblem der Galois-Theorie Geometrische Konstruktionen Konstruktionen mit Zirkel und Lineal Der Körper der konstruierbaren Punkte Struktur des Körpers der konstruierbaren Punkte Unlösbarkeit klassischer Konstruktionsaufgaben Konstruktion von regelmäßigen n-ecken Andere Regeln für Konstruktionsverfahren Anhang 1 Platonische Körper 395 Anhang 2 Begriffe und Axiome 401 Literaturverzeichnis 425 Index 431 Symbolverzeichnis 437

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin Michael Artin Algebra Aus dem Englischen übersetzt von Annette A'Campo Birkhäuser Verlag Basel Boston Berlin INHALTSVERZEICHNIS Vorwort Hinweise viii x Kapitel 1 MATRIZEN 1 1. Matrizenkalkül 1 2. Zeilenreduktion

Mehr

Algebra Zusammenfassung

Algebra Zusammenfassung Algebra Zusammenfassung Dr. Urs Hartl WS 02/03 Einleitung: Auflösen von Polynomgleichungen Der Name Algebra ist arabischen Ursprungs und bedeutete Rechnen mit Gleichungen und Lösen derselben. In der Algebra

Mehr

Übungsblatt 12: Abschluss

Übungsblatt 12: Abschluss Übungsblatt 1: Abschluss 1. PRIMITIVE ELEMENTE V 1.1. (a) Sei E K eine endliche Galoiserweiterung. Zeigen Sie (mit Hilfe der Galoiskorrespondenz), dass für α E die beiden Aussagen äquivalent sind: (i)

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

Basiswissen Zahlentheorie

Basiswissen Zahlentheorie Kristina Reiss Gerald Schmieder Basiswissen Zahlentheorie Eine Einführung in Zahlen und Zahlbereiche Zweite Auflage Mit 43 Abbildungen ^y Springer Inhaltsverzeichnis 1 Grundlagen und Voraussetzungen 1.1

Mehr

reflexiv, symmetrisch, asymmetrisch, antisymmetrisch, transitiv, linaer konnex Kommutator, Kommutatorgrupe, Normalreihe, auflösbare Gruppe

reflexiv, symmetrisch, asymmetrisch, antisymmetrisch, transitiv, linaer konnex Kommutator, Kommutatorgrupe, Normalreihe, auflösbare Gruppe 1 Lernliste 1.1 Relationen reflexiv, symmetrisch, asymmetrisch, antisymmetrisch, transitiv, linaer konnex Äquivalenzrelation, Kongruenzrelation Klasseneinteilung Hauptsatz über Äquivalenzrelationen Jede

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 31.03.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Sei p R ein Primideal eines Integritätsbereichs R. Beweisen Sie folgende Aussagen: (1 S := R \ p ist eine multiplikativ

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Galois-Theorie Anfänge

Galois-Theorie Anfänge Galois-Theorie Anfänge Evariste Galois1811-1832 entdeckte als 20-Jähriger, dass mit dem Gleichungsauflösen durch Wurzelterme eine wiederholte Untergruppenbildung einer speziellen Permutationsgruppe der

Mehr

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird.

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. Aufgabe 1 Lösungen zur Algebra-Klausur vom 3.4.9 Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. a) Zeigen Sie, dass es keine transitive Operation von G auf einer

Mehr

Mathematisches Institut SS 2010 Heinrich-Heine-Universität Prof. Dr. Stefan Schröer. Algebra. Blatt 1. ω = u + v,

Mathematisches Institut SS 2010 Heinrich-Heine-Universität Prof. Dr. Stefan Schröer. Algebra. Blatt 1. ω = u + v, Blatt 1 Aufgabe 1. Sei z = re iϕ C eine komplexe Zahl mit r, ϕ R, und n 1. Geben Sie alle ω C mit ω n = z in Polarkoordinaten an. Aufgabe 2. Sei X 3 + px + q C[X] ein kubisches Polynom. Dessen drei Nullstellen

Mehr

5. Galoisgruppen. 5. Galoisgruppen 45

5. Galoisgruppen. 5. Galoisgruppen 45 5. Galoisgruppen 45 5. Galoisgruppen Nach dem Studium von Zerfällungskörpern im letzten Kapitel wollen wir nun wieder zu unseren Problemen aus der Einleitung zurückkehren. Dazu erinnern wir uns zunächst

Mehr

1 Verknüpfungen, Halbgruppen, Gruppen

1 Verknüpfungen, Halbgruppen, Gruppen 1 Verknüpfungen, Halbgruppen, Gruppen 1.1 Def. M (i) assoziatives : M M M (a,b) a b heißt Verknüpfung auf M. (ii) Verknüpfung auf M heißt assoziativ a, b, c M Verknüpfung auf M heißt kommutativ a, b M

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Algebraische Zahlentheorie. Teil II. Die Diskriminante.

Algebraische Zahlentheorie. Teil II. Die Diskriminante. II-1 Algebraische Zahlentheorie Teil II Die Diskriminante Sei K ein Zahlkörper vom Grad n (also [K : Q] = n) Es gibt genau n Körper- Homomorphismen σ i : K C (siehe Merkzettel Separabilität) Stellen wir

Mehr

Einführung in die Algebra - ein paar Hinweise zur Prüfungsvorbereitung

Einführung in die Algebra - ein paar Hinweise zur Prüfungsvorbereitung Einführung in die Algebra - ein paar Hinweise zur Prüfungsvorbereitung Ihre Vorbereitung auf die mündliche Prüfung sollte in mehreren Schritten verlaufen: Definitionen und Sätze Die wichtigen Definitionen

Mehr

Universität Zürich HS , Vorlesung #3

Universität Zürich HS , Vorlesung #3 Algebraic Number Theory P. Habegger Universität Zürich HS 2010 6.10.2010, Vorlesung #3 1.4 Diskriminante Die primitivste Invariante eines Zahlkörpers ist sein Grad. Die Diskriminante eines Zahlkörpers

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

3 Kommutative Ringe. Algebra I c Rudolf Scharlau,

3 Kommutative Ringe. Algebra I c Rudolf Scharlau, Algebra I c Rudolf Scharlau, 2002 2010 119 3 Kommutative Ringe In diesem Kapitel stellen wir die grundlegende Theorie der kommutativen Ringe dar, wobei das Ziel letztlich ein tieferes Verständnis der Polynomringe

Mehr

Probeklausur. Algebra SS Bearbeitungszeit: 120 Minuten

Probeklausur. Algebra SS Bearbeitungszeit: 120 Minuten Prof. Dr. Bernd Siebert Probeklausur Algebra SS 2014 Bearbeitungszeit: 120 Minuten Nachname: Vorname: Matrikelnr: Es dürfen alle Vorlesungsunterlagen inklusive Übungsaufgaben und Lösungen verwendet werden.

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

2.5 p-gruppen und die Sätze von Sylow

2.5 p-gruppen und die Sätze von Sylow Algebra I c Rudolf Scharlau, 2002 2012 87 2.5 p-gruppen und die Sätze von Sylow Bisher haben wir uns in dieser Vorlesung mit letztlich elementaren Grundkonzepten der Algebra beschäftigt. Bei genauer Betrachtung

Mehr

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe Universität Paderborn SS 2007 Warburger Str. 100 33098 Paderborn Seminar Der Ring O K der ganzen Zahlen über einem Zahlenkörper K Armin Hecht, Sabine Naewe 04.Dezember 2007 Inhaltsverzeichnis 7 Der Ring

Mehr

Gruppentheorie Eine Zusammenfassung

Gruppentheorie Eine Zusammenfassung Gruppentheorie Eine Zusammenfassung Stephan Tornier ETH Zürich FS 09 21. Mai 2009 Zusammenfassung In diesem Skript sind grundlegende Definitionen und Aussagen der Gruppentheorie zusammengefasst. basierend

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 17 Kummererweiterungen Ernst Eduard Kummer (1810-1893) Wir haben in der letzten Vorlesung gesehen, dass sich einige Eigenschaften

Mehr

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

Berliner Studienreihe zur Mathematik. herausgegeben von. R. Gorenno und H. Lenz Fachbereich Mathematik Freie Universität Berlin

Berliner Studienreihe zur Mathematik. herausgegeben von. R. Gorenno und H. Lenz Fachbereich Mathematik Freie Universität Berlin Berliner Studienreihe zur Mathematik herausgegeben von R. Gorenno und H. Lenz Fachbereich Mathematik Freie Universität Berlin Heldermann Verlag Berlin V Inhaltsverzeichnis 1 Allgemeine Grundlagen 1.1 Übersicht

Mehr

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit Kapitel 2 Ganze Zahlen In diesem Kapitel setzen wir voraus, dass die Menge Z der ganzen Zahlen, ihre Ordnung und die Eigenschaften der Addition und Multiplikation ganzer Zahlen dem Leser vertraut sind.

Mehr

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe : Berechnen Sie für die folgenden Elemente x in einer Körpererweiterung L K die Norm Nm L K (x) und die Spur T r

Mehr

Konstruktion und Struktur endlicher Körper

Konstruktion und Struktur endlicher Körper Université du Luxembourg Faculté des Sciences, de la Technologie et de la Communication Bachelorarbeit Konstruktion und Struktur endlicher Körper Hoeltgen Laurent Luxemburg den 28. Mai 2008 Betreuer: Prof.

Mehr

VL Algebra I. Lösungvorschläge zu den ausgewählten Aufgaben der. Prof. U. Kühn SS von. Anna Posingies 1, Markus Hihn 2. 4.

VL Algebra I. Lösungvorschläge zu den ausgewählten Aufgaben der. Prof. U. Kühn SS von. Anna Posingies 1, Markus Hihn 2. 4. Lösungvorschläge zu den ausgewählten Aufgaben der VL Algebra I Prof. U. Kühn SS 2005 von Anna Posingies 1, Markus Hihn 2 4. Juli 2005 1 email: Anna(dot)Posingies(at)gmx(dot)de 2 email: mhihn(at)mathematik(dot)hu-berlin(dot)de

Mehr

Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium

Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium Technische Universität Dortmund Sommersemester 2012 Fakultät für Mathematik 23.07.2012 Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen:

Mehr

1. Körper und Körpererweiterungen

1. Körper und Körpererweiterungen . Körper und Körpererweiterungen 7. Körper und Körpererweiterungen Wir beginnen nun mit dem eigentlichen Studium von Gruppen, Ringen und Körpern. Die in der Einleitung vorgestellten Probleme haben dabei

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Ausgewählte Themen der Algebra für LA

Ausgewählte Themen der Algebra für LA Ausgewählte Themen der Algebra für LA LVA 405.730 C. Fuchs Inhaltsübersicht 30.06.2016 Inhaltsübersicht Diese Lehrveranstaltung dient zur Stärkung der Ausbildung im Bereich Algebra im Lehramtsstudium UF

Mehr

Klassische Algebra. Udo Hebisch SS 2002

Klassische Algebra. Udo Hebisch SS 2002 Klassische Algebra Udo Hebisch SS 2002 Dieses Skript enthält nur den roten Faden des zweiten Teils der Vorlesung. Zur selben Vorlesung gehört noch ein Teil zur Gruppentheorie. Wesentliche Inhalte werden

Mehr

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1 Lineare Algebra II Inhalt und Begriffe Lineare Algebra II p. 1 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen Algebra... Lineare Algebra II p. 2 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen

Mehr

Die Klassischen Probleme der Algebra. JProf.-Dr. Christoph Wockel 10. April 2012

Die Klassischen Probleme der Algebra. JProf.-Dr. Christoph Wockel 10. April 2012 Die Klassischen Probleme der Algebra JProf.-Dr. Christoph Wockel 10. April 2012 1 Die Algebra wurde in ihrer Entstehung von der Suche nach einer Lösung der folgenden Probleme maßgeblich beeinflusst: Konstruierbarkeit

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 2 Beispiele für Gruppen Aus der Vorlesung Mathematik I sind schon viele kommutative Gruppen bekannt. Zunächst gibt es die additiven

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Geschichte der Mathematik. SS 2016, K. Baur

Geschichte der Mathematik. SS 2016, K. Baur Geschichte der Mathematik SS 2016, K. Baur I. Elemente der Algebra im antiken Babylon II. Geometrische Algebra im antiken Griechenland III. Symbole und Variablen IV. Algebra im Mittelalter in Arabien und

Mehr

Algebra (Master), Vorlesungsskript

Algebra (Master), Vorlesungsskript Algebra (Master), Vorlesungsskript Irene I. Bouw Wintersemester 2013/2014 Inhaltsverzeichnis 1 Körpererweiterungen 3 1.1 Algebraische Körpererweiterungen................. 3 1.2 Faktorisieren von Polynomen....................

Mehr

3.4 Erweiterungen von Ringen und Körpern

3.4 Erweiterungen von Ringen und Körpern Algebra I c Rudolf Scharlau, 2002 2010 145 3.4 Erweiterungen von Ringen und Körpern In diesem Abschnitt werden Erweiterungen von Ringen (etwas vereinfacht gesagt: Oberringe), insbesondere Erweiterungen

Mehr

1 2. Körpererweiterungen

1 2. Körpererweiterungen 1 2. Körpererweiterungen 1 2. 1. Definition: Sind K, L Körper und i: K L ein Ringhomomorphismus, so ist i injektiv, wir fassen K vermöge i als Unterkörper von L auf, schreiben dafür L K und nennen L eine

Mehr

Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 02.03.05

Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 02.03.05 Prof. Dr. Duco van Straten Oliver Weilandt Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 0.03.05 Bitte tragen Sie hier gut lesbar Ihren Namen und Ihre Matrikelnummer ein. Name, Vorname Matrikelnummer

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Einführung in die Algebra

Einführung in die Algebra Einführung in die Algebra Vorlesung im Sommersemester 2000 Technische Universität Berlin gehalten von Prof. Dr. M. Pohst Inhaltsverzeichnis 0 Vorbemerkungen 2 1 Ringe 3 1.1 Definition Ring....................................

Mehr

Algebraische Strukturen

Algebraische Strukturen Peter Hellekalek Algebraische Strukturen Skriptum 28. Jänner 2014 Inhaltsverzeichnis 1 Gruppen.................................................. 5 1.1 Definitionen...........................................

Mehr

DIE KUBISCHE RESOLVENTE

DIE KUBISCHE RESOLVENTE DIE KUBISCHE RESOLVENTE ANNA FLÖTOTTO Bachelorarbeit vorgelegt von Anna Flötotto Fakultät für Mathematik Universität Bielefeld Oktober 2007 Inhaltsverzeichnis 1. Einleitung 1 2. Voraussetzungen 3 3. Die

Mehr

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche 1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

mathematik und informatik

mathematik und informatik Dr. Silke Hartlieb, Prof. Dr. Luise Unger Kurs 01320 Algebra und ihre Anwendungen LESEPROBE mathematik und informatik Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere

Mehr

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Definition: Ring. Definition: kommutativer Ring. Definition: Unterring. Unterringkriterium. Definition: Ringhomomorphismus

Definition: Ring. Definition: kommutativer Ring. Definition: Unterring. Unterringkriterium. Definition: Ringhomomorphismus http://matheplanet.com, Stefan K 1 1 2 Ring kommutativer Ring 3 4 Unterring Unterringkriterium 5 6 Ringhomomorphismus Kern/Bild eines Ringhomomorphismus 7 8 Charakterisierung injektiver Ringhomomorphismus

