Herbrand-Universum. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Herbrand-Universum. Herbrand-Universum

Größe: px
Ab Seite anzeigen:

Download "Herbrand-Universum. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Herbrand-Universum. Herbrand-Universum"

Transkript

1 Herbrand-Universum Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Motivation: Um die Erfüllbarkeit/Unerfüllbarkeit einer prädikatenlogischen Formel zu testen, müsste man ungeheuer viele Strukturen durchprobieren. Wir zeigen im folgenden, dass es reicht nur ganz bestimmte Strukturen, sogenannte Herbrand-Strukturen benannt nach dem Logiker Jacques Herbrand zu testen. Diese können immer noch ein unendlich großes Universum haben und unendlich viele sein, sind aber dennoch wesentlich überschaubarer. Darauf aufbauend kann dann ein automatisches Verfahren entwickelt werden, dass mit Hilfe von Resolution die Unerfüllbarkeit einer prädikatenlogischen Formel überprüft. Herbrand-Universum Barbara König Logik 1 Herbrand-Universum Barbara König Logik 175 Definition (Herbrand-Universum) Das Herbrand-Universum D(F ) einer geschlossenen Formel F in Skolemform ist die Menge aller variablenfreie Terme, die aus den Bestandteilen von F gebildet werden können. Falls in F keine Konstante vorkommt, wählen wir zunächst eine beliebige Konstante, zum Beispiel a, und bilden dann die variablenfreien Terme. D(F ) wird wie folgt induktiv definiert: 1 Alle in F vorkommenden Konstanten sind in D(F ). Falls F keine Konstante enthält, so ist a in D(F ). 2 Für jedes in F vorkommende n-stellige Funktionssymbol f und Terme t 1,..., t n in D(F ) ist der Term f (t 1,..., t n ) in D(F ). Beispiel: Bestimmen Sie die Herbrand-Universen zu folgenden Formeln F 1 = x P(f (x), g(a)) F 2 = x y Q(h(x, y)) F 3 = x P(x) Barbara König Logik 176 Barbara König Logik 177

2 Herbrand-Strukturen Herbrand-Strukturen Definition (Herbrand-Struktur) Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A = (U A, I A ) eine Herbrand-Struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes in F vorkommende n-stellige Funktionssymbol f und t 1, t 2,..., t n D(F ) ist f A (t 1, t 2,..., t n ) = f (t 1, t 2,..., t n ). Idee: Jeder variablenfreie Term t wird durch sich selbst interpretiert, d.h., A(t) = t. (Vermischung von Syntax und Semantik.) Für eine Herbrand-Struktur A vereinfacht sich das Überführungslemma: Lemma (Überführungslemma für Herbrand-Strukturen) Sei A eine Herbrand-Struktur. Dann gilt für jede Formel F, jede Variable x und jeden variablenfreien Term t: A(F [x/t]) = A [x/t] (F ). Barbara König Logik 178 Der fundamentale Satz der Barbara König Logik 179 Der fundamentale Satz der Beispiel zum vorherigen Satz: Gegeben sei die Formel Satz Sei F eine Aussage in Skolemform. F ist genau dann erfüllbar, wenn F ein Herbrand-Modell besitzt. Aufgaben: F = x P(x, f (x)) Bestimmen Sie ein beliebiges Modell A von F. Anschließend definieren Sie ein Herbrand-Modell B von F, dessen Relation P B analog zu P A definiert ist. (So wie im Beweis zum vorherigen Satz beschrieben.) Barbara König Logik 180 Barbara König Logik 181

3 Herbrand-Expansion Herbrand-Expansion Definition (Herbrand-Expansion) Sei F = y 1 y 2... y n F eine Aussage in Skolemform. Dann ist E(F ) die Herbrand-Expansion von F, definiert als E(F ) = {F [y 1 /t 1 ][y 2 /t 2 ]... [y n /t n ] t 1, t 2,..., t n D(F )} Die Formeln in E(F ) entstehen also, indem die Terme in D(F ) in jeder möglichen Weise für die Variablen in F substituiert werden. Bemerkung: Da das Herbrand-Universum D(F ) abzählbar ist, ist auch die Menge E(F ) abzählbar. Wiederholung: Abzählbarkeit Definition (Abzählbarkeit) Eine Menge M heißt abzählbar, wenn es eine surjektive Abbildung f : N 0 M gibt. Das heißt es gibt eine (nicht notwendigerweise konstruktive) Aufzählung f (0), f (1), f (2),... aller Elemente von M, in der jedes Element von M mindestens einmal vorkommt. Bemerkungen: Beispiele für abzählbare Mengen sind N 0, Q (die Menge der rationalen Zahlen bzw. Brüche) und die Menge aller Terme, die aus einer endlichen Menge von Funktionssymbolen gebildet werden. (Daher: ein Herbrand-Universum D(F ) ist immer abzählbar.) Die Menge R der reellen Zahlen ist nicht abzählbar. Barbara König Logik 182 Barbara König Logik 183 Herbrand-Expansion Herbrand-Expansion Beispiel: Bestimme die Herbrand-Expansion der Formel x y zp(x, f (y), g(z, x)). Idee: Behandle die Formeln in der Herbrand-Expansion wie aussagenlogische Formeln. D.h., betrachte jedes auftauchende Prädikat P(t 1,..., t n ) wie eine atomare Formel A. Beispiel: Sei beispielsweise E(F ) = {F 1, F 2,... }. F 1 = (P(f (a), f (b)) Q(g(a, b)) P(a, b) ) P(f (a), f (b)). }{{}}{{}}{{}}{{} A B C A Dies entspricht (A B C) A. Eine Formel in der Herbrand-Expansion ist erfüllbar, genau dann, wenn sie im aussagenlogischen Sinne erfüllbar ist. Barbara König Logik 184 Barbara König Logik 185

4 Satz von Gödel-Herbrand-Skolem Satz von Gödel-Herbrand-Skolem Satz (Gödel-Herbrand-Skolem) Für jede Aussage F in Skolemform gilt: F ist erfüllbar genau dann, wenn die Formelmenge E(F ) (im aussagenlogischen Sinn) erfüllbar ist. Beweis: Es genügt zu zeigen, dass F ein Herbrand-Modell besitzt genau dann, wenn E(F ) erfüllbar ist. Die Formel F habe die Form y 1 y 2... y n F. Es gilt: A ist ein Herbrand-Modell für F gdw. für alle t 1, t 2,..., t n D(F ) gilt: A [y1 /t 1 ][y 2 /t 2 ]...[y n /t n ](F ) = 1 gdw. für alle t 1, t 2,..., t n D(F ) gilt: A(F [y 1 /t 1 ][y 2 /t 2 ]... [y n /t n ]) = 1 gdw. für alle G E(F ) gilt A(G) = 1 gdw. A ist ein Modell für E(F ) Satz von Herbrand Barbara König Logik 186 Barbara König Logik 187 Algorithmus von Gilmore Satz (Herbrand) Eine Aussage F in Skolemform ist unerfüllbar genau dann, wenn es eine endliche Teilmenge von E(F ) gibt, die (im aussagenlogischen Sinn) unerfüllbar ist. Beweis: Ummittelbare Folge des Satzes von Gödel-Herbrand-Skolem und des Endlichkeitssatzes. Endlichkeitssatz Sei F eine prädikatenlogische Aussage in Skolemform und sei {F 1, F 2, F 3,... } eine Aufzählung von E(F ). Algorithmus von Gilmore Eingabe: F n := 0; repeat n := n + 1; until (F 1 F 2... F n ) ist unerfüllbar; Gib unerfüllbar aus und stoppe. Barbara König Logik 188 Barbara König Logik 189

5 Algorithmus von Gilmore Algorithmus von Gilmore Bemerkungen zum Algorithmus von Gilmore: Man wählt eine beliebige unendliche Aufzählung F 1, F 2, F 3,... aller Formeln in E(F ). Dabei muss nur darauf geachtet werden, dass jede Formel irgendwann in dieser Aufzählung vorkommt. Das ist möglich, da E(F ) abzählbar ist. Es dürfen Formeln mehrfach vorkommen. Das ist insbesondere immer dann so, wenn E(F ) endlich ist. Wenn alle Formeln in einer endlichen Menge E(F ) abgearbeitet sind, dann kann der Algorithmus auch stoppen und erfüllbar ausgeben. Beispiel: Zeigen Sie mit Hilfe des Algorithmus von Gilmore, dass folgende Formeln F = x y ( P(f (f (x))) P(f (y))) G = x (P(f (x)) P(x)) unerfüllbar sind. Barbara König Logik 190 Algorithmus von Gilmore Aus dem Satz von Herbrand folgt: Falls die Formel F unerfüllbar ist, so stoppt der Algorithmus von Gilmore nach endlicher Zeit und gibt unerfüllbar aus. Falls der Algorithmus von Gilmore unerfüllbar ausgibt, so ist F tatsächlich unerfüllbar. Wenn F jedoch erfüllbar ist, so gibt es keine Garantie dafür, dass der Algorithmus jemals terminiert. Es kann auch gezeigt werden, dass es tatsächlich keinen Algorithmus gibt, der das Unerfüllbarkeitsproblem der löst und immer mit der korrekten Antwort (unerfüllbar bzw. erfüllbar) terminiert. Barbara König Logik 192 Barbara König Logik 191 Algorithmus von Gilmore Semi-Entscheidbarkeit (informell) Sei M X eine Menge (auch Sprache oder Problem genannt). Die Menge M heißt semi-entscheidbar, wenn es einen Algorithmus A gibt, der ein Element x X als Eingabe nimmt und genau dann, wenn x M gilt, terminiert und x ist in M enthalten zurückgibt. Der Algorithmus A muss jedoch nicht terminieren, wenn x M gilt. Falls A auch in diesem Fall terminiert und x ist nicht in M enthalten zurückgibt, so heißt M entscheidbar. Bemerkung: die Begriffe Entscheidbarkeit und Semi-Entscheidbarkeit werden detailliert in der Vorlesung Berechenbarkeit und Komplexität besprochen. Barbara König Logik 193

6 Semi-Entscheidbarkeitssätze Semi-Entscheidbarkeitssätze Satz (Semi-Entscheidbarkeit) Folgende Probleme sind semi-entscheidbar, jedoch nicht entscheidbar: (a) Das Unerfüllbarkeitsproblem für prädikatenlogische Formeln. (b) Das Gültigkeitsproblem für prädikatenlogische Formeln. (c) Das Folgerungsproblem für prädikatenlogische Formeln. (d) Das Äquivalenzproblem für prädikatenlogische Formeln. Beweis: (a) Das Problem ist nicht entscheidbar (ohne Beweis). Der Algorithmus von Gilmore kann es jedoch semi-entscheiden. (b) F gültig gdw. F unerfüllbar. (c) F = G gdw. F G gültig. (d) F G gdw. F G gültig. Barbara König Logik 194 Resolution in der Barbara König Logik 195 Wiederholung: Resolution in der Resolutionsschritt: Der Algorithmus von Gilmore funktioniert zwar, ist in der Praxis aber unbrauchbar, weil er zuviele Formeln erzeugt und nicht zielgerichtet arbeitet. Daher ist unser Programm der nächsten Stunden: Wie sieht Resolution in der aus? Barbara König Logik 196 {L 1,..., L n, A} {L 1,..., L m, A} {L 1,..., L n, L 1,..., L m} Mini-Beispiel: { A, B} {A} {B} { B} Eine Klauselmenge ist unerfüllbar genau dann, wenn die leere Klausel abgeleitet werden kann. Barbara König Logik 197

7 Anpassung des Algorithmus von Gilmore Algorithmus von Gilmore: Sei F eine prädikatenlogische Aussage in Skolemform und sei {F 1, F 2, F 3,..., } eine Aufzählung von E(F ). Eingabe: F n := 0; repeat n := n + 1; until (F 1 F 2... F n ) ist unerfüllbar; (dies kann mit Mitteln der, beispielsweise Wahrheitstafeln, getestet werden) Gib unerfüllbar aus und stoppe. Mittel der wir verwenden Resolution für den Unerfüllbarkeitstest Barbara König Logik 198 Grundresolutionsalgorithmus Sei F 1, F 2,... weiterhin die Aufzählung der Herbrand-Expansion. Grundresolutionsalgorithmus Eingabe: eine Aussage F in Skolemform i := 0; M := ; repeat i := i + 1; M := M F i ; M := Res (M) until M Gib unerfüllbar aus und stoppe. Warum der Name Grundresolution? Im Gegensatz zu späteren Verfahren werden Terme ohne Variable (= Grundterme) substituiert, um die Formeln der Herbrand-Expansion zu erhalten. Barbara König Logik 200 Definition von Res(M) (Wiederholung) Definition Sei M eine Klauselmenge. Dann ist Res(M) definiert als Res(M) = M {R R ist Resolvent zweier Klauseln in M}. Außerdem setzen wir: und schließlich sei Res 0 (M) = M Grundresolutionssatz Res n+1 (M) = Res(Res n (M)) für n 0 Res (M) = n 0 Res n (M). Barbara König Logik 199 Aus dem Grundresolutionsalgorithmus ergibt sich folgender Satz: Grundresolutionssatz Eine Aussage in Skolemform F = y 1... y k F mit der Matrix F in KNF ist unerfüllbar genau dann, wenn es eine Folge von Klauseln K 1,..., K n gibt mit der Eigenschaft: K n ist die leere Klausel Für i = 1,..., n gilt: entweder ist K i eine Grundinstanz einer Klausel K F, d.h. K i = K[y 1 /t 1 ]... [y k /t k ] mit t i D(F ) oder K i ist (aussagenlogischer) Resolvent zweier Klauseln K a, K b mit a < i und b < i Weglassen von Klauseln und Resolutionsschritten, die nicht zur Herleitung der leeren Klausel beitragen. Barbara König Logik 201

8 Grundresolutionsalgorithmus Grundresolutionssatz Beispiel: Zeigen Sie mit Hilfe von Grundresolution, dass folgende Formel in Klauselform unerfüllbar ist. {{P(f (x)), Q(x)}, { P(f (g(y)))}, { Q(g(a))}} Bei der Grundresolution kann man unnötigerweise in Sackgassen laufen. Beispiel: {P(f (x)), Q(x)} { P(f (g(y)))} { Q(g(a))} [y/f (a)] [x/g(f (a))] {Q(g(f (a)))}? Besser wäre gewesen, die Variable x durch g(a) anstatt durch g(f (a)) zu ersetzen. Aber woher kann man das vorher wissen? Grundresolutionssatz Barbara König Logik 202 Idee: Variablen nur noch so weit wie nötig durch Terme ersetzen. Statt Grundtermen Terme mit Variablen verwenden. {P(f (x)), Q(x)} { P(f (g(y)))} { Q(g(a))} [] [x/g(y)] {Q(g(y))} [] [y/a] Barbara König Logik 203 Wiederholung: Substitutionen Eine Substitution sub ist eine Abbildung von Variablen auf Terme. F sub: Anwendung der Substitution sub auf die Formel F t sub: Anwendung der Substitution sub auf den Term t Eine Substitution kann auch als Folge von Ersetzungen beschrieben werden: [x/f (z)] [y/g(a, z)] [z/h(w)] entspricht folgender entflochtener Substitution: [x/f (h(w)), y/g(a, h(w)), z/h(w)]. Ersetzungen werden von links nach rechts durchgeführt! Verknüpfung von Substitutionen: sub 1 sub 2 (zuerst wird sub 1 angewandt, anschließend sub 2 ). Barbara König Logik 204 Barbara König Logik 205

9 Vertauschen von Substitutionen Unifikator/Allgemeinster Unifikator Vertauschen von Substitutionen Regel für das Vertauschen von Substitutionen: [x/t]sub = sub[x/t sub], falls x in sub nicht vorkommt, d.h. weder ersetzt noch eingesetzt wird. Beispiele: [x/f (y)] [y/g(z)] = [y/g(z)][x/f (g(z))] }{{} sub aber: [x/f (y)] [x/g(z)] [x/g(z)][x/f (y)] }{{} sub Barbara König Logik 206 Unifikator/Allgemeinster Unifikator Definition (Unifikation) Gegeben sei eine Menge L = {L 1,..., L k } von Literalen. Eine Substitution sub heißt Unifikator von L, falls L 1 sub = L 2 sub = = L k sub Das ist gleichbedeutend mit Lsub = 1, wobei Lsub = {L 1 sub,..., L k sub}. Ein Unifikator sub von L heißt allgemeinster Unifikator von L, falls für jeden Unifikator sub von L gilt, dass es eine Substitution s gibt mit sub = sub s. Barbara König Logik 207 Unifikator/Allgemeinster Unifikator Beispiele: Bestimmen Sie die allgemeinsten Unifikatoren folgender Mengen (falls sie existieren): {P(x), P(f (y))} {P(x), Q(y)} {Q(x, f (x)), Q(y, g(y))} {P(x), P(f (x))} {Q(x, f (y)), Q(g(z), f (x))} {Q(x, f (y)), Q(g(y), f (x))} {Q(x, f (y)), Q(f (y), z), Q(z, f (x))} Bemerkungen: Eine Menge von Literalen kann mehrere allgemeinste Unifikatoren haben. Beispielsweise sind sowohl [y/f (x)] als auch [x/z][y/f (z)] allgemeinste Unifikatoren von {P(f (x)), P(y)}. Alle allgemeinsten Unifikatoren kann man jedoch durch einfache Variablenumbenennung ineinander umformen. Eine Menge L von (mehr als zwei) Literalen kann unter Umständen nicht unifizierbar sein, auch wenn alle Paare von Literalen unifizierbar sind. Beispiel: {Q(x, f (y)), Q(f (y), z), Q(z, f (x))} Barbara König Logik 208 Barbara König Logik 209

10 Unifikationsalgorithmus Unifikationsalgorithmus Unifikationsalgorithmus Eingabe: eine Literalmenge L sub := []; (leere Substitution) while Lsub > 1 do Suche die erste Position, an der sich zwei Literale L 1, L 2 aus Lsub unterscheiden if keines der beiden Zeichen ist eine Variable then stoppe mit nicht unifizierbar else Sei x die Variable und t der Term im anderen Literal (möglicherweise auch eine Variable) if x kommt in t vor then stoppe mit nicht unifizierbar else sub := sub [x/t] Ausgabe: sub Barbara König Logik 210 Korrektheit des Unifikationsalgorithmus Beispiel: Wende den Unifikationsalgorithmus auf folgende Literalmenge an L = { P(f (z, g(a, y)), h(z)), P(f (f (u, v), w), h(f (a, b)))} Bemerkung: hier sind a, b Konstanten und y, z, u, v, w Variablen Barbara König Logik 211 Prädikatenlogische Resolution Satz (Korrektheit des Unifikationsalgorithmus) Der Unifikationsalgorithmus terminiert immer und gibt bei Eingabe einer nicht-unifizierbaren Literalmenge nicht unifizierbar aus. Wenn eine Menge L von Literalen unifizierbar ist, dann findet der Unifikationsalgorithmus immer den allgemeinsten Unifikator von L. Das bedeutet unter anderem auch, dass jede unifizierbare Menge von Literalen einen allgemeinsten Unifikator hat (Unifikationssatz von Robinson). Definition (Prädikatenlogischer Resolvent) Eine Klausel R heißt prädikatenlogischer Resolvent zweier Klauseln K 1, K 2, wenn folgendes gilt: Es gibt Substitutionen s 1, s 2, die Variablenumbenennungen sind, so dass K 1 s 1 und K 2 s 2 keine gemeinsamen Variablen enthalten. Es gibt Literale L 1,..., L m aus K 1 s 1 und Literale L 1,..., L n aus K 2 s 2, so dass L = {L 1,..., L n, L 1,..., L n} unifizierbar ist. Sei sub der allgemeinste Unifikator von L. (L bezeichnet das negierte Literal L.) Es gilt R = ((K 1 s 1 {L 1,..., L m }) (K 2 s 2 {L 1,..., L n}))sub. Barbara König Logik 212 Barbara König Logik 213

11 Prädikatenlogische Resolution Aufgabe Schreibweise: Zu resolvierende Literale unterstreichen und Substitutionen angeben Beispiel: {P(x), P(f (y)), Q(x, y)} { P(f (g(x)))} s 1 = [] sub = [x/f (g(z)), y/g(z)] s 2 =[x/z] {Q(f (g(z)), g(z))} Sind diese Klauseln resolvierbar? Wieviele mögliche Resolventen gibt es? K 1 K 2 Möglichkeiten {P(x), Q(x, y)} {Q(g(x)), R(f (x))} {P(x), P(f (x))} { P(f (x))} { Q(f (x))} { P(y), Q(y, z)} Hinweis: Es gibt noch zwei weitere Möglichkeiten, einen prädikatenlogischen Resolutionsschritt mit diesen Klauseln auszuführen. Barbara König Logik 214 Prädikatenlogische Resolution Barbara König Logik 215 Korrektheit und Vollständigkeit Beispiel: Leiten Sie aus folgender Klauselmenge die leere Klausel her (diesmal mit prädikatenlogischer Resolution anstatt Grundresolution). {{P(f (x)), Q(x)}, { P(f (g(y)))}, { Q(g(a))}} Zwei Fragen: Wenn man mit prädikatenlogischer Resolution aus einer Formel F die leere Klausel ableiten kann, ist F dann unerfüllbar? (Korrektheit) Kann man für eine unerfüllbare Formel F immer durch prädikatenlogische Resolution die leere Klausel herleiten? (Vollständigkeit) Obiges ist zwar bereits für die Grundresolution bekannt, aber noch nicht für die prädikatenlogische Resolution. Barbara König Logik 216 Barbara König Logik 217

12 Lifting-Lemma Beispiel zum Lifting-Lemma Lifting-Lemma Seien K 1, K 2 zwei prädikatenlogische Klauseln und seien K 1, K 2 zwei Grundinstanzen hiervon, die aussagenlogisch resolvierbar sind und den Resolventen R ergeben. Dann gibt es einen prädikatenlogischen Resolventen R von K 1, K 2, so dass R eine Grundinstanz von R ist. K 1 K 1 R R : Resolution : Substitution K 2 K 2 {P(f (x)), Q(x)} { P(f (g(y)))} [x/g(a)] [y/a] {P(f (g(a))), Q(g(a))} {Q(g(y))} { P(f (g(a)))} [y/a] {Q(g(a))} Barbara König Logik 218 Barbara König Logik 219 Resolutionssatz Resolutionssatz Resolutionssatz der Sei F eine Aussage in Skolemform mit einer Matrix F in KNF. Dann gilt: F ist unerfüllbar genau dann, wenn Res (F ). (Dabei bezeichnet Res die Bildung aller möglichen prädikatenlogischen Resolventen.) Für den Beweis des Resolutionssatzes benötigen wir noch den Begriff des Allabschlusses... Für eine Formel H mit freien Variablen x 1,..., x n bezeichnen wir mit H = x 1 x 2... x n H ihren Allabschluss. Sei F eine Aussage in Skolemform und sei F deren Matrix in KNF, so gilt: F F Beispiel: F = P(x, y) Q(y, x) K F K F x y(p(x, y) Q(y, x)) x yp(x, y) x y( Q(y, x)) Barbara König Logik 220 Barbara König Logik 221

13 Verfeinerung der Resolution (Ausblick) Beispiele Probleme bei der prädikatenlogischen Resolution: Zu viele Wahlmöglichkeiten Immer noch zu viele Sackgassen Kombinatorische Explosion des Suchraums Lösungsansätze: Strategien und Heuristiken: Verbieten bestimmter Resolutionsschritte, Suchraum wird dadurch eingeschränkt Ist die Klauselmenge {{P(f (x))}, { P(f (x)), Q(f (x), x)}, { Q(f (a), f (f (a)))}, { P(x), Q(x, f (x))}} unerfüllbar? Vorsicht: Die Vollständigkeit darf dadurch nicht verloren gehen! Barbara König Logik 222 Barbara König Logik 223 Beispiele Beispiele Wir betrachten folgende Klauselmenge (Beispiel aus dem Schöning): F = {{ P(x), Q(x), R(x, f (x))}, { P(x), Q(x), S(f (x))}, {T (a)}, {P(a)}, { R(a, x), T (x)}, { T (x), Q(x)}, { T (x), S(x)}} und zeigen ihre Unerfüllbarkeit mit Hilfe des Resolutionstheorembeweisers otter (siehe auch die Vorstellung von otter im Kapitel ). Wir betrachten folgende prädikatenlogische Formel: F = x(p(x) P(f (x))) Ist diese Formel gültig, erfüllbar oder unerfüllbar? Was passiert, wenn Sie als Eingabe für einen Resolutionstheorembeweiser (wie beispielsweise otter) verwendet wird? Diese Formel ist erfüllbar: otter leitet immer neue Klauseln ab und terminiert nicht. Barbara König Logik 224 Barbara König Logik 225

14 Beispiele Beispiele Das Affe-Banane-Problem (Teil 1) (A1) Ein Tier, das Arme hat und nahe bei einem Ding ist, kann das Ding erreichen. (A2) Ein Tier auf einem hohen Gegenstand, der unter den Bananen steht, ist nahe bei den Bananen. (A3) Wenn ein Tier in einem Raum einen Gegenstand zu einem Ding schiebt, die beide im Raum sind, dann ist das Ding nahe am Boden oder der Gegenstand ist unter dem Ding. (A4) Wenn ein Tier einen Gegenstand ersteigt, ist es auf dem Gegenstand. (A5) Der Affe ist ein Tier, das Arme hat. Das Affe-Banane-Problem (Teil 2) (A6) Der Stuhl ist ein hoher Gegenstand. (A7) Die Bananen sind ein Ding. (A8) Der Affe, die Bananen und der Stuhl sind im Raum. (A9) Der Affe kann den Stuhl unter die Bananen schieben. (A10) Die Bananen sind nicht nahe am Boden. (A11) Der Affe kann den Stuhl ersteigen. (S?) Kann der Affe die Bananen erreichen? Barbara König Logik 226 Barbara König Logik 227 Beispiele Anwendungen Schema für die Lösung solcher Probleme: Seien A 1,..., A n die Axiome oder Voraussetzungen und S die Schlussfolgerung. Um zu zeigen, dass A 1 A n S gültig ist, zeigen wir, dass Anwendungen der prädikatenlogischen Resolution Theorembeweiser: Beweis von Sätzen aus der Mathematik Verifikation: Beweis der Korrektheit von Programmen Schlussfolgerung in Expertensystemen Planungssysteme Logik-Programmierung (PROLOG) siehe nächstes Kapitel unerfüllbar ist. A 1 A n S Bemerkung: Neben Resolution gibt es noch weitere Methoden, die Unerfüllbarkeit prädikatenlogischer Formeln zu zeigen, beispielsweise mit Hilfe von Tableau-Beweisen. Barbara König Logik 228 Barbara König Logik 229

Wiederholung: Resolution in der Aussagenlo. Resolution in der Prädikatenlogik. Definition von Res(F) (Wiederholung)

Wiederholung: Resolution in der Aussagenlo. Resolution in der Prädikatenlogik. Definition von Res(F) (Wiederholung) Resolution in der Prädikatenlogik Wiederholung: Resolution in der Aussagenlo Der Algorithmus von Gilmore funktioniert zwar, ist in der Praxis aber unbrauchbar. Daher ist unser Programm der nächsten Stunden:

Mehr

Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution

Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/41 Ablauf Unendliche

Mehr

Ablauf. Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution. Eine besondere Formel. Eine besondere Formel

Ablauf. Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution. Eine besondere Formel. Eine besondere Formel Ablauf Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Juni 2015 Wir werden heute die Themen aus den Kapitel 2.3, 2.4 und 2.5 aus

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Sogar Strukturen mit unendlichem Universum müssen betrachtet werden:

Sogar Strukturen mit unendlichem Universum müssen betrachtet werden: 3.4 Unentscheidbarkeit In der Aussagenlogik gibt es für jede Formel eine endliche Menge von Belegungen. In Prädikatenlogik Beschränkung auf endliche Menge von Strukturen nicht möglich. Sogar Strukturen

Mehr

Prädikatenlogische Entscheidbarkeitsprobleme

Prädikatenlogische Entscheidbarkeitsprobleme Prädikatenlogische Entscheidbarkeitsprobleme Erfüllbarkeitsproblem: Gegeben: prädikatenlogischer Ausdruck A über einer Signatur S Frage: Ist A erfüllbar? Gültigkeitsproblem: Gegeben: prädikatenlogischer

Mehr

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl.

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln

Mehr

Logik Vorlesung 10: Herbrand-Theorie

Logik Vorlesung 10: Herbrand-Theorie Logik Vorlesung 10: Herbrand-Theorie Andreas Maletti 9. Januar 2015 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Logik-Grundlagen. Syntax der Prädikatenlogik

Logik-Grundlagen. Syntax der Prädikatenlogik Logik-Grundlagen X 1 :...: X k : ( A 1 A 2... A m B 1 B 2... B n ) Logische und funktionale Programmierung - Universität Potsdam - M. Thomas - Prädikatenlogik III.1 Syntax der Prädikatenlogik Prädikat:

Mehr

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik Ralf Möller, TUHH Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem Lernziele: Beweisverfahren für Prädikatenlogik Danksagung Bildmaterial: S. Russell, P. Norvig, Artificial

Mehr

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren: Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 12. Prädikatenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Zur Erinnerung Definition: Aussagenlogische

Mehr

Logik für Informatiker

Logik für Informatiker Martin Kreuzer Stefan Kühling Logik für Informatiker Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of Pearson plc worldwide 4 PRÄDIKATENLOGIK

Mehr

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 19 & Frank Heitmann heitmann@informatik.uni-hamburg.de 23. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/25 Motivation Die ist eine Erweiterung

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten

Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten 2.6 Verfeinerung der Resolution Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten Resolutions-Strategien: heuristische Regeln für die Auswahl der Resolventen Resolutions-Restriktionen:

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1 Prädikatenlogik 1. Syntax und Semantik Man kann die Prädikatenlogik unter einem syntaktischen und einem semantischen Gesichtspunkt sehen. Bei der Behandlung syntaktischer Aspekte macht man sich Gedanken

Mehr

Formale Systeme, WS 2012/2013. Lösungen zu Übungsblatt 7

Formale Systeme, WS 2012/2013. Lösungen zu Übungsblatt 7 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Faragó, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

Schritt 1 Richtung Resolution: Substituieren

Schritt 1 Richtung Resolution: Substituieren 4. Resolution in der Prädikatenlogik Schritt 1 Richtung Resolution: Substituieren Wegen impliziter Allquantifizierung der Variablen gilt: P(x), P(y) widersprüchlich; P(x) P(f(a)) widersprüchlich; aber

Mehr

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee)

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee) (Motivation) Vorlesung Logik Sommersemester 0 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Wir benötigen Algorithmen für Erfüllbarkeitstests, die zumindest in vielen Fällen gutartiges

Mehr

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,

Mehr

Wissensbasierte Systeme 7. Prädikatenlogik

Wissensbasierte Systeme 7. Prädikatenlogik Wissensbasierte Systeme 7. Prädikatenlogik Syntax und Semantik, Normalformen, Herbrandexpansion Michael Beetz Plan-based Robot Control 1 Inhalt 7.1 Motivation 7.2 Syntax und Semantik 7.3 Normalformen 7.4

Mehr

Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 17 & Frank Heitmann heitmann@informatik.uni-hamburg.de 6. & 7. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/43 Motivation Die ist eine Erweiterung

Mehr

SLD-Ableitungsbäume. G = B 1... B m. G die Menge aller SLD-Resolventen von G und definiten. G einen Nachfolger, der mit G markiert ist.

SLD-Ableitungsbäume. G = B 1... B m. G die Menge aller SLD-Resolventen von G und definiten. G einen Nachfolger, der mit G markiert ist. SLD-Ableitungsbäume Definition 5.48 Sei P ein definites Programm und G ein definites Ziel. Ein SLD-Ableitungsbaum ist ein Baum, der die folgenden Bedingungen erfüllt: 1. Jeder Knoten des Baums ist mit

Mehr

Musterlösung der Klausur zur Vorlesung Logik für Informatiker

Musterlösung der Klausur zur Vorlesung Logik für Informatiker Musterlösung der Klausur zur Vorlesung Logik für Informatiker Bernhard Beckert Christoph Gladisch Claudia Obermaier Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau

Mehr

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe Prädikatenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe 3 Teil 3: Modellierung und Beweise 4 Teil 4: Substitution, Unifikation und Resolution

Mehr

Resolution für die Aussagenlogik

Resolution für die Aussagenlogik Resolution für die Aussagenlogik Der Resolutionskakül ist ein Beweiskalkül, der auf Klauselmengen, d.h. Formeln in KNF arbeitet und nur eine Schlußregel besitzt. Der Resolution liegt die folgende Vorstellung

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 17 & Frank Heitmann heitmann@informatik.uni-hamburg.de 6. & 7. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/43 Die ist eine Erweiterung

Mehr

Prädikatenlogik: Syntax

Prädikatenlogik: Syntax Prädikatenlogik: Syntax Signatur : Welche Zeichen gibt es? Funktionssymbole Prädikatensymbol (Eigenschaften) Terme: Variablen f(t 1,... t n ) wenn t i Terme und f Funktionssymbol Formeln: P (t 1,... t

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln

Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln Vorlesung Letz WS 2002/2003 TU München: Logikbasierte Entscheidungsverfahren Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln INHALTE Die Bernays-Schönfinkel-Klasse bzw. Datenlogik-Formeln

Mehr

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit.

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. 7. Prädikatenlogik Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. Aber: Aussagenlogik ist sehr beschränkt in der Ausdrucksmächtigkeit. Wissen kann nur

Mehr

Logik Vorlesung 8: Modelle und Äquivalenz

Logik Vorlesung 8: Modelle und Äquivalenz Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 19 & Die ist eine Erweiterung der Aussagenlogik. Sie hat eine größere Ausdrucksstärke und erlaub eine feinere Differenzierung. Ferner sind Beziehungen/Relationen

Mehr

Syntax der Prädikatenlogik: Variablen, Terme. Formeln. Freie und gebundene Variablen, Aussagen. Aufgabe

Syntax der Prädikatenlogik: Variablen, Terme. Formeln. Freie und gebundene Variablen, Aussagen. Aufgabe Syntax der Prädikatenlogik: Variablen, Terme Formeln Eine Variable hat die Form x i mit i = 1, 2, 3.... Ein Prädikatensymbol hat die Form Pi k und ein Funktionssymbol hat die Form fi k mit i = 1, 2, 3...

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Wintersemester 2007/08 Thomas Schwentick Teil A: Aussagenlogik 3. Erfüllbarkeit Version von: 23. Januar 2008(16:11) Inhalt 3.1 Grundbegriffe 3.2 Aussagenlogische Resolution 3.3 Endlichkeitssatz

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart)

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Javier Esparza und Barbara König 4. Dezember 2003 Für eine gegebene aussagenlogische

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

Aufgabe - Fortsetzung

Aufgabe - Fortsetzung Aufgabe - Fortsetzung NF: Nicht-Formel F: Formel A: Aussage x :( y : Q(x, y) R(x, y)) z :(Q(z, x) R(y, z)) y :(R(x, y) Q(x, z)) x :( P(x) P(f (a))) P(x) x : P(x) x y :((P(y) Q(x, y)) P(x)) x x : Q(x, x)

Mehr

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe Prädikatenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe 3 Teil 3: Modellierung und Beweise 4 Teil 4: Substitution, Unifikation und Resolution

Mehr

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D)

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D) INTA - Lösungshinweise zum Übungsblatt 4, Version 1.0α. Wenn sie Fehler finden oder Ihnen etwas auch nach dem Gespräch mit ihren Kommilitonen noch unklar ist, dann schicken sie mir bitte eine Email! Aufgabe

Mehr

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Fragen Seite Punkte 1. Was ist die Mathematische Logik? 3 2 2. Was sind die Aussagenlogik und die Prädikatenlogik? 5 4 3. Was sind Formeln,

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 18: Logik Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/35 Überblick Formeln in Prädikatenlogik erster Stufe Theorien und

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Logikprogrammierung mit Abhängigkeiten

Logikprogrammierung mit Abhängigkeiten Logikprogrammierung mit Abhängigkeiten Bachelorarbeit Martin Lück Matrikel-Nr. 2787070 26. Juni 2013 Institut für Theoretische Informatik Leibniz Universität Hannover Erklärung Hiermit versichere ich,

Mehr

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Barbara König Logik 1 Motivation: Wir beschäftigen uns nun im folgenden mit der, die gegenüber

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Deklarative Semantik

Deklarative Semantik 7. Deklarative Semantik 7-1 Deklarative Semantik Bisher: Prolog als Programmiersprache. Operationale Semantik : Wie wird ein Programm ausgeführt? Welche Antworten werden berechnet? Jetzt: Prolog als logischer

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

Logik für Informatiker Musterlösung Aufgabenblatt 11

Logik für Informatiker Musterlösung Aufgabenblatt 11 Universität Koblenz-Landau SS 06 Institut für Informatik Bernhard Beckert www.uni-koblenz.de/~beckert Christoph Gladisch www.uni-koblenz.de/~gladisch Claudia Obermaier www.uni-koblenz.de/~obermaie Übung

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Prolog basiert auf Prädikatenlogik

Prolog basiert auf Prädikatenlogik Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:

Mehr

TU7 Aussagenlogik II und Prädikatenlogik

TU7 Aussagenlogik II und Prädikatenlogik TU7 Aussagenlogik II und Prädikatenlogik Daniela Andrade daniela.andrade@tum.de 5.12.2016 1 / 32 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds

Mehr

Substitution. Unifikation. Komposition der Substitution. Ausführung der Substitution

Substitution. Unifikation. Komposition der Substitution. Ausführung der Substitution Substitution Unifikation Ziel eines Widerspruchsbeweis: Widerspruch ja/nein Variablenbindung im Falle eines Widerspruchs Eine Substitution θ ist eine endliche Menge der Form {v 1 /t 1 v n /t n }, wobei

Mehr

Kapitel L:III. III. Prädikatenlogik

Kapitel L:III. III. Prädikatenlogik Kapitel L:III III. Prädikatenlogik Syntax der Prädikatenlogik Semantik der Prädikatenlogik Wichtige Äquivalenzen Einfache Normalformen Substitution Skolem-Normalformen Standard-Erfüllbarkeit Prädikatenlogische

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Resolution und Regeln

Resolution und Regeln Resolution und Regeln Hans Kleine Büning University of Paderborn Institute for Computer Science Group Paderborn, 18. Juli 2013 Resolution und Regeln Hans Kleine Büning 1/9 Resolution Theorem Resolution:

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik Kapitel 1.5 und 1.6 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2010/11) Kapitel 1.5 und 1.6: Kalküle 1 /

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 6 25.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesungen Prädikatenlogik: Syntax Semantik

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch Belegungen, Wahrheitsfunktionen 1. Wie viele binäre Funktionen gibt es auf der Menge {0, 1} (d.h., Funktionen von {0, 1} 2 nach {0, 1})? Geben Sie alle diese Funktionen an, und finden Sie sinnvolle Namen

Mehr

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale

Mehr

Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P. Jede Struktur hat mindestens eine Substruktur

Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P. Jede Struktur hat mindestens eine Substruktur Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P Jede Struktur hat mindestens eine Substruktur JA Jeder Isomorphismus ist ein Homomorphismus JEIN? jeder bijektive Homomorphismus ist ein

Mehr

das Konzept der Gleichung in der Algebra Robert Recorde Spielsemantik Semantik-Spiel FO mit oder ohne =? Abschnitt 2.5

das Konzept der Gleichung in der Algebra Robert Recorde Spielsemantik Semantik-Spiel FO mit oder ohne =? Abschnitt 2.5 Teil 2: FO Syntax und Semantik FO 2 Spielsemantik Semantik-Spiel Satz: A = ψ[a] V hat Gewinnstrategie in Position (ψ, a. Teil 2: FO Syntax und Semantik FO 2 das Konzept der Gleichung in der Algebra Robert

Mehr

3. Prädikatenlogik. Im Sinne der Aussagenlogik sind das verschiedene Sätze, repräsentiert etwa durch A, B, C. Natürlich gilt nicht: A B = C

3. Prädikatenlogik. Im Sinne der Aussagenlogik sind das verschiedene Sätze, repräsentiert etwa durch A, B, C. Natürlich gilt nicht: A B = C 3. Prädikatenlogik 3.1 Motivation In der Aussagenlogik interessiert Struktur der Sätze nur, insofern sie durch "und", "oder", "wenn... dann", "nicht", "genau dann... wenn" entsteht. Für viele logische

Mehr

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans 23.07.2012 Dipl.-Inform. Markus Bender Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung

Mehr

Unifikation. T eine Menge von Termen. σ(t) einelementig ist. Definition: Unifikator. Eine Substitution σ ist Unifikator von T, falls

Unifikation. T eine Menge von Termen. σ(t) einelementig ist. Definition: Unifikator. Eine Substitution σ ist Unifikator von T, falls Unifikation Definition: Unifikator T eine Menge von Termen Eine Substitution σ ist Unifikator von T, falls σ(t) einelementig ist Logik für Informatiker, SS 06 p.12 Unifikation Definition: Unifikator T

Mehr

Labor Compilerbau. Jan Hladik. Sommersemester DHBW Stuttgart. Jan Hladik (DHBW Stuttgart) Labor Compilerbau Sommersemester / 20

Labor Compilerbau. Jan Hladik. Sommersemester DHBW Stuttgart. Jan Hladik (DHBW Stuttgart) Labor Compilerbau Sommersemester / 20 Labor Compilerbau Jan Hladik DHBW Stuttgart Sommersemester 2017 Jan Hladik (DHBW Stuttgart) Labor Compilerbau Sommersemester 2017 1 / 20 Resolution in der Prädikatenlogik testet Erfüllbarkeit (indirekt

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 11. Prädikatenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Negationsnormalform Definition: Negationsnormalform

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

Normalformen der Prädikatenlogik

Normalformen der Prädikatenlogik Normalformen der Prädikatenlogik prädikatenlogische Ausdrücke können in äquivalente Ausdrücke umgeformt werden Beispiel "X (mensch(x) Æ sterblich(x)) "X (ÿ mensch(x) sterblich(x)) "X (ÿ (mensch(x) Ÿ ÿ

Mehr

Einiges zu Resolutionen anhand der Aufgaben 6 und 7

Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Es gibt eine Fülle von verschiedenen Resolutionen. Die bis jetzt behandelten möchte ich hier noch ein Mal kurz erläutern. Ferner möchte ich noch auf

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Widerspruchsbasiertes Kalkül. Präinterpretation. Variablenzuweisung. Interpretation

Widerspruchsbasiertes Kalkül. Präinterpretation. Variablenzuweisung. Interpretation Widerspruchsbasiertes Kalkül Ziel: Zeige dass gilt: x 1 x s (B 1 B n ) Mittel: Negiere so dass: B 1 B n Resultate: Widerspruch Variablenbindungen [y/5.6.17.22.nil] für sort(17.22.6.5.nil,y) Präinterpretation

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 2: Prädikatenkalkül erster Stufe Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. Oktober 2016 1/38 DIE INTERPRETATION

Mehr

3. Grundlegende Begriffe von Logiken - Aussagenlogik

3. Grundlegende Begriffe von Logiken - Aussagenlogik 3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011 Fakultät für Informatik 2. Klausur zum WS 2010/2011 Prof. Dr. Bernhard Beckert 08. April 2011 Vorname: Matrikel-Nr.: Platz: Klausur-ID: **Platz** **Id** Die Bearbeitungszeit beträgt 60 Minuten. A1 (17)

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt Dr. V. Klebanov, Dr. M. Ulbrich, C. Scheben Formale Systeme, WS 2013/2014 Lösungen zu Übungsblatt 5 Dieses

Mehr