WS 2009/10. Diskrete Strukturen

Größe: px
Ab Seite anzeigen:

Download "WS 2009/10. Diskrete Strukturen"

Transkript

1 WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München

2 Kapitel IV Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2

3 Was sind Graphen? Allgemeine Bedeutung: Eine graphische Darstellung von numerischen Daten in einem Koordinatensystem. i.d.r. der Graph (G f A B) einer Funktion f wobei G f = {(x,f(x)): x A)} Technische Bedeutung in der Diskreten Mathematik: Eine spezielle Klasse von diskreten Strukturen, die hilfreich zur Darstellung von Relationen ist. 3

4 Was sind Graphen? Strukturen gebildet aus einer endlichen Anzahl von Knoten, die durch Kanten verbunden sein können. 4

5 Anwendung von Graphen 5 Viele reale Probleme lassen sich durch Graphen darstellen und somit auf Graphentheoretische Fragestellungen zurückführen Georg Cantor, 1867: In der Mathematik ist die Kunst des Fragestellens öfter gebräuchlich als die des Lösens! Verkehrswege zwischen Städten kürzeste Wege Transportwege mit Kapazitäten maximale Flüsse Zugmöglichkeiten in Spielen Gewinnstrategien

6 Anwendung von Graphen 6 In der Graphentheorie interessieren uns ausschließlich die Beziehungen zwischen den Knoten (deren Topologie). Topologie (topos Ort, Platz, logos Lehre, Wissen) Die Lehre von den Eigenschaften von Räumen, die bei Abbildungen, die die Lagebeziehungen zwischen den Elementen des Raumes erhalten, unverändert bleiben (Verzerrungen, die nicht zum Zerreißen führen).

7 Einschub Topologie Beispiel U-Bahn Karte 7

8 Einschub Topologie A Topologist is someone who can't tell the difference between a doughnut and a coffee cup. Eine Kaffeetasse und ein Donut haben die gleiche Topologie. 8

9 Einschub Topologie In der (mengentheoretischen) Topologie untersucht man für jedes Element die Teilmengen, die man als die Umgebungen dieses Elements definiert hat. Hierbei spielt der Abstand der Elemente keine Rolle, ganz generell interessieren hierbei metrische Eigenschaften (wie Streckenlängen, Winkellängen, Krümmungen) in der Regel nicht. 9

10 Einschub Topologie Zwei topologisch äquivalente Graphen 10

11 Einschub Topologie Topologische Grundbegriffe: auf dem Rand, innen, außen, sich schneidend, geschlossen keine topologischen Grundbegriffe: eckig, rund, links, rechts, oben, unten, da sie z.b. bei Achsenspiegelungen nicht unverändert bleiben. 11

12 Anwendung von Graphen 12 In der Graphentheorie interessiert uns: Welcher Knoten ist mit welchen anderen verbunden. Komme ich über gegebene Verbindungen von einem Knoten zu einem anderen. Wieviele Verbindungen muss ich überqueren, um von einem Knoten zu einem anderen zu kommen. Welches ist der kürzeste Weg, um von einem Knoten zu einem anderen zu gelangen. Gibt es einen Weg der alle Knoten/Kanten genau einmal besucht.

13 Anwendung von Graphen Königsberger Brückenproblem: Kann man einen Spaziergang durch Königsberg machen und dabei über jede Brücke genau einmal gehen und nach dem Spaziergang wieder zum Ausgangspunkt zurückkehren? 13

14 Anwendung von Graphen Königsberger Brückenproblem vom Problem zum Graph und dem graphentheoretischen Problem. 14

15 Anwendung von Graphen Das Haus vom Nikolaus: Entscheide, ob man das Haus zeichnen kann, ohne den Stift abzusetzen und ohne eine Linie doppelt zu ziehen. 15

16 Anwendung von Graphen Städtetour: Entscheide, ob man beginnend in einem Knoten (einer Stadt) alle Städte genau einmal bereisen kann und wieder in der ersten Stadt ankommt. 16

17 Definition: Ein Graph G ist eine Tupel (V,E), wobei V eine (endliche) nicht-leere Menge von Knoten (vertices) ist, und E eine Menge von Paaren {u,v}, u v ist. Die Elemente der Menge E bezeichnet man als Kanten (edges). 17 Graphische Repräsentation eines Graphen

18 Einige spezielle Graphen Graphen dürfen in manchen Fällen auch Mehrfachkanten und Schleifen haben. Parallele Kanten Schleifen 18

19 Definition: Eine Schleife (oder Schlinge) ist eine Kante der Form {u, u}. u 19

20 Definition: Ist E eine Multimenge (d. h. Kanten treten mit Vielfachheit auf), dann sind die Kanten mit Vielfachheit 2 oder größer Mehrfachkanten. Ein Graph, der Mehrfachkanten enthält, heißt auch Multigraph. v 20 u

21 Einige spezielle Graphen Ein Graph heißt einfach, falls er keine Schlingen oder Mehrfachkanten enthält. Einfache ungerichtete Graphen korrespondieren zu symmetrischen, irreflexiven binären Relationen R. 21

22 Vollständige Graphen In vollständigen Graphen K n sind alle n Knoten miteinander verbunden. K1 K2 K3 K4 K5 K6 Frage: Wieviele Kanten gibt es in einem vollständigen Graphen mit n Knoten. 22

23 Vollständige Graphen K1 K2 K3 K4 K5 K6 23 Für die Anzahl der Kanten in einem vollständigen Graphen mit n Knoten (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: E n 2 nn ( 1) 2

24 Kreise In Kreisen C n sind alle n (n 3) Knoten zyklisch miteinander verbunden. C3 C4 C5 C6 C7 C8 24

25 Gittergraphen Definition: Ein Graph G = (V,E) heißt ein m-n-gitter (zweidimensionales Gitter mit den Seitenlängen m und n, M m,n ), falls V = {1,,m} {1,,n} und i, j, k, l E i k j l 1 Kante zwischen Knoten ( i, j) und Knoten ( k, l) 25

26 Gittergraphen Beispiele: 26

27 (Binärer) Hyperwürfel 27 Definition: Ein Graph G = (V,E) heißt n-dimensionaler binärer Hyperwürfel (Q n ), falls V = V n = {0, 1} n mit E = {{v,w} V n2 : Hamming-Abstand(v,w) = 1}. Hamming-Distanz: Maß für die Unterschiedlichkeit von Zeichenketten - an wie vielen Stellen unterscheiden sich zwei Zeichenketten.

28 (Binäre) Hyperwürfel 28

29 Q 4 : 4-dimensionaler Hyperwürfel 29

30 Q 8 : 8-dimensionaler Hyperwürfel 30

31 Hyperwürfel Für die Anzahl der Knoten in Q n gilt: V = 2 n Für die Anzahl der Kanten in Q n gilt: n 2 E n n 2 2 n 1 31

32 Bipartite Graphen Definition: Ein Graph G = (V,E) heißt bipartit, genau dann wenn V = V 1 V 2 und V 1 V 2 = und e E: v 1 V 1, v 2 V 2 : e = {v 1,v 2 }. 32 D.h. der Graph kann in zwei Teile zerlegt werden, so dass alle Kanten zwischen diesen Teilen verlaufen.

33 Bipartite Graphen Beispiele: Kreis C8 V1 V2 33

34 Bipartite Graphen werden auch in der Form G = (V 1, V 2, E) geschrieben. Definition: Ein bipartiter Graph G = (V 1, V 2, E) heißt vollständig, falls E = {{u,v}: u V 1 v V 2 }. (Notation: K m,n mit m = V 1, n = V 2 ) 34

35 Wege, Pfade, Kreise 35 Ein Weg der Länge k in einem Graphen G = (V,E) ist eine nichtleere Folge w = (v 0,,v k ) von Knoten aus V, so dass {v i,v i+1 } E für alle i = 0,,k-1. (Beachte: (v_0) ist ein Weg der Länge 0.) Ein Pfad in G ist ein Weg in G, in dem alle Knoten paarweise verschieden sind. Ein Kreis der Länge k (k 3) in G ist ein Weg w = (v 0,,v k ) in dem v 0,, v k-1 paarweise verschieden sind und v 0 = v k.

36 Pfade Definition: Der Graph P n ist der Graph (V,E) mit V = {v 1,,v n } und E = {v i, v i+1 }; i = 1,,n 1. 36

37 Wege und Pfade Beispiel: Ein Weg der Länge 7, der aber kein Pfad ist. 37

38 Teilgraphen Ein Graph H = (V H,E H ) heißt Teilgraph eines Graphen G = (V G,E G ), falls V H V G und E H E G. Gilt E H = E G M = {{u,v}: u V H v V H }, so nennt man H einen induzierten Teilgraphen von G und schreibt H = G[V H ]. 38

39 Induzierte Teilgraphen 39 G1 ist Teilgraph von G, aber nicht induziert; G2 ist der von {1, 2, 4, 5, 7} induzierte Teilgraph; G3 ist nicht Teilgraph von G.

40 Induzierte Teilgraphen Sei V V. Dann bezeichnet G \ V den durch V \ V induzierten Teilgraphen von G. Beispiel: G 4 = G \ {2, 3, 4, 7} 40

41 Induzierte Teilgraphen 41 Zur Konstruktion von induzierten Teilgraphen dürfen nur Kanten in Kombination mit den dazugehörigen Knoten entfernt werden.

42 Nachbarschaft und Grad 42 Definition: Für einen Knoten v V eines Graphen G = (V,E) definiert man die Nachbarschaft (v) durch (v) := {u V: {v,u} E} Der Grad (degree) von v bezeichnet die Anzahl von Nachbarn von v: deg(v) := (v). Wenn v V gilt: deg(v) = k, dann ist G k-regulär.

43 Wenn G = (V,E) ist, dann heißen u und v adjazent, wenn {u,v} E, heißen u und v Endknoten der Kante {u,v} E, heißen u V und e E inzident, wenn u Endknoten der Kante e ist, ist u V erreichbar von v V, falls es einen Pfad P mit Anfangsknoten v und Endknoten u gibt. 43

44 Wenn G = (V,E) ist, dann ist Erreichbarkeit eine Äquivalenzrelation auf V, nennen wir die auf den einzelnen Äquivalenzklassen induzierten Untergraphen die (zusammenhängenden) Komponenten von G, heißt G zusammenhängend, wenn er nur eine Komponente hat. 44

45 Darstellung von Graphen Neben der bisherigen Darstellung können Graphen in Form von Adjazenzmatrizen und Inzidenzmatrizen dargestellt werden. Bei Nummerierung der Ecken (u 1,,u n ) und Kanten (e 1,,e m ) ist die Adjazenzmatrix die n x n-matrix A mit Einträgen a ij 1 falls u u 0 sonst. i j K 45

46 Darstellung von Graphen Neben der bisherigen Darstellung können Graphen in Form von Adjazenzmatrizen und Inzidenzmatrizen dargestellt werden. 46

47 Darstellung von Graphen Neben der bisherigen Darstellung können Graphen in Form von Adjazenzmatrizen und Inzidenzmatrizen dargestellt werden. Bei Nummerierung der Ecken (u 1,,u n ) und Kanten (e 1,,e m ) ist die Inzidenzmatrix die n x m-matrix B mit Einträgen b ij 1 falls u 0 sonst. i k j 47

48 Darstellung von Graphen 48

49 Darstellung von Graphen 49

50 Isomorphe (strukturgleiche) Graphen Zwei Graphen G(V,E) und G (V,E ) heißen isomorph (in Zeichen G G ), falls gilt: (Bijektion : V V ): {u,v} E { (u), (v)} E. Die Abbildung Knotenmenge V ist dann eine Permutation der

51 Isomorphe (strukturgleiche) Graphen 3 d 4 2 e c 0 1 Die Abbildung ist: a b c d e Die Graphen sind offensichtlich isomorph. a b

52 Isomorphe (strukturgleiche) Graphen e c d 0 1 Unter der Abbildung a e d b a c wird jede Kante {u,v} E auf eine Kante { (u), (v)} E abgebildet. Die Graphen sind also isomorph. b

53 Isomorphe Graphen Sind die beiden folg. Graphen isomorph? Beachte die Gradfolgen (aufsteigend geordnete Folge der Knotengrade) der beiden Graphen. 53

54 Zusammenhängende Graphen Definition: 54 Ein Graph G = (V,E) heißt zusammenhängend, wenn für jedes Paar von Knoten u,v V ein Pfad von u nach v in G existiert. Ansonsten heißt der Graph unzusammenhängend. Die Relation R G µ V V mit u R G v gdw. es einen Pfad von u nach v gibt ist eine Äquivalenzrelation. Die Äquivalenzklassen von R G heissen Zusammenhangskomponenten.

55 Zusammenhangskomponenten eines Graphen Lässt sich die Knotenmenge V eines Graphen G(V,E) darstellen als 55 V k i so dass zwei Knoten u,v genau dann über einen Pfad verbunden sind, wenn u,v V i, dann sind die Teilgraphen G[V i ] die Zusammenhangskomponenten des Graphs. 1 V i

56 Zusammenhangskomponenten eines Graphen Beispiel: Ein Graph bestehend aus drei Zusammenhangskomponenten 56

57 Frage: Gibt es eine Beziehung zwischen den Graden der Knoten und der Anzahl von Kanten in einem Graph? 57

58 Frage: Gibt es eine Beziehung zwischen den Graden der Knoten und der Anzahl von Kanten in einem Graph? Antwort: Satz (Handshaking Theorem): Für jeden Graphen G = (V,E) gilt: 58 v V deg( v) 2 E.

59 Beweis des Handshaking Theorems: Wir verwenden das Prinzip der doppelten Abzählung. Auf der linken Seite der Gleichung wird jede Kante zweimal gezählt, nämlich für die beiden Endknoten der Kante. Auf der rechten Seite wird jede Kante auch zweimal gezählt. 59

60 Frage: Angenommen es wären n Leute auf einem Empfang, von denen sich im Verlauf des Empfangs einige die Hand geben, andere nicht. Können wir etwas über die Anzahl von Leuten sagen, die einer ungeraden Anzahl von Leuten die Hand geben? 60

61 Antwort: Wir repräsentieren Händeschütteln durch einen Graphen G(V,E), wobei die Knoten v V des Graphen die Leute repräsentieren, und eine Kante e E zwischen zwei Knoten bedeutet, dass sich die korrespondierenden Leute die Hand geben. 61

62 Antwort: Es gilt: V = V g V u wobei V g und V u die Knoten mit geradem bzw. ungeradem Grad sind. 62

63 Antwort: Es gilt: V = V g V u wobei V g und V u die Knoten mit geradem bzw. ungeradem Grad sind. Also ist: deg( v) deg( v) deg( v) 2 E v V v V v V g u 63

64 Antwort: 64 Da deg( v) deg( v) deg( v) 2 E v V v V v V muss der zweite Summand gerade sein. Die Summe von k ungerade Zahlen ist aber nur gerade, wenn k gerade ist, woraus das Korollar folgt: Für jeden Graphen G = (V,E) ist die Anzahl der Knoten mit ungeradem Grad gerade. g u

65 Graphkomponenten Satz: Jeder Graph G = (V,E) enthält mindestens V - E viele Zusammenhangskomponenten. Beweis: Durch Induktion über m= E. Basis: m=0. Dann gibt es V = V -m Komponenten. Schritt: m>0. Wir nehmen eine Kante e weg. Der resultierende Graph G hat mindestens V - (m-1) Komponenten (Induktionsannahme). Wir fügen nun e erneut zu G hinzu. Das reduziert die Anzahl der Komponenten um höchstens 1. Der Graph G hat also mindestens V - (m-1) -1 = V -m Komponenten. 65

66 Graphkomponenten Satz: Für jeden zusammenhängenden Graph G = (V,E) gilt: E V - 1. Beweis: Da ein zusammenhängender Graph aus genau einer Komponente besteht, folgt aus dem vorherigen Satz, dass V - E 1. 66

67 Bisher haben wir ausschließlich ungerichtete Graphen besprochen, d.h. die Kantenmenge besteht aus ungeordneten Paaren {u, v}. Ein Graph heißt ein gerichteter Graph, falls E eine Menge von geordneten 2-Tupeln (u, v) ist, d.h. E V V. 67

68 Gerichtete Graphen Definition: d (v) ist der Aus-Grad von v, d. h. die Anzahl der Kanten mit Anfangsknoten v. d + (v) ist der In-Grad von v, d. h. die Anzahl der Kanten mit Endknoten v. d(v) = d (v) + d + (v) ist der (Gesamt-)Grad von v. 68

69 Gerichtete Graphen 69 Definition: d (v) ist der Aus-Grad von v, d. h. die Anzahl der Kanten mit Anfangsknoten v. d + (v) ist der In-Grad von v, d. h. die Anzahl der Kanten mit Endknoten v. d(v) = d (v) + d + (v) ist der (Gesamt-)Grad von v. Es gilt: v V d ( v) d ( v) E v V

70 Gerichtete Graphen Ein gerichteter Pfad ist eine Folge von verschiedenen Knoten u 1,,u n mit u i u i+1 (d.h. es existiert eine gerichtete Kante von u i nach u i+1 ) für alle i. Ein gerichteter Kreis wird analog definiert. In Graph G, der keinen gerichteten Kreis enthält, heißt azyklisch. 70

71 Gerichtete Graphen Anwendung Prozessabhängigkeiten: Programm A benötigt Ergebnisse von B und C Programm B benötigt Ergebnisse von D und E Programm C benötigt Ergebnisse von B und D Programm D benötigt keine Ergebnisse Programm E benötigt Ergebnisse von A und C Frage: Funktioniert ein so konstruiertes Programm? 71

72 Gerichtete Graphen Anwendung Prozessabhängigkeiten Bei Darstellung als Graph erkennen wir einen Zyklus: A wartet auf B B wartet auf E E wartet auf A! 72

73 Gerichtete Graphen Azyklische gerichtete Graphen G spielen eine zentrale Rolle in Transportproblemen. G enthält immer spezielle Knoten, sog. Quellen, aus denen Kanten nur ausgehen, und sog. Senken, in die Kanten nur eingehen, da jeder azyklische Graph mindestens einen Knoten v mit d + (v) = 0 und mindestens einen Knoten w mit d (w) = 0 besitzt. In Transportproblemen wollen wir möglichst viel von den Quellen zu den Senken transportieren. 73

74 Beispiel dag (directed acyclic graph) 74

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007 Graphentheorie Rainer Schrader Organisatorisches Zentrum für Angewandte Informatik Köln 23. Oktober 2007 1 / 79 2 / 79 Organisatorisches Organisatorisches Dozent: Prof. Dr. Rainer Schrader Weyertal 80

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Algorithmen und Datenstrukturen (WS 2007/08) 63

Algorithmen und Datenstrukturen (WS 2007/08) 63 Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Graphentheorie Mathe-Club Klasse 5/6

Graphentheorie Mathe-Club Klasse 5/6 Graphentheorie Mathe-Club Klasse 5/6 Thomas Krakow Rostock, den 26. April 2006 Inhaltsverzeichnis 1 Einleitung 3 2 Grundbegriffe und einfache Sätze über Graphen 5 2.1 Der Knotengrad.................................

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Vorlesungen vom 5.Januar 2005

Vorlesungen vom 5.Januar 2005 Vorlesungen vom 5.Januar 2005 5 Planare Graphen 5.1 Beispiel: Gas, Wasser, Elektrik Drei eingeschworene Feinde, die im Wald leben, planen Trassen zu den Versorgungswerken für die drei Grundgüter Gas, Wasser

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

5.1 Graphentheorie. Ulrik Brandes

5.1 Graphentheorie. Ulrik Brandes 5.1 Graphentheorie Ulrik Brandes Die Graphentheorie ist ein Zweig der Diskreten Mathematik, dessen Entstehung für gewöhnlich auf eine 1736 erschienene Arbeit von Leonhard Euler über das so genannte Königsberger

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Flüsse in Netzwerken

Flüsse in Netzwerken Skript zum Seminar Flüsse in Netzwerken WS 2008/09 David Meier Inhaltsverzeichnis 1 Einführende Definitionen und Beispiele 3 2 Schnitte in Flussnetzwerken 12 2.1 Maximaler s t Fluss..........................

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Elementargeometrie. Prof. Dr. Andreas Meister SS digital von: Frank Lieberknecht

Elementargeometrie. Prof. Dr. Andreas Meister SS digital von: Frank Lieberknecht Prof. Dr. Andreas Meister SS 2004 digital von: Frank Lieberknecht Geplanter Vorlesungsverlauf...1 Graphentheorie...1 Beispiel 1.1: (Königsberger Brückenproblem)... 1 Beispiel 1.2: (GEW - Problem)... 2

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Vertiefte Grundlagen Graphentheorie

Vertiefte Grundlagen Graphentheorie Bauinformatik Vertiefte Grundlagen Graphentheorie 5. Semester 8. Vorlesung Graphentheoretische ti h Grundlagen Prof. Dr.-Ing. Nürnberger Str. 3a R. J. Scherer 2. OG, Raum 24 Graphen im Bauwesen Baumanagement

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? 1 Königsberger Brückenproblem Im Jahre 1736 Leonhard Euler löste das Problem allgemein

Mehr

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17)

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17) Vorlesung Kombinatorische Optimierung (Wintersemester 06/7) Kapitel : Flüsse und Zirkulationen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. Oktober 06) Definition. Ein Netzwerk

Mehr

4.7 Der Algorithmus von Dinic für maximalen Fluss

4.7 Der Algorithmus von Dinic für maximalen Fluss 4.7 Der Algorithmus von Dinic für maximalen Fluss Wir kennen bereits den Algorithmus von Ford Fulkerson zur Suche nach einem maximalen Fluss in einem Graphen. Wir lernen nun einen Algorithmus für maximalen

Mehr

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN KPITEL 6 GNZZHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULRE MTRIZEN F. VLLENTIN,. GUNDERT. Ganzzahlige lineare Programme Viele Optimierungsprobleme des Operations Research lassen sich als ganzzahlige lineare

Mehr

C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume

C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume Fachbereich IV, Informatik Softwarepraktikum C++, LEDA und STL Visualisierung minimal/maximal aufspannender Bäume Wintersemester 2004/2005 Dokumentation Algorithmen zur Lösung von MST - Problemen Nicolas

Mehr

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61)

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Planare Graphen, Traveling Salesman Problem, Transportnetze Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Teil IV: Planare Graphen / Transportnetze 1. Planare Graphen / Traveling

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Algorithmische Mathematik

Algorithmische Mathematik Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)

Mehr

Algorithmische Methoden der Netzwerkanalyse

Algorithmische Methoden der Netzwerkanalyse Algorithmische Methoden der Netzwerkanalyse Marco Gaertler 9. Dezember, 2008 1/ 15 Abstandszentralitäten 2/ 15 Distanzsummen auf Bäumen Lemma Sei T = (V, E) ein ungerichteter Baum und T s = (V S, E s )

Mehr

Property Testing in Graphen mit beschränktem Maximalgrad

Property Testing in Graphen mit beschränktem Maximalgrad Property Testing in Graphen mit beschränktem Maximalgrad Björn Schümann Seminar Graphentheorie und Kombinatorik WS 2007-08 Inhaltsverzeichnis 1 Einleitung 2 2 Allgemeine Aussagen zum Property Testing 3

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Modelle und Statistiken

Modelle und Statistiken Kapitel 4 Modelle und Statistiken In letzter Zeit werden vermehrt Parameter (Gradfolgen, Kernzahlfolgen, etc.) empirischer Graphen (Internet, WWW, Proteine, etc.) berechnet und diskutiert. Insbesondere

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über solch eine Kante pro Zeiteinheit transportiert werden können. Wir können uns einen

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien.

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. Lösungen Übung 13 Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. a) Strategie 1 (nächster Nachbar): Jedes Mal reist der Reisende vom Punkt, wo er gerade ist, zur nächstgelegenen Stadt,

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

5. Verschiedene Repräsentanten

5. Verschiedene Repräsentanten 5. Verschiedene Repräsentanten 5.1. Die Sätze Hall und König Sei I := {1,...,n}, und sei A(I) = (A 1,...,A n ) eine Familie von Teilmengen einer endlichen Menge E. Zu K I seien A(K) := (A i : i K) und

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Bäume 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Inhalt Grundbegriffe: Baum, Binärbaum Binäre Suchbäume (Definition) Typische Aufgaben Suchaufwand Löschen allgemein, Methode Schlüsseltransfer

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

6.2 Petri-Netze. kommunizierenden Prozessen in der Realität oder in Rechnern Verhalten von Hardware-Komponenten Geschäftsabläufe Spielpläne

6.2 Petri-Netze. kommunizierenden Prozessen in der Realität oder in Rechnern Verhalten von Hardware-Komponenten Geschäftsabläufe Spielpläne 6.2 Petri-Netze WS 06/07 mod 621 Petri-Netz (auch Stellen-/Transitions-Netz): Formaler Kalkül zur Modellierung von Abläufen mit nebenläufigen Prozessen und kausalen Beziehungen Basiert auf bipartiten gerichteten

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

Einführung in die Lineare und Kombinatorische Optimierung

Einführung in die Lineare und Kombinatorische Optimierung Einführung in die Lineare und Kombinatorische Optimierung (Algorithmische Diskrete Mathematik I, kurz ADM I) Skriptum zur Vorlesung im WS 2012/2013 Prof. Dr. Martin Grötschel Institut für Mathematik Technische

Mehr

Praktikum Planare Graphen

Praktikum Planare Graphen 1 Praktikum Planare Graphen Michael Baur, Martin Holzer, Steffen Mecke 10. November 2006 Einleitung Gliederung 2 Grundlagenwissen zu planaren Graphen Themenvorstellung Gruppeneinteilung Planare Graphen

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Guten Morgen und Willkommen zur Saalübung!

Guten Morgen und Willkommen zur Saalübung! Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk Flüsse in Netzwerken Seminar über Algorithmen SoSe 2005 Mike Rohland & Julia Schenk Inhalt Einführung Definition Maximale Flüsse Schnitte Restgraphen Zunehmende Wege Max-Fluss Min-Schnitt Theorem Ford-Fulkerson

Mehr

Algorithmen zur Berechnung von Matchings

Algorithmen zur Berechnung von Matchings Algorithmen zur Berechnung von Matchings Berthold Vöcking 1 Einleitung Matchingprobleme sind Zuordnungsprobleme. Es geht darum z.b. Studierenden Plätze in Seminaren zuzuordnen, Bewerber auf freie Stellen

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

Von optimaler Partnerwahl, minimalen Schnitten und maximalen Flüssen. Schülerwoche der Bonner Mathematik 2013

Von optimaler Partnerwahl, minimalen Schnitten und maximalen Flüssen. Schülerwoche der Bonner Mathematik 2013 Von optimaler Partnerwahl, minimalen Schnitten und maximalen Flüssen Schülerwoche der Bonner Mathematik 203 3. September 203 Dr. Lisa Beck Hausdorff Center for Mathematics Universität Bonn Einleitung Ziel

Mehr

Beispiele für Relationen

Beispiele für Relationen Text Relationen 2 Beispiele für Relationen eine Person X ist Mutter von einer Person Y eine Person X ist verheiratet mit einer Person Y eine Person X wohnt am gleichen Ort wie eine Person Y eine Person

Mehr

16. Flächenfärbungen

16. Flächenfärbungen Chr.Nelius: Graphentheorie (WS 2015/16) 57 16. Flächenfärbungen In der Mitte des 19. Jahrhunderts tauchte eine Vermutung auf, die erst 125 Jahre später bewiesen werden sollte und die eine der bekanntesten

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. Bäume und Wälder 2 / 37 Bäume

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Kapitel 6: Graphalgorithmen Gliederung

Kapitel 6: Graphalgorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Mathe & Informatik II

Mathe & Informatik II Mathe & Informatik II Sommersemester 2015 Christoph Minnameier (Work in Progress) Vorlesungsinhalte Graphentheorie Algorithmen & Datenstrukturen Komplexität & Laufzeit Mathe & Informatik I (Jakob) Potenzen,

Mehr

Die in den Suchverfahren konstruierten Graphen waren zusammenhängend und enthielten keine Kreise. Also vereinbaren wir:

Die in den Suchverfahren konstruierten Graphen waren zusammenhängend und enthielten keine Kreise. Also vereinbaren wir: Kapitel 4 Bäume und Matchings Wir haben im letzten Kapitel Bäume implizit als Ergebnis unserer Suchverfahren kennengelernt. In diesem Kapitel wollen wir diese Graphenklasse ausführlich untersuchen. 4.1

Mehr

2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit:

2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit: Vorlesung 5.5. VERBINDUNGSNETZWERKE Kommunikation zwischen den einzelnen Komponenten eines arallelrechners wird i.d.r. über ein Netzwerk organisiert. Dabei unterscheidet man zwei Klassen der Rechner: TOOLOGIE:

Mehr

5 Relationen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti

5 Relationen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Allgemeine Definition einer Relation Eine n-stellige Relation

Mehr

Graphen und Algorithmen

Graphen und Algorithmen Graphen und Algorithmen Vorlesung #1: Grundlagen Dr. Armin Fügenschuh Technische Universität Darmstadt WS 2007/2008 Übersicht Graphen: Grundbegriffe und -bezeichnungen Planare Graphen Darstellung von Graphen

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Netzwerkmodelle. Seminar Netzwerkanalyse. Sommersemester 2005 Jasmine Metzler

Netzwerkmodelle. Seminar Netzwerkanalyse. Sommersemester 2005 Jasmine Metzler Netzwerkmodelle Seminar Netzwerkanalyse Sommersemester 2005 Jasmine Metzler 1 Grundlegende Modelle Das Graph Modell (G n,p ) Definition Verschiedene Modelle Small World Modell Lokale Suche Power Law Modelle

Mehr

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

Hackenbusch und Spieltheorie

Hackenbusch und Spieltheorie Hackenbusch und Spieltheorie Was sind Spiele? Definition. Ein Spiel besteht für uns aus zwei Spielern, Positionen oder Stellungen, in welchen sich das Spiel befinden kann (insbesondere eine besondere Startposition)

Mehr

Quantitative Methoden Wissensbasierter Systeme

Quantitative Methoden Wissensbasierter Systeme Quantitative Methoden Wissensbasierter Systeme Probabilistische Netze und ihre Anwendungen Robert Remus Universität Leipzig Fakultät für Mathematik und Informatik Abteilung für Intelligente Systeme 23.

Mehr

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen 6. Flüsse in Netzwerken Berechnung maximaler Flüsse Satz 6.4. Ersetzt man in Algorithmus 6.1 den Schritt 2 durch 2a. Wähle den Knoten, der zuerst in eingefügt wurde. Setze. dann berechnet der arkierungsalgorithmus

Mehr