Mehr

Lehr- und Übungsbuch Mathematik für Informatiker

Lehr- und Übungsbuch Mathematik für Informatiker Lehr- und Übungsbuch Mathematik für Informatiker Lineare Algebra und Anwendungen Bearbeitet von Wolfgang Preuß, Günter Wenisch 1. Auflage 1996. Buch. 328 S. Hardcover ISBN 978 3 446 18702 3 Format (B x

Mehr

2. Der Grad von Körpererweiterungen

2. Der Grad von Körpererweiterungen 2. Der Grad von Körpererweiterungen 15 2. Der Grad von Körpererweiterungen Wenn wir untersuchen wollen, ob eine gegebene Konstruktion in der Ebene mit Zirkel und Lineal durchführbar ist, haben wir im vorigen

Mehr

4.2 Endliche und algebraische Körpererweiterungen

4.2 Endliche und algebraische Körpererweiterungen Algebra und Zahlentheorie c Rudolf Scharlau, 2002 2014 321 4.2 Endliche und algebraische Körpererweiterungen Die beiden ersten Definitionen und Bemerkungen dieses Abschnittes stehen im unmittelbaren Zusammenhang

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 26 Konstruierbare Einheitswurzeln Definition 26.1. Sei n N +. Man sagt, dass das regelmäßige n-eck mit Zirkel und Lineal konstruierbar

Mehr

Die Unlösbarkeit der Gleichung fünften Grades durch Radikale. Teilnehmer: Gruppenleiter:

Die Unlösbarkeit der Gleichung fünften Grades durch Radikale. Teilnehmer: Gruppenleiter: Die Unlösbarkeit der Gleichung fünften Grades durch adikale Teilnehmer: Max Bender Marcus Gawlik Anton Milge Leonard Poetzsch Gabor adtke Miao Zhang Gruppenleiter: Jürg Kramer Andreas-Oberschule Georg-Forster-Oberschule

Mehr

Integritätsbereiche und Teilbarkeit

Integritätsbereiche und Teilbarkeit Kapitel 5 Integritätsbereiche und Teilbarkeit 5.1 Einfache Teilbarkeitsregeln 5.1.1 Definition. Sei (I,+, 0,,, 1) ein Integritätsbereich. Sind a, b I, dann heißt a durch b teilbar und b ein Teiler von

Mehr

Seminar zur Darstellungstheorie endlicher Gruppen

Seminar zur Darstellungstheorie endlicher Gruppen Seminar zur Darstellungstheorie endlicher Gruppen Prof. Dr. Gebhard Böckle und Yujia Qiu Sommersemester 15, dienstags 16:15 17:45, Raum 248/INF 368. Beginn: 21.04.2015 Motivation und Ziele des Seminars

Mehr

Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal

Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal 1 Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: stephan@wias-berlin.de

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Nullstellen von Polynomen und Erweiterungskörper Vortrag im Modul Kommunikation über Mathematik

Nullstellen von Polynomen und Erweiterungskörper Vortrag im Modul Kommunikation über Mathematik Nullstellen von Polynomen und Erweiterungskörper Vortrag im Modul Kommunikation über Mathematik Alexander Steen, a.steen@fu-berlin.de 1 Polynome und ihre Nullstellen Als erstes betrachten wir Nullstellen

Mehr

Inhaltsverzeichnis Vorlesung Zahlentheorie

Inhaltsverzeichnis Vorlesung Zahlentheorie J. Wolfart SoSe 2007 Inhaltsverzeichnis Vorlesung Zahlentheorie 1. Elementare Zahlentheorie, sehr summarisch Teilbarkeit, euklidischer Algorithmus, eindeutige Primfaktorzerlegung, einige einfache Konsequenzen:

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Die inverse Diskrete Fourier Transformation

Die inverse Diskrete Fourier Transformation Die inverse Diskrete Fourier Transformation Konvertierung von der Point-value Form in Koeffizientenform. Dazu stellen wir die DFT als Matrix-Vektor Produkt dar 1 1 1... 1 1 ω n ωn 2... ωn n 1 a 0 y 0 1

Mehr

1 Ringe 1. 2 Der Ring Z[i] = Z Zi 8. 3 Noethersche Ringe Ganze Zahlen Dedekindringe Projektive und Injektive Moduln 37

1 Ringe 1. 2 Der Ring Z[i] = Z Zi 8. 3 Noethersche Ringe Ganze Zahlen Dedekindringe Projektive und Injektive Moduln 37 Inhaltsverzeichnis 1 Ringe 1 2 Der Ring Z[i] = Z Zi 8 3 Noethersche Ringe 10 4 Ganze Zahlen 12 5 Dedekindringe 17 6 Längenendliche Moduln 23 7 Idealklassen und exakte Sequenzen 29 8 Projektive und Injektive

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar. Algebra I Prof. Dr. M. Rost Übungen Blatt 12 (WS 2015/16) 1 Abgabetermin: Donnerstag, 28. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

Probeklausur zur Algebra I

Probeklausur zur Algebra I Probeklausur zur Algebra I Prof. Dr. S. Bosch/C. Löh Februar 2008 Name: Matrikelnummer: ZIV-Kennung: Vorname: Studiengang: Übungsleiter: Diese Klausur besteht aus 8 Seiten (die ersten beiden Seiten sind

Mehr

Division mit Rest - der heimliche Hauptsatz der Algebra

Division mit Rest - der heimliche Hauptsatz der Algebra Division mit Rest - der heimliche Hauptsatz der Algebra Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 3. Juni 2004 Einleitung

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie Max Koecher Lineare Algebra und analytische Geometrie Mit 35 Abbildungen Springer-Verlag Berlin Heidelberg New York Tokyo 1983 Inhaltsverzeichnis Teil A. Lineare Algebra I Kapitel 1. Vektorräume 1 1. Der

Mehr

Prof. M. Eisermann Algebra SoSe 2010

Prof. M. Eisermann Algebra SoSe 2010 Übungsblatt 4: Teilbarkeitslehre Lassen Sie sich nicht durch die Menge der Aufgaben einschüchtern. Es gibt nur wenig schriftliche Aufgaben und wir halten die Menge der Votieraufgaben überschaubar. Alle

Mehr

1.4 Homomorphismen und Isomorphismen

1.4 Homomorphismen und Isomorphismen Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 28 1.4 Homomorphismen und Isomorphismen Definition 1.4.1 Es seien (G, ) und (H, ) zwei Gruppen. Eine Abbildung ϕ : G H heißt (Gruppen-)Homomorphismus,

Mehr

Inhaltsverzeichnis. Grundlagen

Inhaltsverzeichnis. Grundlagen Grundlagen 1 Logik und Mengen... 1 1.1 Elementare Logik... 1 1.2 Elementare Mengenlehre... 10 1.3 Schaltalgebra... 15 1.3.1 Anwendung: Entwurf von Schaltkreisen... 21 1.4 Mit dem digitalen Rechenmeister...

Mehr

Angewandte Diskrete Mathematik

Angewandte Diskrete Mathematik Vorabskript zur Vorlesung Angewandte Diskrete Mathematik Wintersemester 2010/ 11 Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Universität

Mehr

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind

Mehr

Höhere Mathematik für Ingenieure Band II

Höhere Mathematik für Ingenieure Band II Teubner-Ingenieurmathematik Höhere Mathematik für Ingenieure Band II Lineare Algebra Bearbeitet von Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister 1. Auflage 2012. Taschenbuch. xvii, 417 S.

Mehr

Grundlagen der algebraischen Zahlentheorie

Grundlagen der algebraischen Zahlentheorie Grundlagen der algebraischen Zahlentheorie Philipp Habegger 30. Mai 2012 Inhaltsverzeichnis -1 Vorwort 5 0 Einführung 7 1 Ring der ganzen algebraischen Zahlen 11 1.1 Zahlkörper...................................

Mehr

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen.

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen. 1 5. Enliche Körper Z iel: Klassifikation enlicher Körper un ihrer Beziehungen. 1 5. 1. Situation: K sei eine enliche Erweiterung es Körpers F p = Z/ p, p P, [ K: F p ] = n #( K = p n = : q K ist zyklisch

Mehr

Sylow Sätze und Anwendungen

Sylow Sätze und Anwendungen KAPITEL 11 Sylow Sätze und Anwendungen 11A. Einführung und Überblick In diesem Kapitel widmen wir uns ausschließlich endlichen Gruppen. Der Satz von Lagrange besagt, das für jede Untergruppe H < G die

Mehr

4. Übung zur Linearen Algebra I -

4. Übung zur Linearen Algebra I - 4. Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. WS 2009-10. Aufgabe 13 Auf dem Cartesischen Produkt Z Z werden 2 Verknüpfungen, definiert durch: Man zeige: (a

Mehr

2.1 Eigenschaften und Beispiele von Gruppen Untergruppen Homomorphismen... 25

2.1 Eigenschaften und Beispiele von Gruppen Untergruppen Homomorphismen... 25 2 Gruppen Übersicht 2.1 Eigenschaften und Beispiele von Gruppen............................. 17 2.2 Untergruppen...................................................... 21 2.3 Homomorphismen..................................................

Mehr

Die bekannten Zahlenmengen besitzen Struktur-Eigenschaften, die wir in abstrakter Form ausdrücken können.

Die bekannten Zahlenmengen besitzen Struktur-Eigenschaften, die wir in abstrakter Form ausdrücken können. Algebraische Strukturen: Gruppen, Ringe, Körper Definition: Verknüpfung 4. Algebraische Strukturen: Gruppen, Ringe, Körper Die bekannten Zahlenmengen besitzen Struktur-Eigenschaften, die wir in abstrakter

Mehr

Zur Berechnung ganzer Punkte auf Mordellkurven über globalen Körpern

Zur Berechnung ganzer Punkte auf Mordellkurven über globalen Körpern Zur Berechnung ganzer Punkte auf Mordellkurven über globalen Körpern Michael E. Pohst Institut für Mathematik Technische Universität Berlin 4. Februar, 2015 Mordells Gleichung ist y 2 = x 3 + κ mit einer

Mehr

Inhaltsverzeichnis. Kapitel 1. Teilbarkeit... 1

Inhaltsverzeichnis. Kapitel 1. Teilbarkeit... 1 Inhaltsverzeichnis Kapitel 1. Teilbarkeit... 1 1. Fundamentalsatz der Arithmetik... 2 1. Natürliche und ganze Zahlen 2. Teiler 3. Primzahlen 4. Satz von Euklid 5. Der Fundamentalsatz der Arithmetik 6.

Mehr

Vorlesung Algebra I 1

Vorlesung Algebra I 1 Vorlesung Algebra I 1 Kapitel I - Ringkonstruktionen In diesem Kapitel betrachten wir kommutative Ringe und Ringhomomorphismen, und zeigen wie man aus gegebenen Ringen neue Ringe konstruieren kann. Jedes

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Peter Bundschuh Einführung in die Zahlentheorie Sechste, überarbeitete und aktualisierte Auflage 4y Springer Inhalt s Verzeichnis Kapitel 1. Teilbarkeit 1 1. Fundamentalsatz der Arithmetik 2 1. Natürliche

Mehr

Integritätsbereiche und Teilbarkeit

Integritätsbereiche und Teilbarkeit Kapitel 5 Integritätsbereiche und Teilbarkeit 5.1 Einfache Teilbarkeitsregeln 5.1.1 Definition. Sei (I,+, 0,,, 1) ein Integritätsbereich. Sind a, b I, dann heißt a durch b teilbar und b ein Teiler von

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr