Von Präferenz zur Nutzenfunktion Optimierungsprobleme mit Nutzenfunktionen. Nutzenfunktionen. Sebastian Chanaa. 8. Januar 2018

Größe: px
Ab Seite anzeigen:

Download "Von Präferenz zur Nutzenfunktion Optimierungsprobleme mit Nutzenfunktionen. Nutzenfunktionen. Sebastian Chanaa. 8. Januar 2018"

Transkript

1 Optimierungsprobleme mit 8. Januar 2018

2 Optimierungsprobleme mit Inhaltsverzeichnis 1 Von Präferenz zur Nutzenfunktion 2 Optimierungsprobleme mit

3 Präferenz Von Präferenz zur Nutzenfunktion Optimierungsprobleme mit Gegeben: Ein Menge X Eine Relation R auf X, welche eine Präferenz repräsentiert heißt (schwache) Präferenzrelation, wenn gilt: ist reflexiv, transitiv und vollständig. reflexiv: x X : x x transitiv: x, y, z X : x y, y z x z vollständig: x, y X : x y oder y x

4 Optimierungsprobleme mit Besser-, Schlechter-, Idifferenzmengen Definition Sei eine Präferenzrelation auf X R n : 1 B y := {x X : y x} - die Bessermenge B y von y 2 S y := {x X : x y} - die Schlechtermenge S y von y 3 I y := B y S y - die Indifferenzmenge I y von y Aufgaben Sei X = R 2 +. Zeichne Indifferenzmengen zu: 1 Kom : x Kom y min(x 1, x 2 ) min(y 1, y 2 ), 2 Sub : x Sub y x 1 + x 2 y 1 + y 2, 3 Lex : x 3 y x 1 y 1 oder x 1 = y 1, x 2 y 2

5 Optimierungsprobleme mit Indifferenzmengen

6 Optimierungsprobleme mit Nutzenfunktion Definition Sei eine Präferenzrelation auf X R n. Eine Funktion U : X R heißt Nutzenfunktion, die repräsentiert, falls für alle x, y X : U(x) U(y) x y Aufgaben 1 Nutzenfunktion zu Sub? 2 Nutzenfunktion zu Lex? 1 Sub : x Sub y x 1 + x 2 y 1 + y 2, 2 Lex : x Lex y x 1 y 1 oder x 1 = y 2, x 2 y 2

7 Optimierungsprobleme mit Keine Nutzenfunktion zu Lexikographischen Präferenzen Angenommen es existiert eine Nutzenfunktion U, die Lex auf R 2 + repräsentiert. Sei A = (r, 1), B = (r, 2), A = (r, 1) und B = (r, 2) mit r < r. Offenbar muss gelten: U(A ) < U(B ) < U(A ) < U(B ). Da Q dicht in R liegt, existieren q, q mit U(A ) < q < U(B ) < U(A ) < q < U(B ). Sei f : R Q mit f (r ) = q. Wegen f (r ) = q < q = f (r ) für alle r < r ist f streng monoton wachsend. Somit auch injektiv. Widerspruch, da Q abzählbar und R überabzählbar. Somit existiert keine Nutzenfunktion U, die Lex repräsentiert.

8 Optimierungsprobleme mit Nutzenfunktion Falls zur Präferenz eine Nutzenfunktion U existiert, ist diese im Allgemeinen nicht eindeutig: Lemma Zwei U 1 und U 2 repräsentieren die selbe Präferenz, gdw. gilt: Es existiert eine streng monotone Funktion φ : R R mit U 1 = φ U 2. Beispiele Folgende repräsentieren die selbe Präferenz: 1 U 1 (x 1, x 2, x 3 ) = x 1 x 2 x 3 2 U 2 (x 1, x 2, x 3 ) = log x 1 + log x 2 + log x 3 3 U 3 (x 1, x 2, x 3 ) = (x 1 x 2 x 3 ) 1

9 Optimierungsprobleme mit Stetige Präferenzrelation Definition Eine Präferenzrelation heißt stetig, gdw. für alle y X R n gilt, B y und S y sind abgeschlossen. Aufgaben 1 Ist Sub stetig? 2 Ist Lex stetig? 1 Sub : x Sub y x 1 + x 2 y 1 + y 2, 2 Lex : x Lex y x 1 y 1 oder x 1 = y 2, x 2 y 2

10 Optimierungsprobleme mit Lexikographische Präferenzen Lexikographische Präferenzen sind nicht stetig, denn: Betrachte x m = (1 + 1m ), 1 mit lim x m = (1, 1) =: x m und den Punkt y = (1, 2). Offenbar gilt für alle m N : x m B y, jedoch x B y. Somit ist B y nicht abgeschlossen und damit Lex nicht stetig.

11 Optimierungsprobleme mit Existenz stetige Nutzenfunktion Definition Eine Präferenzrelation auf X R n heißt lokal ungesättigt, wenn für alle x X und r > 0 gilt, dass es y B(x, r) existiert, sodass x y, aber y x. Theorem Sei X eine abgeschlossene und konvexe Teilmenge des R n mit einer stetigen, lokal ungesättigten Präferenzrelation. Dann existiert eine stetige Nutzenfunktion U, die repräsentiert.

12 Optimierungsprobleme mit Existenz differenzierbarer Nutzenfunktion I Definition Sei eine Präferezrelation auf X R n. heißt monoton, falls für alle x, y X mit x y (komponentenweise) auch x y gilt. Definition Sei X R m. X heißt glatte n-mannigfaltigkeit, falls es für alle x eine offene Umgebung V von x gibt, sodass eine offene Menge W R n und ein Diffeomorphismus φ : V W existiert.

13 Optimierungsprobleme mit Existenz differenzierbarer II Definition Sei eine stetige, monotone Präferezrelation auf einer offenen Menge X R n. Sei I := {(x, y) X X : x I y }. Die Relation heißt glatt, wenn I eine glatte n-mannigfaltigkeit ist. Theorem Sei X eine offene Teilmenge des R n und eine stetige, lokal ungesättigte Präferenzrelation. Weiter sei für alle y X I y zusammenhängend. Dann existiert eine differenzierbare Nutzenfunktion U, die repräsentiert, gdw. glatt ist.

14 Optimierungsprobleme mit Optimierung Situation: 1 X R n mit Präferenz auf X 2 Nutzenfunktion U : X R, U repräsentiert 3 Meist ist Optimierung unter Nebenbedingungen gesucht 4 Je nach Eigenschaften von U und Art der Nebenbedingungen verschiedene Lösungsverfahren

15 Optimierungsprobleme mit Lösungsverfahren Lagrange U(x) MAX diffbar, g 1,..., g k diffbar, mit g 1 (x) = 0, g 2 (x) = 0,..., g k (x) = 0 Lagrange-verfahren Kuhn - Tucker U(x) MAX diffbar, g 1,..., g k diffbar, mit g 1 (x) 0, g 2 (x) 0,..., g k (x) 0 Optimierung unter Ungleichungsrestriktionen (Kuhn-Tucker)

16 Budget Von Präferenz zur Nutzenfunktion Optimierungsprobleme mit Im Folgenden spezielle, mikroökonomische Sichtweise: Definition Sei p R n ein Preisvektor. Dann heißt da Geld-Budget. B(p, m) := { x R n + : p x m } Definition Sei und ω R n + Anfangsausstattung. