23 Konvexe Funktionen und Ungleichungen

Größe: px
Ab Seite anzeigen:

Download "23 Konvexe Funktionen und Ungleichungen"

Transkript

1 23 Konvexe Funktionen und Ungleichungen 231 Konvexe Funktionen 232 Kriterien für Konvexität 233 Streng konvexe Funktionen 235 Wendepunkte 237 Ungleichung von Jensen 2310 Höldersche Ungleichung 2311 Minkowskische Ungleichung Die ersten systematischen Untersuchungen der konvexen Funktionen hat der dänische Mathematiker und Ingenieur Jensen ( ) durchgeführt 231 Konvexe Funktionen Sei I ein Intervall Eine Funktion f : I R heißt konvex (konkav), wenn gilt: ( a, b I)(a < t < b f(t) f(a) + f(b) f(a) (t a)) ( ) Offensichtlich ist f konkav genau dann, wenn f konvex ist Es reicht daher im folgenden, die konvexen Funktionen zu untersuchen Die geometrische Bedeutung der Konvexität ergibt sich aus folgendem: Sind a, b I und a < b, so ist der Graph von [a, b] t f(a) + f(b) f(a) (t a) das Geradenstück, welches die Punkte (a, f(a)) und (b, f(b)) verbindet, also die sogenannte Sehne Die Konvexität besagt nun, daß der Graph von f [a, b] (im unstrengen Sinne) unterhalb der Sehne verlaufen muß Dies muß für jede Wahl von a, b I mit a < b der Fall sein C 1 [23] 1

2 Kapitel V Mehrfach und unendlich oft differenzierbare Funktionen, Potenzreihen a b a b 232 Kriterien für Konvexität Sei I ein Intervall und f : I R stetig und in allen Punkten von I differenzierbar Dann sind (i) bis (iii) äquivalent: (i) (ii) f ist konvex Für alle t 0 I gilt: f(t) f(t 0 ) + f (t 0 )(t t 0 ) für alle t I, dh für alle Punkte t 0 I gilt: Der Graph von f verläuft auf I oberhalb seiner Tangente im Punkte t 0 (iii) f ist monoton wachsend auf I Ist f sogar zweimal differenzierbar in allen Punkten von I, dann ist jede der Aussagen (i) bis (iii) äquivalent zu: (iv) f (t) 0 für alle t I Beweis (i) (iii) Sei a < b mit a, b I Zz ist: f (a) f (b) Aus der Definition der Konvexität folgt für t ]a, b[ f(t) f(a) t a f(b) f(a) Mit t a erhält man aus dieser Ungleichung (2) f (a) f(b) f(a) Nun ist f(a) + f(b) f(a) (t a) = f(b) + f(b) f(a) (t b) [23] 2 C 1

3 Mit folgt daher aus der Konvexität von f f(t) f(b) f(b) f(a) (t b), und hieraus folgt wegen t b < 0 (4) Mit t b erhält man aus (4) Mehrfache Differenzierbarkeit und Potenzreihen f(t) f(b) t b f(b) f(a) (5) f (b) f(b) f(a) Aus (2) und (5) folgt dann (iii) (ii) : Sei t 0 I und t I mit obda t t 0 Ist t < t 0 (t > t 0 ), dann ist f (ζ) f (t 0 ) für alle ζ ]t, t 0 [ (f (ζ) f (t 0 ) für alle ζ ]t 0, t[) Nach dem Mittelwertsatz folgt (beachte f ist stetig auf I): f(t) f(t 0 ) t t 0 = f (ζ) f (t 0 ) für ein ζ zwischen t und t 0 ( ) Hieraus folgt durch Multiplikation mit t t 0 dann (ii) (ii) (i) Seien a, b I und a < t < b Wir wenden (ii) auf t 0 := t und t := a bzw t := b an Wegen t I gilt dann (6) f(a) f(t) + f (t)(a t), (7) f(b) f(t) + f (t)(b t) Somit erhalten wir: (8) f(t) f(a) t a f f(b) f(t) (t) b t (6) (7) Aus (8) folgt durch Multiplikation mit (b t)(t a) (9) (b t)(f(t) f(a)) (f(b) f(t))(t a) Addiert man auf beiden Seiten der Ungleichung in (9) nun f(t)(t a) f(a)(t a), so erhält man: (b a)f(t) f(a)(b a) (f(b) f(a))(t a) Hieraus folgt die Konvexitätsbedingung nach Division durch (b a) Die Äquivalenz von (iii) und (iv) folgt, weil nach 194(ii) die differenzierbare Funktion f I genau dann monoton wachsend ist, wenn [f =](f ) über I nicht-negativ ist Fordert man, daß für a < b aus I die Funktion f ]a, b[ streng unterhalb der Sekante liegen soll, so gelangt man zum Begriff der strengen Konvexität 233 Streng konvexe Funktionen Sei I ein Intervall Eine Funktion f : I R heißt streng konvex (streng konkav), wenn ( a, b, t I)(a < t < b f(t) < f(a) + f(b) f(a) (t a)) (>) C 1 [23] 3

4 Kapitel V Mehrfach und unendlich oft differenzierbare Funktionen, Potenzreihen Die folgenden Bedingungen für die strenge Konvexität von Funktionen sind hinreichend, aber nicht notwendig 234 Kriterien für strenge Konvexität Sei I ein Intervall und f : I R stetig und in allen Punkten von I differenzierbar (i) (ii) Ist dann f auf I, so ist f streng konvex Ist f auf I sogar zweimal differenzierbar und ist f auf I positiv, so ist f streng konvex (i) Nach 232(iii) (i) ist f konvex Wäre nun f nicht streng konvex, so existieren a, b, t I mit a < t < b und f(t) = f(a) + f(b) f(a) (t a) Nun ist (2) f(a) + f(b) f(a) (t a) = f(b) + f(b) f(a) (t b), und daher folgt: f(t) f(a) t a f(b) f(a) f(t) f(b) = = t b,(2) Nach dem Mittelwertsatz gibt es dann ein t 1 ]a, t[ und ein t 2 ]t, b] mit f (t 1 ) = f(t) f(a) t a = f(b) f(t) b t = f (t 2 ) Dies widerspricht wegen t 1 < t 2 der strengen Monotonie von f (ii) folgt aus (i) mit 194(iv) Wir erhalten nun mit Satz 194 und 234 viele Beispiele für monotone und konvexe bzw konkave Funktionen, indem wir mit Hilfe der Ableitungsregeln die ersten und zweiten Ableitungen dieser Funktionen berechnen (i) Für n N gilt: (x n ) = 184 nx n 1, (x n ) = 184 n(n 1)x n 2 ; (ii) Für b R gilt (x b ) = 1811(ii) bxb 1, (x b ) = 1811(ii) b(b 1)xb 2 ; (iii) (ln(x)) 1 = x R +, (ln(x)) = 1 R 1811(i) 1811(ii) x 2 + ; (iv) (e x ) = 185 e x, (e x ) = 185 e x ; (v) (e x ) = 185,186 e x, (e x ) = 185,186 e x [23] 4 C 1

5 Mehrfache Differenzierbarkeit und Potenzreihen Funktion Monotonie Konvexität/Konkavität x 2, x 4, x 6, x 3, x 5, x 7, x b, 0 < b < 1 x b, b > 1 ln(x) e x e x streng monoton fallend auf ], 0], auf [0, [ auf R auf [0, [ auf [0, [ auf ]0, [ auf R streng monoton fallend auf R streng konvex auf R streng konkav auf ], 0], streng konvex auf [0, [ streng konkav auf [0, [ streng konvex auf [0, [ streng konkav auf ]0, [ streng konvex auf R streng konvex auf R 235 Wendepunkt Sei I ein Intervall, und sei t 0 I Ferner sei f : I R stetig Dann heißt t 0 ein Wendepunkt von f, wenn es ein ε R + gibt, so daß ]t 0 ε, t 0 + ε[ I und (i) oder (ii) gilt: (i) (ii) f ]t 0 ε, t 0 [ ist konvex und f ]t 0, t 0 + ε[ ist konkav; f ]t 0 ε, t 0 [ ist konkav und f ]t 0, t 0 + ε[ ist konvex Fall (i) Fall(ii) konkav konkav konvex konvex t 0 t 0 C 1 [23] 5

6 Kapitel V Mehrfach und unendlich oft differenzierbare Funktionen, Potenzreihen 236 Notwendige bzw hinreichende Bedingungen für einen Wendepunkt Sei I ein Intervall und f : I R stetig Es sei f in allen Punkten von I zweimal differenzierbar (i) Besitzt f in t 0 I einen Wendepunkt, so ist f (t 0 ) = 0 (ii) Ist f (t 0 ) = 0 und f in t 0 dreimal differenzierbar mit f (t 0 ) 0, so besitzt f in t 0 einen Wendepunkt Beweis (i) Liegt die Situation von 235(i) vor, so ist f (t) 0 für t ]t 0 ε, t 0 [ und f (t) 0 für t ]t 0, t 0 + ε[ nach 232 Nun ist f ]t 0 ε, t 0 ] (bzw f [t 0, t 0 + ε[) stetig und in den Punkten von ]t 0 ε, t 0 ] =]t 0 ε, t 0 [ (bzw [t 0, t 0 +ε[ ) differenzierbar mit nicht-negativer (nicht-positiver) Ableitung Daher ist f ]t 0 ε, t 0 ] monoton wachsend (f [t 0, t 0 +ε[ monoton fallend) Somit besitzt f in t 0 ein lokales Maximum Daher ist f (t 0 ) = 0 (siehe 1815) Liegt die Situation von 235(ii) vor, so liegt für f die Situation von 235(i) vor, dh es gilt ( f) (t 0 ) = 0, also f (t 0 ) = 0 (ii) Ist f (t 0 ) = 0 und (f ) (t 0 ) > 0, so gilt f (t) < 0 für t ]t 0 ε, t 0 [ und f (t) > 0 für t ]t 0, t 0 + ε[ mit einem geeigneten ε R + (Wende 1813(i) auf f I an) Also liegt die Situation von 235(ii) vor (benutze 232(iv) oder 234(ii)) Der Fall f (t 0 ) < 0 folgt entsprechend mit 1813(ii) Wichtige Ungleichungen der Analysis folgen aus der 237 Ungleichung von Jensen Sei I ein Intervall und f : I R konvex Sind λ 1,, λ n R + mit λ λ n = 1 sowie n 2, so gilt für beliebige t 1,, t n I : (i) λ 1 t λ n t n I (ii) f(λ 1 t λ n t n ) λ 1 f(t 1 ) + + λ n f(t n ) (iii) Ist f streng konvex, so gilt die Gleichheit nur für t 1 = = t n Beweis Wir führen den Beweis von (i) (iii) simultan, und zwar mit vollständiger Induktion (A) Sei n = 2 Ist dann t 1 = t 2, so sind wegen λ 1 + λ 2 = 1 die Aussagen (i) (iii) erfüllt Sei nun t 1 t 2 Dann nehmen wir t 1 < t 2 an; im Falle t 1 > t 2 numeriere man um Dann ist t := λ 1 t 1 + (1 λ 1 )t 2 ]t 1, t 2 [ I nach 25 Wegen λ 2 = 1 λ 1 folgt also (i) [23] 6 C 1

7 Aus folgt Mehrfache Differenzierbarkeit und Potenzreihen (2) t t 1 = (1 λ 1 )(t 2 t 1 ) = λ 2 (t 2 t 1 ) Da f konvex ist gilt (mit < bei strenger Konvexität): f(λ 1 t 1 + λ 2 t 2 ) = f(t) (<) = λ 1 f(t 1 ) + λ 2 f(t 2 ) Also gelten (ii) und (iii) für n = 2 f(t 1 ) + f(t 2) f(t 1 ) t 2 t 1 (t t 1 ) = (2) f(t 1 ) + λ 2 (f(t 2 ) f(t 1 )) (S) Seien nun n 2 und für den Schluß von n auf n + 1 nicht alle t i gleich Setze λ := λ λ n und t 1 := λ 1 λ t λn λ t n Wegen λ i λ R + und n λ i λ = 1 ist nach Induktionsvoraussetzung: (4) t 1 I; (5) f(t 1 ) n λ i λ f(t i) mit <, falls f streng konvex und nicht alle t 1,, t n gleich sind Nun ist wegen (4) und t n+1 I nach Induktionsanfang (6) λ 1 t λ n t n + λ n+1 t n+1 = (λ λ n )t 1 + λ n+1t n+1 I Also gilt (i) für n + 1 Wiederum nach Induktionsanfang (für (ii)) gilt: f(λ 1 t λ n+1 t n+1 ) = f((λ λ n )t 1 + λ n+1t n+1 ) (6) (λ λ n )f(t 1 ) + λ n+1f(t n+1 ) n+1 λ if(t i ) (5) Daher ist (ii) für n + 1 bewiesen Sei nun f streng konvex Sind nicht alle t 1 bis t n gleich, so steht in der letzten Ungleichung wegen (5) ein < Also erhalten wir in diesem Falle (iii) Ist f streng konvex und sind t 1,, t n alle gleich, aber t n+1 t 1, so ist t n+1 t 1 (= t 1), und daher steht nach Induktionsanfang (für (iii)) in der vorletzten Gleichung ein < Also erhalten wir auch in diesem Fall (iii) 238 Ungleichung zwischen dem arithmetischen und geometrischen Mittel Seien λ 1,, λ n R + mit λ λ n = 1 Dann gilt für beliebige t 1,, t n R + t λ 1 1 tλn n λ 1 t λ n t n Also insbesondere n t1 t n t 1++t n n Das Gleichheitszeichen gilt jedoch nur für t 1 = = t n C 1 [23] 7

8 Kapitel V Mehrfach und unendlich oft differenzierbare Funktionen, Potenzreihen Beweis Es ist ln(x) streng konvex auf R + Also gilt nach der Ungleichung von Jensen ln(λ 1 t λ n t n ) λ 1 ln(t 1 ) λ n ln(t n ) mit <, falls nicht alle t 1,, t n gleich sind Somit ist ln(t λ 1 1 tλn n ) = n λ i ln(t i ) ln( n λ i t i ) mit <, falls nicht alle t 1,, t n gleich sind Anwendung der streng monotonen Exponentialfunktion auf diese Ungleichung ergibt die Behauptung für den allgemeinen Fall Der Spezialfall ergibt sich mit λ 1 = = λ n = 1/n 239 Die p-normen im R n Sei p 1 Setze dann für u := (u 1,, u n ) R n Dann gilt: u p := p n u i p (i) u p 0 und u p = 0 u = 0; (ii) αu p = α u p für jedes α R p n u i p ist hierbei definiert durch ( n u i p ) 1/p 2310 Höldersche Ungleichung Sei p > 1 und q durch 1/p + 1/q = 1 (dh q = p p 1 ) gegeben Dann gilt für beliebige u := (u 1,, u n ), v := (v 1,, v n ) R n n u i v i u p v q Beweis Es genügt, den Fall u 0 und v 0 zu behandeln Nach 239(i) sind dann u p 0 und v p 0 Nach Ungleichung 238 folgt mit λ 1 := 1/p, λ 2 := 1/q und t 1 := u i p u p, t 2 := v i q (der Fall t 1 = 0 oder t 2 = 0 ist trivial): p v q q u i v i u p v q p 1 u i p u p + 1 p q v i q v q q Durch Summation ergibt sich dann 1 n 1 1 n u p v q u i v i p u p u i p + 1 p q 1 v q q n v i q = p q = 1, also durch Multiplikation mit u p v q die behauptete Ungleichung [23] 8 C 1

9 Mehrfache Differenzierbarkeit und Potenzreihen 2311 Die Minkowskische Ungleichung Sei p 1, dann gilt für u, v R n u + v p u p + v p Beweis Für p = 1 folgt die Behauptung unmittelbar aus der Dreiecksungleichung für reelle Zahlen Seien also p > 1 und u + v p > 0 Mit w i := u i + v i p 1, w := (w 1,, w n ) und (2) q := p/(p 1), also 1/p + 1/q = 1 gilt u + v p p = n u i + v i p = n (u i + v i )w i n u i w i + n v i w i u p w q + v p w q 2310 Da w q i = u i + v i (p 1)q = u i + v i p ist, gilt w q = ( n w i q ) 1/q = ( n u i + v i p ) 1/q (4) = ( u + v p p) 1/q = u + v p 1 Also ist p u + v p p ( u p + v p ) w q = ( u p + v p )( u + v p p 1 ) (4) Division durch 0 < u + v p p 1 liefert die Behauptung C 1 [23] 9

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Abb lokales Maximum und Minimum

Abb lokales Maximum und Minimum .13 Lokale Extrema, Monotonie und Konvexität Wir kommen nun zu den ersten Anwendungen der Dierentialrechnung. Zwischen den Eigenschaten einer Funktion, dem Verlau des zugehörigen Graphen und den Ableitungen

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Der Satz von Cramér (1938) Ausarbeitung zu einem Vortrag im Seminar Große Abweichungen am Maren Urner

Der Satz von Cramér (1938) Ausarbeitung zu einem Vortrag im Seminar Große Abweichungen am Maren Urner Der Satz von Cramér (1938) Ausarbeitung zu einem Vortrag im Seminar Große Abweichungen am 04.12.2010 Maren Urner In diesem Vortrag soll der Satz von Cramér als ein Prinzip großer Abweichungen (LDP) vorgestellt

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

V.1 Konvergenz, Grenzwert und Häufungspunkte

V.1 Konvergenz, Grenzwert und Häufungspunkte V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008 Ferienkurs Analysis 1, SoSe 2008 Unendliche Reihen Florian Beye August 15, 2008 1 Reihen und deren Konvergenz Definition 1.1. Eine reelle bzw. komplexe Reihe ist eine unendliche Summe über die Glieder

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12 Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen Übungsaufgaben zur Vorlesung ANALYSIS I (WS 2/3) Lösungsvorschlag

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Einige Gedanken zur Fibonacci Folge

Einige Gedanken zur Fibonacci Folge Einige Gedanken zur Fibonacci Folge Im Folgenden gehe ich auf einige Aspekte von Aufgabe 4 auf Übungsblatt, d.h. auf Aufgabe 4 auf Seiten und 3 des Buches Hahn-Dzewas: Mathematik, ein. Die Aufgabe hat

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2

Da der Nenner immer positiv ist, folgt. g (x) > 0 2x(2 x) > 0 0 < x < 2 g (x) < 0 2x(2 x) < 0 x < 0 oder x > 2 Da der Nenner immer positiv ist, folgt g (x) > 0 x( x) > 0 0 < x < g (x) < 0 x( x) < 0 x < 0 oder x > Also ist g auf (0,) streng monoton wachsend sowie auf (,0) und auf (, ) strengmonotonfallend.außerdemistg

Mehr

Von Skalarprodukten induzierte Normen

Von Skalarprodukten induzierte Normen Von Skalarprodukten induzierte Normen Niklas Angleitner 4. Dezember 2011 Sei ein Skalarproduktraum X,, gegeben, daher ein Vektorraum X über C bzw. R mit einer positiv definiten Sesquilinearform,. Wie aus

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Lösen von Gleichungen mittels Ungleichungen

Lösen von Gleichungen mittels Ungleichungen Lösen von Gleichungen mittels Ungleichungen. März 00 Die Aufgaben sind mit Schwierigkeitsstufen leicht, mittel, schwer markiert. Aufgabe (leicht) Ermittle alle nichtnegativen reellen Zahlen a, b, c, für

Mehr

4.7 Der Taylorsche Satz

4.7 Der Taylorsche Satz 288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema Prof. Dr. H. Brenner Osnabrück SS 205 Analysis II Vorlesung 50 Hinreichende Kriterien für lokale Extrema Wir kommen jetzt zu hinreichenden Kriterien für die Existenz von lokalen Extrema einer Funktion

Mehr

Themen: Kubische Gleichungen, Ungleichungen, Induktion

Themen: Kubische Gleichungen, Ungleichungen, Induktion Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Kapitel 5 KONVERGENZ

Kapitel 5 KONVERGENZ Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

Wendepunkte. Jutta Schlumberger

Wendepunkte. Jutta Schlumberger Wendepunkte Jutta Schlumberger Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser Ausarbeitung

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Proseminar Mathematik. Ungleichungen I Betreuung: Natalia Grinberg. Karlsruher Institut für Technologie

Proseminar Mathematik. Ungleichungen I Betreuung: Natalia Grinberg. Karlsruher Institut für Technologie Proseminar Mathematik Ungleichungen I 12.6.215 Betreuung: Natalia Grinberg Karlsruher Institut für Technologie Inhaltsverzeichnis 1 Young-Ungleichung 2 2 Hölder-Ungleichung 4 3 Minkowski-Ungleichung 5

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden.

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. 49. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit a Grenzwerte von Funktionen Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. Einführende Beispiele: Untersuche

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 5

Technische Universität München Zentrum Mathematik. Übungsblatt 5 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 5 Hausaufgaben Aufgabe 5. Bestimmen Sie folgende Grenzwerte. Benutzen

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 14. Gruppenübung zur Vorlesung Höhere Mathematik 1 Sommersemester 009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 8

Mathematische Grundlagen der Ökonomie Übungsblatt 8 Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H 5+7+8 = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt Mathematik M 1/Di WS 2001/02 1 b) Stetigkeit Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D Sei a D f heißt stetig in a, falls gilt lim f() = f(a) a f heißt stetig auf D, wenn f in jedem

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

< hergeleitet. < war nach 1.9 mit Hilfe von Rechenregeln für

< hergeleitet. < war nach 1.9 mit Hilfe von Rechenregeln für 2 Angeordnete Körper 2.1 Grundrechenregeln für < in einem angeordneten Körper 2.3 Weitere Rechenregeln für < und 2.4 Positive und negative Elemente 2.5 Ungleichung des arithmetischen Mittels 2.7 Betrag

Mehr

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir Kapitel 3: Entropie Motivation Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir log N Bits log p N Bits Die Information steht

Mehr

3.2 Implizite Funktionen

3.2 Implizite Funktionen 3.2 Implizite Funktionen Funktionen können explizit als y = f(x 1, x 2,..., x n ) oder implizit als F(x 1, x 2,..., x n ;y) = 0 gegeben sein. Offensichtlich kann man die explizite Form immer in die implizite

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

6. ANWENDUNGEN DER ABLEITUNG

6. ANWENDUNGEN DER ABLEITUNG 48 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17

Lösung zur Übung für Analysis einer Variablen WS 2016/17 Blatt Nr. 3 Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 206/7 Aufgabe Das Guthaben G setzt sich zusammen aus der Summe aller bisherigen Einzahlungen multipliziert mit ( + p) k, wobei

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10 Mathematik für Wirtschaftswissenschaften I Wintersemester 05/6 Universität Leipzig Lösungvorschläge Präsenzaufgaben Serien -0 Inhaltsverzeichnis Serie Serie 5 3 Serie 8 4 Serie 9 5 Serie 3 6 Serie 6 7

Mehr

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x.

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x. Der Primzahlsatz Zusammenfassung Im Jahr 896 wurde von Hadamard und de la Vallée Poussin der Primzahlsatz bewiesen: Die Anzahl der Primzahlen kleiner gleich verhält sich asymptotisch wie / log. Für ihren

Mehr

Die Lösungen der Gleichung b x = log b (x)

Die Lösungen der Gleichung b x = log b (x) Die Lösungen der Gleichung b = log b () wgnedin@math.uni-koeln.de 17. Januar 2014 In der ersten Vorlesung des Wintersemesters wurde folgende Frage gestellt: Wieviele Lösungen hat die Gleichung ( ) 1 =

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Kapitel 8 Einführung der Integralrechnung über Flächenmaße

Kapitel 8 Einführung der Integralrechnung über Flächenmaße 8. Flächenmaße 8.1 Flächenmaßfunktionen zu nicht negativen Randfunktionen Wir wenden uns einem auf den ersten Blick neuen Thema zu, der Ermittlung des Flächenmaßes A von Flächen A, die vom nicht unterhalb

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen Kapitel V Folgen und Konvergenz V.1 Konvergenz von Zahlenfolgen Wir erinnern an den Begriff der Folge, den wir schon im Kapitel III verwenden. Eine Folge (a n ) n=1 AN in A ist eine Abbildung a ( ) : N

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr