Elektrodynamik. 1. Elektrostatik

Größe: px
Ab Seite anzeigen:

Download "Elektrodynamik. 1. Elektrostatik"

Transkript

1 Elektrodynamik 1. Elektrostatik 1.1 Elektrische Ladung Es gibt positive und negative Ladungen. Sie ist quantisiert, d.h. jede beobachtete Ladung ist ein ganzes Vielfaches der Elementarladung: In jedem abgeschlossenen System ist die Summe aller Ladungen konstant. Die Ladung von Teilchen ist an Masse gebunden und relativistisch invariant (unabhängig von Geschwindigkeit) 1.2 Coulomb sches Gesetz,, (1.1) Superpositionsprinzip:,, (1.2) 1.3 Das elektrische Feld Definition: Ist die Kraft, die eine bel. Ladungsverteilung auf eine punktförmige Probeladung ausübt, so ist die elektrische Feldstärke dieser Verteilung am Ort der Ladung, (1.3) Feld einer Punktladung q im Koordinatenursprung (1.4) Feldstärke einer Verteilung von N Punktladungen Kontinuierliche Ladungsverteilung (1.5) Ladungsdichte lim 1.4 Das elektrische Potential Potentielle Energie einer Punktladung q im Feld E einer Ladungsverteilung Definition:, Potential einer kontinuierlichen Ladungsverteilung Potentialdifferenz zwischen und bezeichnet man als elektrische Spannung (1.6) (1.7) (1.8) (1.9),(1.10) (1.13) (1.14) Es gilt: 0 (1.15) Aus Stokes schen Satz folgt: x 0 (1.16)

2 Die elektrischen Feldlinien zeigen stets zu Gebieten mit niedrigerem Potenzial. Der Wert des Potentials kann an einem beliebigen Punkt gleich Null gewählt werden. 1.5 Zusammenhang zwischen Potential und Feldstärke (1.18),(1.19) Potential eines Dipols mit Abstand d auf der z-achse (in Zylinderkoordinaten) (1.23) Dipolmoment Drehmoment auf Dipol im elektrischen Feld x (1.25) Elektrostatische Wechselwirkungsenergie (potentielle Energie) eines Dipols im elektrischen Feld 1.6 Der Gauß sche Satz der Elektrostatik : Vektor senkrecht auf Flächenelement der Größe da, weist bei geschlossener Fläche nach außen Definition: Elektrischer Fluss Φ durch die Fläche A Φ Gauß sches Gesetz: Betrachten beliebig geformte, geschlossene Fläche A, die eine Gesamtladung q umschließt. Der gesamte elektrische Fluss durch diese Fläche ist dann: Φ (1.25),(2.1) - Der Fluss durch eine Fläche, die keine Ladung umschließt ist Null - Das elektrische Feld außerhalb einer Kugel mit gleichmäßiger Ladungsverteilung ist äquivalent dem einer Punktladung 2. Anwendung der Elektrostatik 2.1 Unendlich ausgedehnte, ebene Ladungsschicht Nur A1 und A2 tragen zum el. Fluss bei, weil die Wände senkrecht zum elektrischen Feld stehen Aus Gauß schen Satz folgt: (2.3), Flächenladungsdichte (2.4) 2.2 Elektrisches Feld eines Plattenkondensators Superposition der Felder: Sie addieren sich im Innenraum und heben sich außen gegenseitig auf Mit (2.4) (2.5) Mit (1.14) und (2.5) (2.6) Kapazität:, (2.8),(2.9) Parallelschaltung von Kondensatoren (2.10) Reihenschaltung von Kondensatoren (2.11)

3 2.3 Unendlich langer, geladener Draht Fluss durch Zylinderfläche ist Null, ist Ladung pro Längeneinheit 2.4 Koaxialkabel (Zylinderkondensator) Kapazität für Koaxialkabel der Länge l: und 2 ß 0, 2 ln Elektrisches Feld einer homogen geladenen Kugel Gauß scher Satz: 4 (2.14) (2.16) (2.17) Das elektrische Feld einer homogen geladenen Kugel ist im Außenraum genau so groß, als sei die gesamte Ladung im Kugelmittelpunkt konzentriert. Feld im Inneren der Kugel, d.h. R<Ro: 4 (2.18) Kapazität der Kugel gegenüber Gegenelektrode im Unendlichen: 4 (2.19) 2.6 Leiter in einem statischen elektrischen Feld Elektrische Leiter enthalten frei bewegliche Ladungsträger, die in elektrischen Feldern in Folge der Coulombkraft verschoben werden. - Das el. Feld im Inneren eines Leiters ist in jedem Punkt 0 - Die elektrische Feldstärke in Hohlräumen innerhalb eines Leiters ist Null (Faraday scher Käfig) - Mit Gauß schen Satz folg aus dem ersten: Die Gesamtladung im Inneren eines Leiters ist Null, d.h. die Ladungen befinden sich auf der Oberfläche - In einem Leiter bilden sich immer Oberflächenladungen derart, bzw. vorhandene Ladungen werden auf der Oberfläche so verteilt, dass E innerhalb des Leiters Null wird (Grund: Zustand kleinster potentieller Energie) - Das Potential im Inneren eines Leiters und auf dessen Oberfläche ist konstant. Die Oberfläche ist Äquipotentialfläche - Die Ladungen verteilen sich auf der Oberfläche entsprechend der Krümmung: ~ E ist größer an Oberflächenteilen mit starker Krümmung Leitende Kugel E-Feld steht immer Senkrecht auf Metalloberfläche (Aquipotentialfläche) Feld an Oberfläche: (2.20) Mehrere Kugeln, leitend verbunden Potential für beide Kugeln gleich: Da folgt aus (2.20) Metalloberfläche ist Äquipotentialfläche höhere Flächenladungsdichte an Spitzen

4 Laplace-Gleichung für das Potential Gauß scher Integralsatz: Poisson-Gleichung: (2.20)a Eindeutigkeitssatz der Elektrostatik Ist für ein elektrostatisches Problem eine Lösung,, bekannt, so ist dies zugleich die einzig mögliche Lösung 2.7 Feldelektronen-Mikrospkop Wolframspitze mit sehr kleinem Krümmungsradius ragt in Glaskolben, an dessen Innenseite ein leitender, floureszierender Schirm aufgebracht ist. Glaskolben ist mit He-Atomen gefüllt. Man legt sehr hohe Spannungen zwischen Wolframspitze und Floureszenzschirm an (Spitze pos, Schirm neg). Es entsteht eine hohe Feldstärke an Spitze. He-Atome stoßen mit Wolframspitze zusammen und geben Elektron ab, sausen dann auf Schirm zu (parallel zu den radialen elektrischen Feldlinien) und entwerfen dort beim Auftreffen ein vergrößertes Bild der Wolframoberfläche. 2.8 Rastertunnelmikroskop Wenn man eine metallische Spitze im Abstand von nur einigen Angstrom über eine elektrisch leitende Kristalloberfläche führt, ist der Tunnelstrom ein Maß für den Abstand zwischen Spitze und Substrat Abbildung der Kristalloberfläche 2.9 Faraday scher Käfig Das Feld innerhalb von Hohlräumen in einem elektrischen Leiter ist Null. Mit Gauß schem Satz folgt, dass die Gesamtladung im Hohlraum Null sein muss. Es gilt: 0 Betrachten nun Integration längs C: Da im Leiter E=0 ist in diesem Bereich Damit dann 0 0 muss für Hohlräume 0 gelten Da dies für beliebige Kurven C gelten muss, folgt E=0 im Hohlraum Van de Graaff-Generator Ladungsübertragung im feldfreien Hohlraum einer Metallkugel Kugel kann auf wesentlich höheres Potential aufgeladen werden als es der Spannung entspricht Influenz In einem elektrisch neutralen Leiter im elektrischen Feld E werden Ladungsträger verschoben und sammeln sich an der Oberfläche. Sie erzeugen ein Feld, dass das angelegte Feld im Inneren kompensiert.

5 2.11 Bildladung Gauß scher Satz gut anwendbar bei ortsfester Ladungsverteilung, problematisch jedoch bei Leitern, da Ladung frei beweglich. Feldlinien haben links den gleichen Verlauf, als ob sich hinter der Metalloberfläche eine neg. Ladung befinden würde 2.12 Energie des elektrischen Feldes Gespeicherte Energie in einem Kondensator ist die Arbeit, die aufgewendet werden muss um Kondensator von Null auf +-Q aufzuladen: Mit und Energiedichte des E-Feldes: (2.22) gilt allgemein für jedes beliebige Feld Gesamtarbeit zum Aufbau eines beliebigen Systems von Ladungen 3. Materie im elektrischen Feld (2.21) (2.22) Dielektrikum: elektrisch nichtleitendes Material (Isolator) Spannung U sinkt ab, wenn ein nichtleitendes Medium in den Zwischenraum gebracht wird, Definition: (2.22)a 1 (2.23) (2.24) 3.1 Elektrostatik in einem Dielektrikum Polarisierbarkeit: Eigenschaft eines Dielektrikums ein angelegtes E-Feld zu beeinflussen Bildung der Ladungen: a) Verschiebungspolarisation: Es entstehen induzierte Dipolmomente durch Verschiebung der Ladungsschwerpunkte b) Orientierungspolarisation: vorhandene polare Molekül, die infolge Wärmebewegungen ungeordnet sind, werden im Feld teilweise ausgerichtet Polarisation:, (3.1) : atomare Polarisierbarkeit : frei bewegliche Ladungen (z.b. auf Platten des Kondensators) : gebundene Ladungen (Polarisationsladungen, Bestandteile des Dielektrikums)

6 Dielektrischer Block: Die Netto-Polarisation ist im Inneren in jedem makroskopischen Volumen Null, nur an Grenzflächen tritt Oberflächenladung auf (3.4),(3.5) Änderung des E-Feldes aufgrund der auftretenden Polarisation: (3.6) Gesamtladung: (3.7) Mit (3.6) (3.9) Vektor der dielektrischen Verschiebung :, (3.10) Gauß sches Gesetz für Dielektrika: (3.11) (Maxwell Gleichung in Integralform) Elektrische Suszeptibilität : elektrische Suszeptibilität, 1 1 : atomare Polarisierbarkeit, Materialgleichung für dielektrisches Medium: (3.12) 1 (3.13) E: Feldstärke im Inneren des Mediums Plattenkondensator mit und ohne Füllung 3.15 Berechnung der Feldstärke, 1 (3.13) und (3.11) Allgemein gilt: Bei Erfüllung des Raumes zwischen isolierten geladenen Leitern ( mit einem homogenen Dielektrikuim sinken Feldstärke, Potentiale, gegenseitige Kräfte und Feldenergien um den Faktor 3.2 Das Feld einer polarisierten Kugel Im Inneren der Kugel ist die gemittelte Ladung Null Bei makroskopischer, quasikontinuierlicher Ladungsverteilung: Verschiebung von pos. und neg. geladener Kugel gegeneinander um Länge d: P sei vom Betrag und Richtung im ganzen Volumen konstant Feld der Kugel gleich dem eines Dipols am Ursprung, bei dem gesamte in Punkten konzentrierte positive und negative Ladung um Strecke d gegeneinander verschoben sind Mit (1.23) und Fernfeldnäherung, (3.17), mit (3.18) (3.19) Feld in der Kugel ist homogen und konstant, außerhalb gleicht das Feld des einen Dipols mit Dipolmoment Befindet sich die Kugel in einem äußeren elektrischen Feld, so muss nach dem Superpositionsprinzip dieses noch zu E hinzuaddiert werden.

7 3.3 Die Dielektrizitätskonstante eines dichten Mediums Dichtes Medium (Flüssigkeit): Jedes Atom ist in einem isotropen Isolator so von Nachbaratomen umgeben, dass es in einem nahezu kugelförmigen Hohlraum sitzt. Für dichte Medien: (3.20), 1 1 (3.21),(3.22) (3.23) Clausius-Mosotti-Beziehung 3.4 Die Orientierungspolarisation Parelektrizität Molekulare Gase mit permanenten Dipolen (z.b. HCl) - Im homogenen E-Feld (siehe Kapitel 1.5) - Im inhomogenen E-Feld (Dipol im Feld einer Punktladung) a) Dipol liegt in Richtung von E Δ (3.24) Feld nimmt mit r ab ist negativ Dipol wird in Bereich höherer Feldstärke gezogen Allgemein gilt: (3.25) b) Dipol liegt nicht in Richtung von E cos,, (3.26) Auch nichtpolares Atom oder Molekül wird in Richtung des wachsenden Feldes gezogen In parelektrischen Medien ist die elektrische Suszeptibilität temperaturabhängig (3.27) Curie-Verhalten 3.5 Elektrische Polarisation in Festkörpern Ferroelektrizität: Kristalle, die oberhalb einer kritischen Temperatur (T C ) paraelektrisch sind, unterhalb der kritischen Temperatur richten sich spontan alle Dipole aus es tritt auch ohne Feld eine makroskopische Polarisation auf. (3.28) Piezo- (oder Pyroelektrischer) Effekt Polarisation im Kristall kann durch die Anwendung von Druck, bzw. Temperatur geändert werden, dabei ändert sich die Oberflächenladung.

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz 5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)

Mehr

ELEKTRIZITÄT & MAGNETISMUS

ELEKTRIZITÄT & MAGNETISMUS ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung

Mehr

Inhalt. 10. Elektrostatik. 10. Elektrostatik

Inhalt. 10. Elektrostatik. 10. Elektrostatik Inhalt 10. Elektrostatik 10.1 Elektrische Ladung 10.2 Coulombsches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 1.1 Der Raum 10.1 Elektrische

Mehr

Der Ladungsbetrag Q, den jede Kondensatorplatten aufnimmt, ist dabei proportional zur angelegten. Q U = konst.

Der Ladungsbetrag Q, den jede Kondensatorplatten aufnimmt, ist dabei proportional zur angelegten. Q U = konst. I. Elektrostatik ==================================================================. Das elektrische Feld eines Plattenkondensators Ein Plattenkondensator besteht aus zwei sich parallel gegenüberliegenden

Mehr

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

Isotrope Dielektrika. Das Coulombsche Gesetz in der Form F =1/(4πɛ 0) q 1 q 2. ist nur für zwei Ladungen im Vakuum gültig.

Isotrope Dielektrika. Das Coulombsche Gesetz in der Form F =1/(4πɛ 0) q 1 q 2. ist nur für zwei Ladungen im Vakuum gültig. Das Coulombsche Gesetz in der Form F =/(4πɛ 0) q q ist nur für zwei Ladungen im Vakuum gültig. r Versuche mit der Cavendish-Drehwaage mit flüssigen oder gasförmigen Isolatoren zwischen den beiden Ladungen

Mehr

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik 9. Elektrostatik 9.1 Elektrische Ladung 9.2 Coulombsches Gesetz 9.3 Elektrisches Feld 9.4 Kraft auf Ladungen 9.5 Elektrisches Potential 9.6 Elektrische Kapazität 9.1 Elektrische Ladung Es gibt (genau)

Mehr

Inhaltsverzeichnis Elektrostatik

Inhaltsverzeichnis Elektrostatik Inhaltsverzeichnis 1 Elektrostatik 1 1.1 Grundbegriffe...................................... 1 1.1.1 Elektrische Ladung, Coulomb-Gesetz..................... 1 1.1.2 Das elektrische Feld..............................

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011

Mehr

Universität Regensburg Fakultät Physik. Experimentalphysik 2. Elektrodynamik. Prof. Christian Schüller. Sommersemester L A TEX: Frank Reinhold

Universität Regensburg Fakultät Physik. Experimentalphysik 2. Elektrodynamik. Prof. Christian Schüller. Sommersemester L A TEX: Frank Reinhold Universität Regensburg Fakultät Physik Experimentalphysik 2 Elektrodynamik Prof. Christian Schüller Sommersemester 2008 L A TEX: Frank Reinhold Inhaltsverzeichnis Einführung/Motivation 5 1 Elektrostatik

Mehr

1 Elektrostatik 1.1 Ladung 1.1.1 Eigenschaften

1 Elektrostatik 1.1 Ladung 1.1.1 Eigenschaften 1 Elektrostatik 1.1 Ladung 1.1.1 Eigenschaften 1 Das heutige Bild vom Aufbau eines Atoms Größe < 10-18 m Größe 10-14 m Größe < 10-18 m Größe 10-15 m Größe 10-10 m 2 Ausblick: Ladung der Quarks & Hadronen

Mehr

Experimentalphysik II: Elektrostatik I

Experimentalphysik II: Elektrostatik I Experimentalphysik II: Elektrostatik I Zweitversuch-Ferienkurs Sommersemester 09 William Hefter 07/09/09 Inhaltsverzeichnis Elektrische Ladung, Coulomb-Kraft 2 2 Das elektrische Feld 2 3 Der Satz von Gauß

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

2. Elektrisches Feld 2.2 Elektrostatisches Feld

2. Elektrisches Feld 2.2 Elektrostatisches Feld Definition Verschiebungsfluß und Verschiebungsflußdichte Arbeit im elektrostatischen Feld Feld einer geladenen Kugel, Zylinder Potential im elektrischen Feld Feld einer Linienladung 1 Feldbegriff Elektrisches

Mehr

Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für

Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für + Kapitel 4 KAPAZITÄT und ENERGIE 4. Kondensator Ein Kondensator besteht typischerweise aus zwei Leiterplatten, die sich in einem kleinen Abstand voneinander befinden. Meist liegt zwischen den Elektroden

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Elektrizität und Magnetismus - Einführung

Elektrizität und Magnetismus - Einführung Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz

Mehr

Elektrizitätslehre 2.

Elektrizitätslehre 2. Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig

Mehr

5 Elektrizität und Magnetismus

5 Elektrizität und Magnetismus 5.1 Elektrische Ladung q Ursprung: Existenz von subatomaren Teilchen Proton: positive Ladung Elektron: negative Ladung besitzen jeweils eine Elementarladung e = 1.602 10 19 C (Coulomb) Ladung ist gequantelt

Mehr

Das statische elektrische Feld

Das statische elektrische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis (6 Std.) (10 Std.) In diesem Abschnitt (6 Std.) (10 Std.) Elektrischer Strom E Elektrischer Strom In Metallen befinden sich frei bewegliche

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

Klassische Elektrodynamik

Klassische Elektrodynamik Theoretische Physik Band 3 Walter Greiner Klassische Elektrodynamik Institut für Festkörperphysik Fachgebiet Theoretische Physik Technische Hochschule Darmstadt Hochschulstr. 6 1P iu Verlag Harri Deutsch

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Elektromagnetismus und Optik

Elektromagnetismus und Optik Elektromagnetismus und Optik Bilder, Diagramme und Tabellen zur Vorlesung PHYSIK-II -Elektromagnetismus und Optik- SS 2004, Universität Freiburg Prof. Dr. K. Jakobs Physikalisches Institut Universität

Mehr

Elektrische und magnetische Felder

Elektrische und magnetische Felder Marlene Marinescu Elektrische und magnetische Felder Eine praxisorientierte Einführung Mit 260 Abbildungen @Nj) Springer Inhaltsverzeichnis I Elektrostatische Felder 1 Wesen des elektrostatischen Feldes

Mehr

3.2 Materie im elektrischen Feld

3.2 Materie im elektrischen Feld - 120-3.2 Materie im elektrischen Feld Auch elektrisch neutrale Materie besteht aus geladenen Teilchen (Atomkerne, Elektronen), welche auf unterschiedliche Weise aneinander gebunden sind. Deshalb wirken

Mehr

PhysikI und II fürstudentender Zahnmedizinund Biologie-2. Teil Universität Hamburg Wintersemester 2016/17

PhysikI und II fürstudentender Zahnmedizinund Biologie-2. Teil Universität Hamburg Wintersemester 2016/17 PhysikI und II fürstudentender Zahnmedizinund Biologie-2. Teil Universität Hamburg Wintersemester 2016/17, Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed Mein Arbeitsgebiet: ExperimentelleElementarteilchenphysikan

Mehr

Das elektrische Feld

Das elektrische Feld I Das elektrische Feld 0 Wiederholung: Elektrostatik (ruhende Ladungen) Elektrische Ladung ist ebenso wie Masse eine fundamentale Eigenschaft der Materie. Niemand weiß, was Ladung oder Masse letztendlich

Mehr

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung: 3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Zwischenklausur Physik I für MWWT

Zwischenklausur Physik I für MWWT Prof. Martin H. Müser Lehrstuhl f. Materialsimulation Universität des Saarlandes 17. 12. 2011 Name: Zwischenklausur Physik I für MWWT Matrikelnummer: Die sechs besten Punktezahlen aus den acht reguären

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

4 Kapazität, Dielektrika, Energiespeicherung

4 Kapazität, Dielektrika, Energiespeicherung 4 Kapazität, Dielektrika, Energiespeicherung Mit diesem Kapitel schließen wir den Themenbereich der Elektrostatik ab. Wir befassen uns noch mit den Möglichkeiten der Ladungs und Energiespeicherung. 4.1

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

Zusammenfassung Grundgebiete der Elektrotechnik 3

Zusammenfassung Grundgebiete der Elektrotechnik 3 Zusammenfassung Grundgebiete der Elektrotechnik 3 RWTH Aachen, WS 2005, Univ.-Prof. Dr. Tobias Noll c 2005 by Ralf Wilke, DH3WR Korrekturen bitte an Ralf.Wilke@rwth-aachen.de 7. Januar 2006 Inhaltsverzeichnis

Mehr

Vorlesung 2: Elektrostatik II

Vorlesung 2: Elektrostatik II Einheit der elektrischen Ladung: Das Millikan-Experiment (1910, Nobelpreis 1923) Vorlesung 2: Elektrostatik II Sehr feine Öltröpfchen (

Mehr

1. Statisches elektrisches Feld

1. Statisches elektrisches Feld . Statisches elektrisches Feld. Grundlagen der Elektrizitätslehre.. Elektrizität in Natur, Technik und Alltag Altertum: Bernstein reiben Staubteilchen und Wollfasern werden angezogen 794 Coulomb: Gesetz

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Formelsammlung Elektrodynamik

Formelsammlung Elektrodynamik Formelsammlung Elektrodynamik SS 2006 RWTH Aachen Prof. Kull Skript Simon Sawallich Inhaltsverzeichnis 1 Allgemeines 3 1.1 Funktionen............................................ 3 Trigonometrische Funktionen..................................

Mehr

VII. Inhaltsverzeichnis

VII. Inhaltsverzeichnis VII Inhaltsverzeichnis Vorwort Verzeichnis der verwendeten Symbole 1. FORMELSAMMLUNG 1 1.0 Kurzer Abriß der Vektoranalysis 1 1.0.1 Skalare Felder, Gradient 1 1.0.2 Vektorfelder, Rotation und Divergenz

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus

Mehr

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r Blatt 1 (von 2) 1. Ladung der Erde 6 BE a) Leite aus dem oulombpotential die Beziehung = 4πε o r für die Kapazität einer leitenden Kugel mit Radius r her. In der Atmosphäre herrscht nahe der Erdoberfläche

Mehr

Zusammenfassung EPII. Elektromagnetismus

Zusammenfassung EPII. Elektromagnetismus Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:

Mehr

1. Elektrizität & Magnetismus

1. Elektrizität & Magnetismus 1. Elektrizität & Magnetismus 1.1 Einleitung Elektrische und magnetische Phänomene in der Natur Die vier (bekannten) Wechselwirkungen Elektrometer in der Vorlesung Selbstgebautes Elektrometer -dasideale

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke

Mehr

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte) Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Elektrotechnik & Elektronik allgegenwärtig: Beleuchtung, Heizung, E-Motore, Haushaltsgeräte, Computer...

Elektrotechnik & Elektronik allgegenwärtig: Beleuchtung, Heizung, E-Motore, Haushaltsgeräte, Computer... 4. Elektrizitätslehre tslehre Elektrotechnik & Elektronik allgegenwärtig: Beleuchtung, Heizung, E-Motore, Haushaltsgeräte, Computer... Vielfältige Anwendungsmöglichkeiten sind (prinzipiell) schon durch

Mehr

Übung 3 - Musterlösung

Übung 3 - Musterlösung Experientalphysik 2 für Lehratskandidaten und Meteorologen 5. Mai 200 Übungsgruppenleiter: Heiko Dulich Übung 3 - Musterlösung Aufgabe 6: Wann funkt es? Eigene Koordinaten r 2, 2. Hohlkugel: Koordinaten

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte 4.1 Federkraft 4.2 Gravitation 4.3 Elektrische Kraft 4.4 Reibungskraft 4. Beispiele für Kräfte Man kennt: Federkraft, Reibungskraft, Trägheitskraft, Dipolkraft, Schubskraft, Coulombkraft,

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron Elektrostatik 1. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Kräfte zwischen Ladungen, quantitativ 4. Elektrisches Feld 5. Der Satz von Gauß 6. Das elektrische Potenzial und Potenzialdifferenz

Mehr

Maßeinheiten der Elektrizität und des Magnetismus

Maßeinheiten der Elektrizität und des Magnetismus Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange

Mehr

Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert.

Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. 11.1 Grundlagen Versuch 1: "Der geladene Schüler" Beobachtungen:

Mehr

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem 4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten

Mehr

2. Klausur in K1 am

2. Klausur in K1 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Kupfermünze Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA bestand aus reinem

Mehr

PHYSIK - Beispiele und Aufgaben

PHYSIK - Beispiele und Aufgaben PHYSIK - Beispiele und Aufgaben Band 2: Elektrizität und Magnetismus - Schwingungen und Wellen - Atom- und Kernphysik Bearbeitet von Heribert Stroppe 2., verbesserte Auflage 2005. Buch. 160 S. Hardcover

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Baeyer-HS BUT-FU1.017 und Buchner-HS BUT-F0.001 Nachklausur:

Mehr

1.1 Wiederholung des Grundwissens der Mittelstufe. In der Atomhülle befinden sich die negativ geladenen Elektronen.

1.1 Wiederholung des Grundwissens der Mittelstufe. In der Atomhülle befinden sich die negativ geladenen Elektronen. Kapitel 1 Statisches elektrisches Feld 1.1 Wiederholung des Grundwissens der Mittelstufe 1.1.1 Elektrisch geladene Teilchen und Körper Alle Körper sind aus Atomen bzw. Molekülen aufgebaut, wobei Moleküle

Mehr

Elektrostatik. 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab

Elektrostatik. 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab Elektrostatik 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab Beschreibe und erkläre die Exp. stichpunkartig. Ergebnis: - Es gibt

Mehr

7. Dielektrische Eigenschaften von Festkörpern

7. Dielektrische Eigenschaften von Festkörpern 7. Dielektrische Eigenschaften von Festkörpern 1.1 Fläche A C = ε 0 ε r A/L Q=U C ε r = ε r jε r Der Kondensator Y = jωc L Y* U Y = jωcy* C = ε 0 ε r A/L Y*= ω ε 0 ε r A/L Re{ Y} ε '' Definition des Verlustwinkels:

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Prof. Dr. Caren Hagner

Prof. Dr. Caren Hagner Prof. Dr. Caren Hagner Borexino Experiment (Gran Sasso, Italien) Universität Hamburg Institut für Experimentalphysik Luruper Chaussee 149 22761 Hamburg Email: caren.hagner@desy.de Büro: DESY Gelände Bahrenfeld,

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

elektrischespotential =

elektrischespotential = Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #6 am 02.05.2007 Vladimir Dyakonov Elektrisches Potential Wieviel Arbeit muss ich aufwenden

Mehr

Übungsblatt 4 ( )

Übungsblatt 4 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt 4 (08.06.0) ) Geladene Kugeln Zwei homogen geladene Eisenkugeln mit den Ladungen Q = q = q = 0, 0µC haben einen

Mehr

3. Elektrizität und Magnetismus Ladung und Feld. Exp. 9: Elektrostatische Anzieh./Abstoßung. Exp 1: Reibungselektrizität

3. Elektrizität und Magnetismus Ladung und Feld. Exp. 9: Elektrostatische Anzieh./Abstoßung. Exp 1: Reibungselektrizität 3.. Ladung und Feld 3... Übersicht - 3-3. Elektrizität und Magnetismus Die Phänomene die in diesem Kapitel behandelte werden basieren auf einer Größe die bisher noch nicht diskutiert wurde: auf der elektrischen

Mehr

Helmut Haase Heyno Garbe. Elektrotechnik. Theorie und Grundlagen. Mit 206 Abbildungen. Springer

Helmut Haase Heyno Garbe. Elektrotechnik. Theorie und Grundlagen. Mit 206 Abbildungen. Springer Helmut Haase Heyno Garbe Elektrotechnik Theorie und Grundlagen Mit 206 Abbildungen Springer Inhaltsverzeichnis Vorwort Symbole und Hinweise V VII 1 Grundbegriffe 3 1.1 Ladung als elektrisches Grundphänomen

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik Helmut Haase Heyno Garbe Hendrik Gerth Grundlagen der Elektrotechnik Mit 228 Abbildungen Inhaltsverzeichnis Symbole und Hinweise VII 1 Grundbegriffe 1 1.1 Ladung als elektrisches Grundphänomen 1 1.2 Elektrische

Mehr

1 Felder bewegter Ladungen

1 Felder bewegter Ladungen Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 16.10.2008 1 Felder

Mehr

Walter Greiner. Theoretische Physik. Ein Lehr- und Übungsbuch für Anfangssemester. Band 3: Klassische Elektrodynamik

Walter Greiner. Theoretische Physik. Ein Lehr- und Übungsbuch für Anfangssemester. Band 3: Klassische Elektrodynamik Walter Greiner Theoretische Physik Ein Lehr- und Übungsbuch für Anfangssemester Band 3: Klassische Elektrodynamik Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen Lösungen 3., überarbeitete

Mehr

Elektrische und ^magnetische Felder

Elektrische und ^magnetische Felder Marlene Marinescu Elektrische und ^magnetische Felder Eine praxisorientierte Einführung Zweite, vollständig neu bearbeitete Auflage * j Springer I nhaltsverzeichnis 1 Elektrostatische Felder 1 1.1 Wesen

Mehr

Magnetostatik. Magnetfelder

Magnetostatik. Magnetfelder Magnetostatik 1. Permanentmagnete i. Phänomenologie ii. Kräfte im Magnetfeld iii. Magnetische Feldstärke iv.erdmagnetfeld 2. Magnetfeld stationärer Ströme 3. Kräfte auf bewegte Ladungen im Magnetfeld 4.

Mehr

Felder und Komponenten I [FuK I]

Felder und Komponenten I [FuK I] Felder und Komponenten I [FuK I] Folien zur Vorlesung Dr. P. Leuchtmann Prof. Dr. R. Vahldieck Institut für Feldtheorie und Höchstfrequenztechnik (IFH) Übersicht Klären der Begriffe "Feld" und "Komponente"

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 17. 04. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 17. 04.

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

IIE2. Modul Elektrizitätslehre II. Dielektrika

IIE2. Modul Elektrizitätslehre II. Dielektrika IIE2 Modul Elektrizitätslehre II Dielektrika Ziel dieses Versuches ist, die Funktionsweise eines Kondensators mit Dielektrikum zu verstehen. Des weiteren soll die Kapazität des Kondensators und die relative

Mehr

PHYSIK. 2. Klausur - Lösung

PHYSIK. 2. Klausur - Lösung EI PH3 2010-11 PHYSIK 2. Klausur - Lösung 1. Aufgabe (2 Punkte) Unten befindet sich ein Proton im elektrischen Feld zwischen einer ortsfesten positiven sowie einer ortsfesten negativen Ladung. a) Beschreibe,

Mehr

6.1.7 Die Elementarladung

6.1.7 Die Elementarladung 1 Vorlesung xerimentalhysik I am 14.2.2 und 15.2.2 J. Ihringer 6.1.7 Die lementarladung Im Millikan Versuch zeigt die Beobachtung der Sinkgeschwindigkeit von Öltröfchen in einem geladenen Kondensator,

Mehr

Tutorium Physik 2. Elektrizität

Tutorium Physik 2. Elektrizität 1 Tutorium Physik 2. Elektrizität SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 10. ELEKTRIZITÄT 4 10.1 Coulombkraft:

Mehr

Inhaltsverzeichnis Elektrostatische Felder

Inhaltsverzeichnis Elektrostatische Felder Inhaltsverzeichnis 1. Elektrostatische Felder... 1 Zusammenfassung wichtiger Formeln.......................... 1 GrundgleichungenimVakuum... 1 ElementareFeldquellen... 2 Superposition..........................................

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

Randwertprobleme der Elektrostatik

Randwertprobleme der Elektrostatik Kapitel 3 Randwertprobleme der Elektrostatik 3.1 Eindeutigkeitstheorem Wir wollen im folgenden zeigen, dass die Poisson-Gleichung bzw. die Laplace-Gleichung eine eindeutige Lösung besitzt, wenn eine der

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger

Mehr