Übung zur Vorlesung Statistik I WS Übungsblatt 12

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übung zur Vorlesung Statistik I WS Übungsblatt 12"

Transkript

1 Übung zur Vorlesung Statistik I WS Übungsblatt Januar 2014 Die folgenden ufgaben sind aus ehemaligen Klausuren! ufgabe 38.1 (1 Punkt: In einer Studie werden 10 Patienten therapiert. Die Heilungswahrscheinlichkeit sei 50%. Wie groß ist die Wahrscheinlichkeit, dass die letzten drei Patienten alle geheilt werden? mindestens zwei der letzten drei Patienten geheilt werden? der erste, der letzte und von den übrigen weitere 3 geheilt werden?

2 ( = 4 8 = 1 2 ) = ufgabe 38.2 (1 Punkte): eschreiben Sie mit Hilfe eines Laplace Wahrscheinlichkeitsraums das dreimalige Werfen einer unverfälschten Münze. Geben Sie die Elemente dieses Raums und die Wahrscheinlichkeit für jedes Element explizit an. Obiges Experiment werde beschrieben durch drei unabhängige Zufallsvariablen X i, i = 1, 2, 3, jeweils mit X i = 1 für Zahl und X i = +1 für Kopf beim i-ten Wurf. Wie lautet die ildmenge und Wahrscheinlichkeitsverteilung für die Zufallsvariable S = X1 + X2 + X3. 1 stehe für Kopf und 1 für Zahl. Ω = {(1, 1, 1), ( 1, 1, 1), (1, 1, 1), ( 1, 1, 1), (1, 1, 1), ( 1, 1, 1)(1, 1, 1), ( 1, 1, 1)} Da Ω Laplace Raum ist, hat jedes Element von Ω die Wahrscheinlichkeit 1 Ω = 1 8.

3 ildmenge: = {3, 1, 1, 3}. P(3) = 1 8 P(1) = 3 8 P( 1) = 3 8 P( 3) = 1 8 ufgabe 38.3 (1 Punkt): Die Wahrscheinlichkeit, beim Wurf eines fairen Würfels eine 1 zu würfeln, ist 1. In drei Versuchen würfelt man genau zweimal eine 1. Wie 6 wahrscheinlich ist es, dass man beim ersten mal eine 1 gewürfelt hat? Wie wahrscheinlich ist es, dass man beim ersten mal eine 1 gewürfelt hat, wenn bekannt ist, dass man beim dritten mal eine 1 gewürfelt hat?

4 : Unter den drei Würfen befinden sich genau 2 mal die 1. : Der erste Wurf ist eine 1. Gefragt ist nach der bedingten Wahrscheinlichkeit P( ) = P( ) P() Durch bzählen der Elementarereignisse im zugehörigen Laplaceraum erhält man: P( ) = und P() = Daraus folgt P( ) P( ) = = 2 P() 3. Jetzt definiert man: : Unter den drei Würfen befinden sich genau 2 mal die 1 und der dritte Wurf ist eine 1. : Der erste Wurf ist eine 1. Gesucht ist die bedingte Wahrscheinlichkeit: P( ) = P( ) P() Es gilt und Daraus folgt P( ) = P( ) = P() = P( ) P() = 1 2. ufgabe 38.4 (1 Punkt):

5 Eine Zufallsvariable X hat Erwartungswert 3 und Varianz 9. estimmen Sie Erwartungswert, Varianz und Streuung (Standardabweichung) der Zufallsvariablen 3 X + 3. Eine Zufallsvariable Y nimmt nur die Werte 0 und 1 an. Y hat Erwartungswert 0.2. erechnen Sie Varianz und Streuung von Y. E(3 X + 3) = 3E(X) + 3 = 12 Var(3 X + 3) = Var(3 X) = 9 Var(X) = 81 σ(3 X + 3) = Var(3 X + 3) = 9 Y ist binomialverteilt mit einer Versuchswiederholung. Damit gilt ganz allgemein E(Y ) = p, und Var(Y ) = p(1 p) σ(y ) = p(1 p). us p = 0.2 folgt damit Var(Y ) = = 0.16 und σ(y ) = 0.4. ufgabe 38.5 (1 Punkt): Eine Zufallsvariable X habe Erwartungswert 3 und Standardabweichung 4. Eine Zufallsvariable Y habe Erwartungswert 4 und Standardabweichung 3. ngenommen die Zufallsvariable X + Y habe Erwartungswert 7 und Standardabweichung 5 Erwartungswert 7 und Standardabweichung 7 Erwartungswert 7 und Standardabweichung 9.

6 Geben Sie für jeden der drei Fälle an, ob die beiden Zufallsvariablen unabhängig sein können (mit egründung). Sind X und Y unabhängig, dann gilt Var(X + Y ) = Var(X) + Var(Y ) = = 25. Die Standardabweichung von X + Y muss also 5 sein. Damit können nur in X und Y unabhängig sein. ufgabe 38.6 (1 Punkt): Die Wahrscheinlichkeit, bei einem Zufallsexperiment das Ereignis X < 5 zu erhalten, sei 0.05, die Wahrscheinlichkeit X > 5 zu erhalten sei ebenfalls Kann die Zufallsvariable mit einer stetigen Wahrscheinlichkeitsverteilung verteilt sein? (egründung!) Nein! Da und damit 1 = P(X < 5) + P(X = 5) + P(X > 5) P(X = 5) = 0.9 gilt, macht die Verteilungsfunktion bei 5 einen Sprung der Höhe 0.9. Sie ist damit nicht stetig. ei stetigen Verteilungen ist die Wahrscheinlichkeit einzelner Punkte immer 0. ufgabe 38.7 (1 Punkt): Die Funktion f ist stetig, symmetrisch zur y- chse und größer gleich Null. Es gilt für f: Das Integral von bis 3 ist

7 0.2 und das Integral von 3 bis +3 ist 0.6. Kann f eine Dichtefunktion sein? egründen Sie Ihre ntwort. Ja! Da das Integral von 3 bis wegen der Symmetrie von f auch 0.2 sein muss, ist das Integral von f über die gesamte reelle chse gleich 1. ufgabe 38.8 (1 Punkt): erechnen Sie für eine poissonverteilte Zufallsvariable X mit Erwartungswert λ die bedingte Wahrscheinlichkeit dafür, dass X 2 ist, wenn X 1 ist. P(X 2 X 1) = P(X 2 und X 1) P(X 1) = P(X 2) P(X 1) = 1 e λ λe λ 1 e λ. ufgabe 38.9 (1 Punkt): Es sei S die Summe zweier unabhängiger poissonverteilter Zufallsvariablen mit Parameter λ 1 und λ 2. Man kann beweisen, dass dann S wieder poissonverteilt ist. erechnen Sie die Wahrscheinlichkeit dafür, dass S = 0 ist. Seien X und Y unabhängig und poissonverteilt mit Erwartungswerten λ 1 und λ 2. P(X + Y = k) = k i=0 e λ 1 λi 1 λ k i i! e λ 2 2 (k i)!

8 = e (λ 1+λ 2 ) = e (λ 1+λ 2 ) k! = e (λ 1+λ 2 ) k! k i=0 k i=0 k i=0 λ i 1λ (k i) 2 i!(k i)! λ i 1λ (k i) 2 λ i 1λ (k i) 2 = e (λ 1+λ 2 ) (λ 1 + λ 2 ) k Im letzten Schritt wird die allgemeine inomische Formel (a + b) k = k i=0 k! ( ) k a i b k i i k! i!(k i)! ( ) k i angewandt. Das beweist, dass S = X + Y poissonverteilt mit Erwartungswert λ 1 + λ 2 ist. Demnach ist P(S = 0) = e (λ 1+λ 2 ). ufgabe (1 Punkt): ls Normbereich bezeichnet man bei diagnostischen Tests diejenigen Messwerte, die dafür sprechen, dass der/die Getestete gesund ist (=negatives Testresultat). eurteilen Sie die folgenden ussagen: Wenn der Normbereich verkleinert wird, steigt die Spezifität. Richtig oder falsch? Wenn der Normbereich verkleinert wird, steigt die Sensitivität. Richtig oder falsch? (Es wird davon ausgegangen, dass durch die Änderung des Normbereichs sich für mindestens einen Kranken und mindestens einen Gesunden das Testergebnis ändert.) Falsch. Richtig. Folgt direkt aus den Definitionen von Sensitivität und Spezifität. ufgabe (1 Punkt): ei einem Patienten verlief ein klinischer Test positiv. Sollte es den Patienten eher beunruhigen, wenn er erfährt, dass die

9 Sensitivität des Tests niedrig ist oder wenn er erfährt, dass die Spezifität des Tests niedrig ist? Irgendwie ist zwar alles in der Medizin beunruhigend, aber wenn die Spezifität des Tests gering ist, dann ist auch der positive prädiktive Wert eher klein. D.h. ein positiver Test bedeutet nur mit mäßiger Wahrscheinlichkeit, dass der Patient auch wirklich krank ist. Es besteht also noch eine gewisse Hoffnung!. ufgabe (1 Punkt): Füllen Sie die vier Lücken aus. Ein Fehler erster rt wurde begangen, wenn die Nullhypothese aber nach der Studie die lternative wurde. Ein Fehler zweiter rt wurde begangen, wenn die Nullhypothese aber nach der Studie die lternative wurde. war, Ein Fehler erster rt wurde begangen, wenn die Nullhypothese wahr war, aber nach der Studie die lternative angenommen wurde. Ein Fehler zweiter rt wurde begangen, wenn die Nullhypothese falsch war, aber nach der Studie die lternative nicht angenommen wurde. ufgabe (1 Punkt): Verifizieren Sie die folgenden ussagen: war, Die Power einer Studie steigt, wenn bei sonst gleichen Rahmenbedingungen die Fallzahl verdoppelt wird. Richtig/falsch? Die Power einer Studie steigt, wenn bei sonst gleichen Rahmenbedingungen das Signifikanzniveau verdoppelt wird. Richtig/falsch? Die Power einer Studie steigt, wenn bei sonst gleichen Rahmenbedingungen der wahre Effekt verdoppelt wird. Richtig/falsch? Richtig. Richtig. Richtig.

10 ufgabe (1 Punkt): Ziel einer Studie ist die Senkung des lutdrucks. Die Patienten werden zufällig auf zwei Medikamente und verteilt. Der lutdruck wird unmittelbar vor eginn der Studie und nach drei Wochen Therapie gemessen. Die Werte werden stetig gemessen und sind normalverteilt. Dasselbe gilt für Differenzen der Werte. Mit welchem statistischen Test bzw. welcher statistischen Methode wird geprüft, D E ob sich die beiden Gruppen am nfang unterschieden, ob die Werte am Ende der Studie für die Patienten insgesamt unterschiedlich zu den Werten am nfang der Studie waren, ob sich die beiden Gruppen am Ende unterschieden, ob die Differenz Messung nach drei Monaten minus nfangswert in den Gruppen unterschiedlich war, ob ein Zusammenhang zwischen den Werten am nfang und am Ende besteht? D E t-test für unabhängige Stichproben. t-test für abhängige Stichproben. t-test für unabhängige Stichproben. t-test für unabhängige Stichproben. Korrelations- und Regresionsanalyse. ufgabe (1 Punkt): Die Prüfgröße des hi-quadrat Tests lautet: X = Zellen (eobachtete Häufigkeit - Erwartete Häufigkeit) 2 Erwartete Häufigkeit In einer Studie kam es zu folgenden Ergebnissen: krank gesund gesamt Therapie Therapie War das Ergebnis auf dem 5% Niveau (zweiseitig) signifikant? (Kritischer Wert: 3.84) X = 6, also signifikant auf dem Niveau 5%. ufgabe (1 Punkt):

11 Seien X und Y unabhängige Zufallsvariablen mit Varianz σ 2 1 bzw. σ 2 2. erechnen Sie die Varianz von X Y und X + Y. X werde in m (Meter) und Y in kg gemessen. Welche Einheiten tragen die ov(x, Y ), die Pearson Korrelation und die Spearman Korrelation von X und Y? Var(X Y ) = ov(x Y, X Y ) = Var(X) ov(x, Y ) ov(y, X)+Var( Y ) = σ 2 1+σ 2 2 und Var(X+Y ) = ov(x+y, X+Y ) = Var(X)+ov(X, Y )+ov(y, X)+Var(Y ) = σ 2 1+σ 2 2 Die Kovarianz wird in mkg gemessen. Die beiden Korrelationskoeffizienten sind dimensionslos. Schicken Sie Ihre Lösung bis spätestens Sonntag, den direkt an Ihre(n) Tutor(in): (Franziska Metge). (Konrad Neumann) (Ivo Parchero)

BSc Bioinformatik Wintersemester 2013/2014 Nachklausur zur Statistik I Freie Universität Berlin

BSc Bioinformatik Wintersemester 2013/2014 Nachklausur zur Statistik I Freie Universität Berlin Sc ioinformatik Wintersemester 013/014 Nachklausur zur Statistik I Freie Universität erlin 4. pril 014 Matrikelnummer Nachname Vorname Unterschrift ufgabe 1 (4 Punkte): Zu einem Wahrscheinlichkeitsraum

Mehr

BSc Bioinformatik Wintersemester 2013/2014 Klausur zur Statistik I Freie Universität Berlin

BSc Bioinformatik Wintersemester 2013/2014 Klausur zur Statistik I Freie Universität Berlin Sc ioinformatik Wintersemester 013/014 Klausur zur Statistik I Freie Universität erlin 1. Februar 014 Matrikelnummer Nachname Vorname Unterschrift ufgabe 1 (4 Punkte): Eine faire Münze werde 10 mal unabhängig

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 7

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 7 Übung zur Vorlesung Statistik I für iowissenschaften WS 205-206 Übungsblatt 7 30. November 205 ufgabe 9 (4 Punkte): eim Gesellschaftsspiel Mensch ärgere ich nicht muss man eine Sechs würfeln, um eine Figur

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz - 1 - Grundgesamtheit, Merkmale, Stichprobe Dimension, Umfang Skalierung Eigenschaften der Stichprobe kennzeichnende Größen Eigenschaften der Stichprobe kennzeichnende Größen Punktediagramm, Regressionsgerade,

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 9

Übung zur Vorlesung Statistik I WS Übungsblatt 9 Übung zur Vorlesung Statistik I WS 2012-2013 Übungsblatt 9 17. Dezember 2012 Aufgabe 26 (4 Punkte): In einer Studie mit n = 10 Patienten soll die Wirksamkeit eines Medikaments gegen Bluthochdruck geprüft

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 3

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 3 Übung zur Vorlesung Statistik I für iowissenschaften WS 2015-2016 Übungsblatt 3 2. November 2015 ufgabe 6 (4 Punkte): eim Lotto 6 aus 49 werden zufällig sechs Kugeln aus 49 ohne Zurücklegen gezogen. Geben

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

[ 2 ] Die Zufallsvariablen X und Y haben die in der Tabelle gegebene gemeinsame Wahrscheinlichkeitsfunktion

[ 2 ] Die Zufallsvariablen X und Y haben die in der Tabelle gegebene gemeinsame Wahrscheinlichkeitsfunktion Paare von Zufallsvariablen Kapitel : Paare von Zufallsvariablen A: Übungsaufgaben: [ ] Die Zufallsvariable X kann die Werte, 2 und die Zufallsvariable Y die Werte 0,, 2 annehmen. Die gemeinsame Verteilungsfunktion

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Biomathematik für Mediziner, Klausur SS 2000 Seite 1

Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Aufgabe 1: Bei der Diagnose einer bestimmten Krankheit mit einem speziellen Diagnoseverfahren werden Patienten, die tatsächlich an der Krankheit leiden,

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

PVK Statistik Carlos Mora

PVK Statistik Carlos Mora PVK Statistik 10.-12.1.2012 Prüfung 1 Frage Binomialverteilung und/oder Poissonverteilung mit Test, Poisson-, Normalapproximation 1.Übungsblatt 1 Frage Normalverteilung, z-, t-test; Ein- und/oder zwei

Mehr

Nachklausur zur Vorlesung

Nachklausur zur Vorlesung Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 30. April 004 Priv.-Doz. Dr. D. Kadelka Nachklausur zur Vorlesung Statistik für Biologen Musterlösungen Aufgabe 1 Gemessen wurde bei

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2004/2005 Universität Karlsruhe 14. Februar 2005 Dr. Bernhard Klar Sebastian Müller Aufgabe 1: (15 Punkte) Klausur zur Vorlesung Statistik für Biologen Musterlösungen

Mehr

Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker

Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker Aufgabe Aufgabe 2 Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker.2.202 Aufgabe Aufgabe 2 Bei einem Zufallsexperiment werden zwei Würfel geworfen und

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer. R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 6

Übung zur Vorlesung Statistik I WS Übungsblatt 6 Übung zur Vorlesung Statistik I WS 2012-2013 Übungsblatt 6 26. November 2012 Aufgabe 17 (4 Punkte): Sei X B(n, p) eine binomial verteilte Zufallsvariable, die ein Zufallseperiment mit n unabhängigen Wiederholungen

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Statistik Übungen WS 2017/18

Statistik Übungen WS 2017/18 Statistik Übungen WS 2017/18 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei einem

Mehr

Unabhängigkeit von Zufallsvariablen

Unabhängigkeit von Zufallsvariablen Unabhängigkeit von Zufallsvariablen Seminar Gegenbeispiele in der Wahrscheinlichkeitstheorie Pascal Beckedorf 12. November 2012 Pascal Beckedorf Unabhängigkeit von Zufallsvariablen 12. November 2012 1

Mehr

Biomathematik für Mediziner

Biomathematik für Mediziner Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur SS 2003 Aufgabe 1: Welche der unten angegebenen

Mehr

Probeklausur Statistik II

Probeklausur Statistik II Prof. Dr. Chr. Müller PROBE-KLAUSUR 1 1 2 3 4 5 6 7 8 Gesamt: 15 8 16 16 7 8 15 15 100 Probeklausur Statistik II Name: Vorname: Fachrichtung: Matrikel-Nummer: Bitte beachten Sie folgendes: 1) Die Klausur

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Wahrscheinlichkeitstheorie. Alea iacta est!

Wahrscheinlichkeitstheorie. Alea iacta est! Wahrscheinlichkeitstheorie Alea iacta est! "Wissenschaftliche Theorien, die auf Eigenschaften einer großen Zahl von Individuen rekurrieren, [...] werden anfällig gegen Fehlinterpretationen, wenn man die

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

4.4 Punktschätzung. E(X 1 )+ +E(X n ) Var(ˆµ) = 1 n 2 ( Var(X1 )+ +Var(X n ) ) = 1 n 2nσ2 = σ2

4.4 Punktschätzung. E(X 1 )+ +E(X n ) Var(ˆµ) = 1 n 2 ( Var(X1 )+ +Var(X n ) ) = 1 n 2nσ2 = σ2 4 4.4 Punktschätzung Wir betrachten eine endliche oder unendliche Grundgesamtheit, zum Beispiel alle Studierenden der Vorlesung Mathe II für Naturwissenschaften. Im endlichen Fall soll die Anzahl N ihrer

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Sabrina Kallus, Eva Lotte Reinartz, André Salé

Sabrina Kallus, Eva Lotte Reinartz, André Salé Sabrina Kallus, Eva Lotte Reinartz, André Salé } Wiederholung (Zufallsvariable) } Erwartungswert Was ist das? } Erwartungswert: diskrete endliche Räume } Erwartungswert: Räume mit Dichten } Eigenschaften

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Eindimensionale Zufallsvariablen

Eindimensionale Zufallsvariablen Eindimensionale Grundbegriffe Verteilungstypen Diskrete Stetige Spezielle Maßzahlen für eindimensionale Erwartungswert Varianz Standardabweichung Schwankungsintervalle Bibliografie Bleymüller / Gehlert

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 13 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr