Kapitel 5: Digitale Übertragung im Basisband

Größe: px
Ab Seite anzeigen:

Download "Kapitel 5: Digitale Übertragung im Basisband"

Transkript

1 ZHW, NTM, 25/6, Rur 1 Kapitel 5: Digitale Übertragung im Basisband 5.2. Nichtlineare Amplitudenquantisierung Einleitung Das A-Law Kompressionsverfahren Das A-Law Verfahren nach ITU-T G Das µ-law Kompressionsverfahren (fakultativ) Das µ-law Verfahren nach ITU-T G.711 (fakultativ)...1 Dieses Kapitel ist vollständig aus der Vorlesung SU von Prof. Dr. A. Steffen übernommen worden Einleitung In vielen Fällen liegt die zu übertragende Nachricht schon in digitaler Form vor. In diesem Kapitel betrachten wir die nichtlineare Amplitudenquantisierung, wie sie bei der Übertragung von analogen Sprachsignalen über digitale Telefoniekanäle eingesetzt wird. Wenn ein AD-Wandler mit Wortbreite W sinusförmig voll ausgesteuert wird, resultiert wegen dem Rundungsrauschen bei der Quantisierung ein SNR von SNR Q [db] = 6 W (5.1) Nimmt der Signalpegel ab, so verringert sich bei unveränderter Quantisierungsstufe das SNR Q, wie Figur 5.5 am Beispiel einer Wortbreite von W=5 Bit zeigt. Da das menschliche Ohr ein logarithmisches Lautstärkeempfinden besitzt, wäre es bei Audioanwendungen vorteilhafter, wenn das SNR über den ganzen Bereich der Signalaussteuerung konstant wäre, so wie es die horizontale Linie in Figur 5.5 angibt. Dies bedeutet, dass nicht der absolute Quantisierungsfehler konstant gehalten werden muss, wie es bei einer linearen Amplitudenquantisierung mit gleichmässigen Quantisierungsstufen m der Fall ist, sondern dass der relative Quantisierungsfehler konstant sein sollte. Dies kann erreicht werden, in dem die Dnamik des Eingangssignals vor der linearen Quantisierung durch eine logarithmische Kennlinie komprimiert wird und bei der Rekonstruktion wieder epandiert wird. Die Schaltung, welche diese nichtlineare Amplitudenquantisierung durchführt, ist in Figur 5.6 als Blockschaltbild aufgezeichnet und wird Kompander genannt. Sie besteht aus einem Kompressor mit logarithmischer Kennline, einem linearen Quantisierer und einem Epander mit eponentieller Kennlinie, welcher die Nichtlinearität wieder rückgängig macht. Die Schwierigkeit besteht nun darin, dass die nichtlineare Kompressionskennlinie = f() erstens durch den Nullpunkt (, ) = (,) gehen sollte und zweitens eine Punktsmmetrie bezüglich dieses Nullpunkt gefordert wird, damit positive und negative Amplituden gleich behandelt werden. Beim natürlichen Logarithmus = ln() ist weder die eine noch die andere Bedingung erfüllt.

2 ZHW, NTM, 25/6, Rur Vollaussteuerung log(A) = db logarithmische Kennlinie SNR [db] 18 A-Law Kennlinie 12 9 lineare Kennlinie S / S ma [db] Figur 5.5: Signal-zu-Quantisierungsgeräuschabstand SNR Q als Funktion des Signalpegels für lineare, logarithmische und stückweise lineare A-Law Kennlinien. Beispiel für W = 5 Bit. Kompressor = f() logarithmisch Quantisierer = Q[] linear Epander = f -1 () eponentiell Figur 5.6: Kompander realisieren eine nichtlineare Amplitudenquantisierung, basierend auf einer Dnamikkompression, linearer Quantisierung und anschliessender Epansion. Es eistieren nun zwei Verfahren, wie die Logarithmusfunktion modifiziert werden kann, damit die beiden oben genannten Bedingungen erfüllt werden. Das eine Verfahren wird englisch A-Law genannt, das andere µ-law. Sie werden in den nächsten Abschnitten genauer vorgestellt.

3 ZHW, NTM, 25/6, Rur Das A-Law Kompressionsverfahren Das A-Law Verfahren hat seinen Namen vom Parameter A in der Formel (5.2), welche den Verlauf der Kennlinie definiert. 1+ ln A sgn( ) = 1+ lna A 1+ ln A 1 mit =1/A (5.2) Das vereinfachte Beispiel in Figur 5.7 erklärt die Bedeutung des Parameters A. Die Wertebereiche der Eingangsvariablen, respektive der Ausgangsvariablen sind auf den Bereich [ ] normiert. Für grosse Eingangswerte im Bereich 1 kommt die Logarithmusfunktion zum Zug. Die Signumfunktion sgn() wechselt dabei das Vorzeichen für negative Werte von. Für kleine Eingangswerte im Bereich geht die Kennlinie in eine Gerade durch den Nullpunkt mit Steigung A a = (5.3) 1+ ln A über. Wird = 1/A gewählt, so stimmen in diesem Punkt die Funktionswerte und die ersten Ableitungen der beiden Kurventeile überein und es entsteht ein nahtloser Übergang. Der Parameter A steuert über (5.3) die Steilheit a des linearen Teils, in welchem die kleinen Eingangsgrössen liegen. Dadurch wird im Vergleich zum Fall der linearen gleichmässigen Quantisierung ein SNR-Gewinn erzielt. Allgemein gilt, dass je steiler der Kurvenverlauf in einem Teilbereich ist, desto mehr Quantisierungsstufen stehen in diesem Bereich zur Verfügung und desto kleiner wird dadurch der Quantisierungsfehler. Die Tabelle 5.1 listet die Werte des Parameters A für die ersten vier Zweierpotenzen der Geradensteigung a auf. Für a = 2 ergibt sich A = Dieser spezielle Wert erlaubt eine gute Annäherung der A-Law Kennlinie durch drei stückweise lineare Segmente, wie Figur 5.7 zeigt. Im ersten Segment 1/4 beträgt die Steigung a = 2. Die Quantisierungsstufen werden dadurch halb so gross wie bei der gleichmässigen Amplitudenquantisierung und somit beträgt der SNR-Gewinn 6 db. Im zweiten Segment 1/4 1/2 ist die Steigung 1, mit der gleichen Anzahl von Quantisierungsintervallen wie im linearen Fall. Im dritten Segment 1/2 1 beträgt die Steigung nur noch 1/2, mit einem SNR-Verlust von 6 db. a 2 log(a) A = 1/A 2 log( ) Segmente 1 db db db db db db db db db db 7 Tabelle 5.1: Wahl des Parameters A für einige Zweierpotenzen der Geradensteigung a.

4 ZHW, NTM, 25/6, Rur 4 1 3/4 2/4 = 1/A = [1 + ln(a)] / [1 + ln(a)] 1/4 1/4 1/2 1 Figur 5.7: Logarithmische Kompressionskennlinie nach dem A-Law mit A = und ihre stückweise Annäherung durch 3 lineare Segmente. Durch diese Massnahme wird im Bereich 1/8 1 ein annähernd konstantes SNR erzielt. Wie die entsprechende Kurve in Figur 5.5 zeigt, verursacht die Approimation durch stückweise lineare Segmente im Bereich [-18 db.. db] eine sägezahnförmige SNR-Schwankung von 6 db innerhalb jedes Segments. Für Pegel < -18 db sinkt das SNR dann kontinuierlich ab, ist aber immer noch 6 db höher als bei der linearen Quantisierung. Dies ist höchst erwünscht, da wir ja das SNR von schwachen Signalen anheben wollen. Figur 5.8 zeigt die stückweise lineare A-Law Kennlinie aus Figur 5.7 nun in entnormierter Form. Der Eingangswertebereich von [ ], zu dessen Darstellung 7 Bit benötigt werden, wird durch die nichtlineare Kennline = f() auf den Bereich [ ] komprimiert. Die anschliessende Quantisierung bildet 32 gleich grosse Intervalle [ ], [ ],..., [-2..-1], [-1..], [..1], [1..2],..., [14..15], [15..16], für deren Codierung nun 5 Bit ausreichen. Jeder 5-Bit Code steht für einen analogen Wert, der sich in der Mitte des jeweiligen Intervalls befindet. So entspricht 11 in Figur 5.9 dem Wert +1.5, während 1 den negativen Wert -1.5 bezeichnet.

5 ZHW, NTM, 25/6, Rur Figur 5.8: Dnamikkompression von 7 Bit auf 5 Bit an der stückweise linearen A-Law Kennlinie mit drei Segmenten. Es wird nur der positive Quadrant gezeigt.

6 ZHW, NTM, 25/6, Rur Figur 5.9: Dnamikepansion von 5 Bit auf 7 Bit an der stückweise linearen A-Law Kennlinie mit drei Segmenten. Es wird nur der positive Quadrant gezeigt. Als Codierung wurde hier in Übereinstimmung mit der ITU-T Empfehlung G.711 nicht das sonst übliche Zweierkomplement gewählt, sondern eine Darstellung mit einem 4 Bit langen Betrag und einem vorangestellten Vorzeichenbit, wobei 1 einen positiven Wert bezeichnet und den entsprechenden negativen Wert. In dem wir die nichtlineare A-Law Kennlinie in der inversen Richtung benützen, wie dies in Figur 5.9 getan wird, kann jedem quantisierten Wert -15.5, -14.5,..., -1.5, -.5,.5, 1.5,..., 14.5, 15.5 in der komprimierten -Skala ein zugehöriger Wert -6, -52,..., -3,.-1, 1, 3,..., 52, 6 in der epandierten -Skala zugewiesen werden. Die Kombination der Kompressionskennlinie mit anschliessender Quantisierung aus Figur 5.8 mit der Epansionskennlinie aus Figur 5.9 ergibt die Quantisierungskennlinie des Kompanders in Figur 5.1.

7 ZHW, NTM, 25/6, Rur Figur 5.1: Kompander-Quantisierungskennlinie mit variablen Quantisierungstufen, basierend auf der A-Law Kennlinie mit drei Segmenten. Es wird nur der positive Quadrant gezeigt. Es ist klar zu erkennen, dass jedes Segment eine unterschiedliche Höhe der Quantisierungsstufen besitzt, die sich von Segment zu Segment um einen Faktor 2 unterscheiden Das A-Law Verfahren nach ITU-T G.711 Normiert durch die ITU-T Empfehlung G.711, wird das A-Law Verfahren bei der Übertragung von analogen Sprachsignalen über digitale Telefoniekanäle eingesetzt. Und dies in allen Ländern Europas, sowie im Rest der Welt mit Ausnahme von Nordamerika und Japan. Auf internationalen Verbindungen zwischen zwei beliebigen Ländern ist das A-Law ebenfalls Pflicht. Die in der Telekommunikation verwendete Norm unterscheidet sich vom im vorhergehenden Abschnitt vorgestellten vereinfachten Verfahren nur darin, dass anstatt A = mit 3 Segmenten, der Parameterwert A = aus Tabelle 5.1 mit 7 Segmenten verwendet wird. Die entsprechende Kompressionskennlinie ist in Figur 5.11 aufgetragen. Der 13 Bit breite Eingangswertebereich [ ] wird auf den Bereich [ ] komprimiert, dessen 256 Intervalle mit 8 Bit codiert werden können.

8 ZHW, NTM, 25/6, Rur Figur 5.11: Dnamikkompression von 13 Bit auf 8 Bit an der stückweise linearen A-Law Kennlinie mit sieben Segmenten gemäss ITU-T Empfehlung G.711. Es wird nur der positive Quadrant gezeigt Die Kompression wird normalerweise digital durchgeführt, in dem das analoge Eingangssignale mit 8 khz abgetastet und mit mindestens 13 Bit linear amplitudenquantisiert wird. Der erhaltene 13 Bit Wert wird anschliessend mit Hilfe einer digitalen Logik oder einer Look-up- Tabelle auf den 8 Bit Wert des zugehörigen Intervalls abgebildet. Bei der Epansion wird der inverse Vorgang angewendet, in dem das durch einen Lookup von 8 Bit auf 13 Bit epandierte Digitalwort auf einen 13-Bit breiten linearen Digital/Analog-Wandler gegeben wird. Die erzielte SNR-Charakteristik für das quantisierte Sprachsignal ist aus Figur 5.12 ersichtlich. Bei linearer Quantisierung mit 8 Bit würde bei Vollaussteuerung ein SNR von 49.8 db erreicht werden, was für Sprache mehr als genügend ist. Die totale Eingangspegeldnamik beträgt aber nur 49.8 db. Durch die Anwendung der A-Law Kompression sinkt der Störabstand für den grössten Pegel zwar um 12 db, dafür wird ein fast konstantes SNR zwischen 31.8 db und 37.8 db über einen weiten Eingangspegelbereich von [-42.. db] erzielt, das immer noch eine sehr gute Verständigung erlaubt. In dem das SNR für schwache Pegel durch die Geradensteigung a = 16 um 24 db angehoben wird, vergrössert sich die totale Dnamik auf fast 8 db, was in etwa der Hördnamik des menschlichen Ohrs entspricht.

9 ZHW, NTM, 25/6, Rur Vollaussteuerung logarithmische Kennlinie -2log(A) = db SNR [db] A-Law Kennlinie lineare Kennlinie S / S ma [db] Figur 5.12: Signal-zu-Quantisierungsgeräuschabstand SNR Q als Funktion des Signalpegels für lineare, logarithmische und stückweise lineare A-Law Kennlinien. Beispiel für W = 8 Bit gemäss ITU-T G Das µ-law Kompressionsverfahren (fakultativ) Eine gleichwertige Alternative zum A-Law Verfahren stellt das µ-law Verfahren dar, das nach dem Parameter µ in der Definitionsformel (5.4) benannt wurde. ln( 1+ µ ) = sgn( ) ln( 1+ µ ) 1 Wie die dazugehörige Figur für µ = 15 zeigt, wird die Logarithmusfunktion = ln() durch eine horizontale Translation in den Nullpunkt (,) = (, ) verschoben. Die Signumfunktion sgn() stellt die Punktsmmetrie sicher. Um eine einfache Realisierung zu ermöglichen, wird auch hier die Kennlinie stückweise linearisiert. Dadurch, dass 4 Segmente gebildet werden, ergibt sich im Vergleich zum A-Law in Figur 5.7 den Vorteil, dass die Geradensteigung des ersten Segments mit a = 4.25 mehr als doppelt so steil wird und damit die schwachen Pegel 6.6 db mehr angehoben werden, als bei der A-Law Kompression mit vergleichbaren Parametern. Als Nachteil ergeben sich mit, 7, 23, 55 und 119 kompliziertere Segmentgrenzen. (5.4)

10 ZHW, NTM, 25/6, Rur 1 1 3/4 2/4 = ln(1 + µ) / ln(1 + µ)] 1/4 7/119 23/119 55/119 1 Figur 5.13: Logarithmische Kompressionskennlinie nach dem µ-law mit µ = 15 und ihre Annäherung durch 4 stückweise lineare Segmente Das µ-law Verfahren nach ITU-T G.711 (fakultativ) Abweichend vom Rest der Welt, werden Sprachsignale in Nordamerika und Japan bei der digitalen Übertragung nach dem µ-law codiert, das als gleichwertige Alterative ebenfalls in der ITU-T Empfehlung G.711 normiert wurde. Dabei wird der Parameter µ = 255 verwendet und die resultierende logarithmische Kennlinie wird durch die acht stückweise linearen Segmente angenähert, die in Figur 5.14 dargestellt sind. Der 14 Bit breite Eingangspegelbereich [ ] wird auf den Bereich [ ] komprimiert, dessen 256 Intervalle mit 8 Bit codiert werden. Das zusätzliche Segment in der Kennlinie bewirkt eine erhöhte Steilheit bei sehr schwachen Pegeln und damit eine SNR- Verbesserung von ca. 6 db im Vergleich zum 8 Bit A-Law Verfahren. Die ITU-T Empfehlung G.711 definiert zusätzlich eine Konversionstabelle zwischen A-Law und µ-law codierten Sprachsamples, die zum Beispiel bei Transatlantikgesprächen in der amerikanischen Vermittlungsstelle angewendet wird. Das µ-law Verfahren wurde durch Sun Microsstems in ihrem *.au Soundformat verwendet.

11 ZHW, NTM, 25/6, Rur Figur 5.14 Dnamikkompression von 14 Bit auf 8 Bit an der stückweise linearen µ-law Kennlinie mit acht Segmenten gemäss ITU-T Empfehlung G.711. Es wird nur der positive Quadrant gezeigt.

Digitalisierung. Digitale Übertragung analoger Signale. störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte)

Digitalisierung. Digitale Übertragung analoger Signale. störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte) Digitale Übertragung analoger Signale Vorteile digitaler Übertragung störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte) Nachteiler digitaler Übertragung natürliche Signale

Mehr

1.3 Digitale Audiosignale

1.3 Digitale Audiosignale Seite 22 von 86 Abb. 1.2.12 - Wirkung der Schallverzögerung Effekte sind: Delay, Echo, Reverb, Flanger und Chorus Hört man ein akustisches Signal im Raum, dann werden die Signale von Wänden und anderen

Mehr

Pulse Code Modulation

Pulse Code Modulation Fachbereich Medieninformatik Hochschule Harz Pulse Code Modulation Referat Johannes Bastian 11038 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung / Vorwort...1 1 Analoge Signale als Grundlage von PCM...1

Mehr

Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität. Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende

Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität. Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende Schallaufzeichnung Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende Akustische Ereignisse sind vergänglich Akustische Ereignisse

Mehr

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Modulation Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Datenfernübertragung I Über kurze Entfernungen können Daten über Kupferkabel übertragen werden, indem jedes Bit mit einer positiven

Mehr

Signalübertragung und -verarbeitung

Signalübertragung und -verarbeitung ILehrstuhl für Informationsübertragung Schriftliche Prüfung im Fach Signalübertragung und -verarbeitung 6. Oktober 008 5Aufgaben 90 Punkte Hinweise: Beachten Sie die Hinweise zu den einzelnen Teilaufgaben.

Mehr

Modulationsverfahren

Modulationsverfahren Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:

Mehr

Musterlösung zur Aufgabe A4.1

Musterlösung zur Aufgabe A4.1 Musterlösung zur Aufgabe A4.1 a) Mit N = 8 Bit können insgesamt 2 8 Quantisierungsintervalle dargestellt werden M = 256. b) Nummeriert man die Quantisierungsintervalle von 0 bis 255, so steht die Bitfolge

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

Digitalisierung. Abtasttheorem Quantisierung Pulse-Code-Modulation Übungen Literatur und Quellen. Signale und Systeme VL 5

Digitalisierung. Abtasttheorem Quantisierung Pulse-Code-Modulation Übungen Literatur und Quellen. Signale und Systeme VL 5 Digitalisierung Abtasttheorem Quantisierung Pulse-Code-Modulation Übungen Literatur und Quellen 20.05.2015 Professor Dr.-Ing. Martin Werner Folie 1 Digitalisierung analoger Signale 4 Schritte Bandbegrenzung

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Demo-Text für LN-Funktionen ANALYSIS INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL.

Demo-Text für  LN-Funktionen ANALYSIS INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. ANALYSIS LN-Funktionen Grundlagen Eigenschaften Wissen - Kompakt Datei Nr. 60 Neu geschrieben Stand: 0. Juni 0 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Demo-Tet für 60 Übersicht: Ln-Funktionen

Mehr

Bildkompression InTh, 2005, JPEG, Hak, Rur, 1

Bildkompression InTh, 2005, JPEG, Hak, Rur, 1 Bildkompression InTh, 25, JPEG, Hak, Rur, 1 Referenzen [1] D Salomon, Data Compression, Springer, 24 [2] Prof Dr A Steffen, Kurs SU, ZHW, 1999-24 [3] G Wallace, The JPEG Still Picture Compression Standard,

Mehr

Kapitel 4 Leitungscodierung

Kapitel 4 Leitungscodierung Kapitel 4 Leitungscodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

10. Klasse: Logarithmusfunktionen sind die Umkehrungen der Exponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen.

10. Klasse: Logarithmusfunktionen sind die Umkehrungen der Exponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen. IV Umkehrfunktion Umkehrbarkeit 0. Klasse: Logarithmusfunktionen sind die Umkehrungen der Eponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen. f f -> 2 2 -> 2 -> - - -> 2 4 -> -> 4 Graphen

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Sinneswahrnehmungen des Menschen

Sinneswahrnehmungen des Menschen Sinneswahrnehmungen des Menschen Tastsinn Gleichgewicht Geruch Sehen Gehör Sprache Aktion Multimedia - Kanäle des Menschen Techniken für Medien im Wandel Multimediale Kommunikation Text : Bücher, Zeitschriften

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

1 Einführung. 1.1 Analog - Digital Unterscheidung

1 Einführung. 1.1 Analog - Digital Unterscheidung 1 Einführung Was ist eigentlich Digitaltechnik? Wird der Begriff Digitaltechnik getrennt, so ergeben sich die Worte DIGITAL und TECHNIK. Digital kommt von digitus (lat. der Finger) und deutet darauf hin,

Mehr

Diese Veröffentlichung ist ein zusätzliches Kapitel zum Buch

Diese Veröffentlichung ist ein zusätzliches Kapitel zum Buch Quantisierung Diese Veröffentlichung ist ein zusätzliches Kapitel zum Buch Rudolf Nocker Digitale Kommunikationssysteme 1 Grundlagen der Basisband-Übertragungstechnik Vieweg Verlag, Wiesbaden 004 Das Original

Mehr

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x Wachstum und Zerfall / Exponentialfunktionen Mit Exponentialfunktionen können alle Wachstums- und Zerfalls- oder Abnahmeprozesse beschrieben werden. Im Allgemeinen geht es dabei um die Exponentialfunktionen

Mehr

(geometrische) Anschauung

(geometrische) Anschauung (geometrische) Anschauung Marcus Page Juni 28 In dieser Lerneinheit widmen wir uns dem schon oft angesprochenen Zusammenhang zwischen Matrizen und linearen Abbildungen. Außerdem untersuchen wir Funktionen,

Mehr

ADSL über ISDN-Basisanschlüsse

ADSL über ISDN-Basisanschlüsse ADSL über ISDN-Basisanschlüsse Thomas Keßler und Werner Henkel Deutsche Telekom AG, Technologiezentrum, Postfach 10 00 03, 64276 Darmstadt Zusammenfassung Für ADSL-Kunden mit ISDN-Basisanschluß müssen

Mehr

Exemplar für Prüfer/innen

Exemplar für Prüfer/innen Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2016 Mathematik Kompensationsprüfung 3 Angabe für Prüfer/innen Hinweise zur

Mehr

Multimediale Werkzeuge, Audio: Formate, Tools. -Sound/Audio Objekte. Formate, Beispiele:

Multimediale Werkzeuge, Audio: Formate, Tools. -Sound/Audio Objekte. Formate, Beispiele: Multimediale Werkzeuge, Audio: Formate, Tools -Sound/Audio Objekte Formate, Beispiele: - Mp3 (Kurz für MPEG1/2 Layer 3) - PCM (z.b. Wave Datei), übliche Formate: CD: 44100 HZ Abtastrate, 16 Bits/Abtastwert.

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

12 Digitale Logikschaltungen

12 Digitale Logikschaltungen 2 Digitale Logikschaltungen Die Digitaltechnik ist in allen elektronischen Geräte vorhanden (z.b. Computer, Mobiltelefone, Spielkonsolen, Taschenrechner und vieles mehr), denn diese Geräte arbeiten hauptsächlich

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

Mathematik für das Ingenieurstudium

Mathematik für das Ingenieurstudium Mathematik für das Ingenieurstudium von Martin Stämpfle, Jürgen Koch 2., aktual. Aufl. Hanser München 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 43232 1 Zu Inhaltsverzeichnis schnell

Mehr

LTAM-T2EE-ASSER FELJC/GOERI 3. P-Regler

LTAM-T2EE-ASSER FELJC/GOERI 3. P-Regler 3. P-Regler 3.1. Einleitung 3.1.1. Allgemeines Der Regler muss im Regelkreis dafür sorgen, dass der Istwert der Regelgröße X möglichst wenig vom Sollwert W abweicht. Das Verhalten der Regelstrecke ist

Mehr

3. DER NATÜRLICHE LOGARITHMUS

3. DER NATÜRLICHE LOGARITHMUS 3. DER NATÜRLICHE LOGARITHMUS ln Der natürliche Logarithmus ln(x) betrachtet als Funktion in x, ist die Umkehrfunktion der Exponentialfunktion exp(x). Das bedeutet, für reelle Zahlen a und b gilt b = ln(a)

Mehr

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden.

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. 49. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit a Grenzwerte von Funktionen Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. Einführende Beispiele: Untersuche

Mehr

Kontinuierliche Digitaltechnik als völlig neues Prinzip der Digitalisierung

Kontinuierliche Digitaltechnik als völlig neues Prinzip der Digitalisierung Kontinuierliche Digitaltechnik als völlig neues Prinzip der Digitalisierung Horst Völz Die Digitalisierung von Signalen insbesondere bei Audio und Video erfolgt im Wesentlichen unverändert seit reichlich

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Allgemeine Beschreibung von Blockcodes

Allgemeine Beschreibung von Blockcodes Allgemeine Beschreibung von Blockcodes Bei Blockcodierung wird jeweils eine Sequenz von m q binären Quellensymbolen (M q = 2) durch einen Block von m c Codesymbolen mit dem Symbolumfang M c dargestellt.

Mehr

5 Kontinuierliches Wachstum

5 Kontinuierliches Wachstum 5 Kontinuierliches Wachstum Kontinuierlich meßbare Größe Wir betrachten nun eine Größe a, die man kontinuierlich messen kann. Den Wert von a zum Zeitpunkt t schreiben wir nun als a(t). Wir können jedem

Mehr

Tontechnik 2. DA-Wandlung. DA-Wandlung (Übersicht) Hold-Schaltung. Prof. Oliver Curdt Audiovisuelle Medien HdM Stuttgart

Tontechnik 2. DA-Wandlung. DA-Wandlung (Übersicht) Hold-Schaltung. Prof. Oliver Curdt Audiovisuelle Medien HdM Stuttgart Tontechnik 2 DA-Wandlung Audiovisuelle Medien HdM Stuttgart Quelle: Michael Dickreiter, Handbuch der Tonstudiotechnik DA-Wandlung (Übersicht) Hold-Schaltung 1 DA-Wandlung Rückgewinnung analoger Spannungswerte

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Grundlagen der Elektro-Proportionaltechnik

Grundlagen der Elektro-Proportionaltechnik Grundlagen der Elektro-Proportionaltechnik Totband Ventilverstärkung Hysterese Linearität Wiederholbarkeit Auflösung Sprungantwort Frequenzantwort - Bode Analyse Der Arbeitsbereich, in dem innerhalb von

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort.

Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort. Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe 1 (Güte von Hashfunktionen): Untersuchen Sie, inwiefern sich die folgenden Funktionen

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Berechnung von digitalen Signalen. Jonathan Harrington

Berechnung von digitalen Signalen. Jonathan Harrington Berechnung von digitalen Signalen Jonathan Harrington Analog Signale 1. Digitalisierung: Abtasten, Quantisierung Praat Digitale Zeitsignale 2. Anwendung von einem Fenster EMU-tkassp Zeitsignal-Aufteilung

Mehr

Kompensation der nichtlinearen Kennlinie des externen Modulators für optische OFDM-Echtzeit-Systeme

Kompensation der nichtlinearen Kennlinie des externen Modulators für optische OFDM-Echtzeit-Systeme ITG-Workshop 5.3.1 Optische Kommunikationssystme offline to realtime Kompensation der nichtlinearen Kennlinie des externen Modulators für optische OFDM-Echtzeit-Systeme David Rörich 1, Michael Bernhard

Mehr

Digital meets analog. Analoge Welt Messung physikalischer Größen mittels Sensoren analoge Spannung. Analog-Digital-Wandlung (A/D)

Digital meets analog. Analoge Welt Messung physikalischer Größen mittels Sensoren analoge Spannung. Analog-Digital-Wandlung (A/D) Überblick Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien Elektronische Messgeräte im Elektronikpraktikum Passive Filter Signaltransport im Kabel Transistor Operationsverstärker PID-egler Sensorik

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Digital-Wandlung. Transferierung von Daten aus der realen (analogen) Welt in die (digitale) Welt des Rechners.

Digital-Wandlung. Transferierung von Daten aus der realen (analogen) Welt in die (digitale) Welt des Rechners. AD-Wandlung: Transferierung von Daten aus der realen (analogen) Welt in die (digitale) Welt des Rechners. DA-Wandlung: Transferierung von Daten aus dem Rechner in die reale Welt 1 Wichtige Begriffe: analog

Mehr

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31 Inhalt Vorwort... 5 1 Stammfunktionen... 7 1.1 Erklärung der Stammfunktionen........................................... 7 1.2 Eigenschaften der Stammfunktionen.................................... 10 1.3

Mehr

Übungsblatt 4. t = 1 t = 2 t = 3 t = 4 Zahlungen Projekt A e. Sie stellt einen Spezialfall der Kapitalwertmethode dar.

Übungsblatt 4. t = 1 t = 2 t = 3 t = 4 Zahlungen Projekt A e. Sie stellt einen Spezialfall der Kapitalwertmethode dar. Aufgaben Kapitel 4: Investitionsrechnung (Grundlagen, Kapitalwertmethode, Annuitätenmethode) 1. Zu den statischen Investitionsrechenverfahren gehören a. der statische Renditevergleich b. die Rentabilitätsrechnung

Mehr

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den

Mehr

Rotationskörper. Ronny Harbich. 1. August 2003 (geändert 24. Oktober 2007)

Rotationskörper. Ronny Harbich. 1. August 2003 (geändert 24. Oktober 2007) Rotationskörper Ronny Harbich 1. August 2003 geändert 24. Oktober 2007) Inhaltsverzeichnis 1 Einführung 3 2 Anschauliche Herleitung 4 2.1 Darstellungen................................. 4 2.2 Gleichungen

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik Kapitel : Berechnungsverfahren für Netzwerke Berechnungsverfahren für Netzwerken. Überlagerungsprinzip. Maschenstromverfahren. Knotenpotentialverfahren 6. Zweipoltheorie 7.5

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

AS Praktikum M.Scheffler, C.Koegst, R.Völz Amplitudenmodulation mit einer Transistorschaltung - 1 1. EINFÜHRUNG...2 2. VERSUCHSDURCHFÜHRUNG...

AS Praktikum M.Scheffler, C.Koegst, R.Völz Amplitudenmodulation mit einer Transistorschaltung - 1 1. EINFÜHRUNG...2 2. VERSUCHSDURCHFÜHRUNG... - 1 Inhaltsverzeichnis 1. EINFÜHRUNG...2 1.1 BESTIMMUNG DES MODULATIONSGRADS...3 1.1.1 Synchronisation auf die Modulationsfrequenz...4 1.1.2 Synchronisation auf die Trägerfrequenz...4 1.1.3 Das Modulationstrapez...4

Mehr

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands Auswertung zum Versuch Widerstandskennlinien und ihre Temperaturabhängigkeit Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 2. Juni 2008 1 Temperaturabhängigkeit eines Halbleiterwiderstands

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Audio Codecs. Vortrag im Seminar. Digital Audio. Sebastian Kraatz. 15. Dezember 2004

Audio Codecs. Vortrag im Seminar. Digital Audio. Sebastian Kraatz. 15. Dezember 2004 Vortrag im Seminar Digital Audio 15. Dezember 2004 1 Motivation Unkomprimierte digitale Daten Was ist ein Codec? 2 Hörschwellenmaskierung Frequenzmaskierung Zeitmaskierung 3 Motivation Unkomprimierte digitale

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

Übung 8: Digitale Modulationen

Übung 8: Digitale Modulationen ZHW, NTM, 25/6, Rur ufgabe : Modulationsarten. Übung 8: Digitale Modulationen Die Datensequenz wird bei einer festen Bitrate von Mb/s mittels 3 verschiedener Modulationsarten übertragen. Charakterisieren

Mehr

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches: Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung

Mehr

5.5 Ortskurven höherer Ordnung

5.5 Ortskurven höherer Ordnung 2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder

Mehr

Antwort zu Aufgabe 1.1

Antwort zu Aufgabe 1.1 Antwort zu Aufgabe 1.1 a) Die Betonung der Exportquote beruht auf einer recht merkantilistischen Sichtweise ( Exporte gut, Importe schlecht ), drückt sie doch aus, wie viel an das Ausland verkauft wurde.

Mehr

i c1 R c i b1 i b2 u a2 u e1 u e R e

i c1 R c i b1 i b2 u a2 u e1 u e R e Übungen zum 6. Versuch 13. Dezember 01 Elektronik 1 - UT-Labor 1. Folgende Schaltung zeigt einen einfachen Differenzverstärker. i c1 i c U b R c R c u a1 i b1 i b u a u e1 u e U b u e R e a) Stellen Sie

Mehr

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu.

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Basistext Funktionen Definition Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Man schreibt: f: x -> y mit y = f(x) Die Wertemenge einer Funktion f besteht aus

Mehr

Quiz zu Exponentialfunktion und Logarithmus

Quiz zu Exponentialfunktion und Logarithmus Quiz zu Exponentialfunktion und Logarithmus 24. Oktober 2013 Die zwei letzten Folien beziehen sich auf Einflussmaße ( simultane Änderungsrate von y mit x ) in lin-lin, log-lin, lin-log und log-log Modellen.

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

KLAUSUR DIGITALTECHNIK SS 00

KLAUSUR DIGITALTECHNIK SS 00 Aufgabe 1 (20P) KLAUSUR DIGITALTECHNIK SS 00 Entwerfen Sie ein Flipflop unter ausschließlicher Verwendung eines Dreifach-UND und dreier Zweifach-ODER. Beschreiben Sie das Verhalten ( Zustandsdiagramm,

Mehr

Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität. Akustische Ereignisse müssen Jetzt oder Nie gehört werden

Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität. Akustische Ereignisse müssen Jetzt oder Nie gehört werden Audiodesign Aufzeichnung akustischer Ereignisse Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende Akustische Ereignisse sind

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Schaltungstechnik 1 (Wdh.)

Schaltungstechnik 1 (Wdh.) Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik 1 (Wdh.) Univ.-Prof. Dr. techn. Josef A. Nossek Freitag, den 13.4.27 9. 1.3 Uhr Name: Vorname: Matrikel-Nr.: Hörsaal:

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Darstellungsformen einer Funktion

Darstellungsformen einer Funktion http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Elektrotechnik Protokoll - Nichtlineare Widerstände

Elektrotechnik Protokoll - Nichtlineare Widerstände Elektrotechnik Protokoll - Nichtlineare Widerstände André Grüneberg Andreas Steffens Versuch: 17. Januar 1 Protokoll: 8. Januar 1 Versuchsdurchführung.1 Vorbereitung außerhalb der Versuchszeit.1.1 Eine

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Übung zur Vorlesung. Digitale Medien. Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid, Hanna Schneider

Übung zur Vorlesung. Digitale Medien. Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid, Hanna Schneider Übung zur Vorlesung Digitale Medien Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid, Hanna Schneider Wintersemester 2015/16 Frequenzraum 0 5 10 15 20 Zeit (ms) f = 1/T T = 10ms = 0,01s f = 1/ 0,01s

Mehr

Messung & Darstellung von Schallwellen

Messung & Darstellung von Schallwellen Messung Digitalisierung Darstellung Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Messung Digitalisierung Darstellung Überblick Messung

Mehr

3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log

3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log Logarithmen 1. 5 3 = 125 ist gleichbedeutend mit 5 log(125) = 3. Formen Sie nach diesem Muster um. a) 2 5 = 32 b) 10 4 = 10 000 c) 7 0 = 1 d) 3 2 = 1/9 e) 10 3 = 0.001 f) 5 1/2 = 5 g) 6 log(216) = 3 h)

Mehr

Daraus ergibt sich: Eine Steigerung der Lokal-Magnitude um 1 entspricht einer Verzehnfachung des Ausschlags (denn 10 + M

Daraus ergibt sich: Eine Steigerung der Lokal-Magnitude um 1 entspricht einer Verzehnfachung des Ausschlags (denn 10 + M Erdbeben Außermathematische Anwendungen im Mathematikunterricht WS 2012/13 Franz Embacher, Universität Wien Entstehung von Erdbeben Siehe http://geol3uni-grazat/08w/geo521/seismologiepdf Das Magnituden-System

Mehr

Europäisches Patentamt European Patent Office Office europeen des brevets. Veröffentlichungsnummer: 0 349 793 A2 EUROPÄISCHE PATENTANMELDUNG

Europäisches Patentamt European Patent Office Office europeen des brevets. Veröffentlichungsnummer: 0 349 793 A2 EUROPÄISCHE PATENTANMELDUNG Europäisches Patentamt European Patent Office Office europeen des brevets Veröffentlichungsnummer: 0 349 793 A2 EUROPÄISCHE PATENTANMELDUNG Anmeldenummer: 89110522.3 Int. CI.4: H03M 1/20 @ Anmeldetag:

Mehr

Lineare Funktionen und Proportionalität

Lineare Funktionen und Proportionalität Lineare Funktionen und Proportionalität Rainer Hauser Dezember 2013 1 Allgemeine Funktionen 1.1 Blackboxmodell einer Funktion Eine Funktion liefert für Eingabewerte x, die man ihr gibt, Ausgabewerte y.

Mehr

PDM (Pulse Density Modulation)

PDM (Pulse Density Modulation) Fachbereich Medieninformatik Hochschule Harz PDM (Pulse Density Modulation) Referat Mario Judel 11274 Abgabe: 15.01.2007 Seite: 1 Inhaltsverzeichnis Einleitung...1 1 Grundlegendes zur Analog-Digital-Signalverarbeitung...4

Mehr

Anleitung für den Errichter. SYN 42 Sprachcomputer

Anleitung für den Errichter. SYN 42 Sprachcomputer Anleitung für den Errichter SYN 42 Sprachcomputer Inhalt 1. Einleitung Seite 3 2. Aufbau Seite 4 3. Funktion Seite 5 4. Technische Daten Seite 6 5. Anschlußbild Seite 8 2 1. Einleitung Bisher bestand die

Mehr

2 für 1: Subventionieren Fahrgäste der 2. Klasse bei der Deutschen Bahn die 1. Klasse?

2 für 1: Subventionieren Fahrgäste der 2. Klasse bei der Deutschen Bahn die 1. Klasse? 2 für 1: Subventionieren Fahrgäste der 2. Klasse bei der Deutschen Bahn die 1. Klasse? Felix Zesch November 5, 2016 Abstract Eine kürzlich veröffentlichte These lautet, dass bei der Deutschen Bahn die

Mehr

1 Digital vs. Analog. 2 Zahlendarstellungen und Codes. 1.1 Analog. 1.2 Digital. 1.3 Unterschied Analog zu Digital. 1.4 Von Analog zu Digital

1 Digital vs. Analog. 2 Zahlendarstellungen und Codes. 1.1 Analog. 1.2 Digital. 1.3 Unterschied Analog zu Digital. 1.4 Von Analog zu Digital Digitaltechnik DT1 - Zusammenfassung (v2.0 / Januar 2013) Seite 1 von 8 1 Digital vs. Analog 1.1 Analog Die reale Welt ist analog (z.b. Sinnesorgane) Die Analoge Verarbeitung stellt das Ergebnis einer

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Kommunikationstechnik II Wintersemester 07/08

Kommunikationstechnik II Wintersemester 07/08 Kommunikationstechnik II Wintersemester 07/08 Prof. Dr. Stefan Weinzierl Musterlösung: 2. Aufgabenblatt 1. Aufgabe: Abtastung a) Simulieren Sie mit Matlab zwei Cosinussignale der Länge 1 s mit den Frequenzen

Mehr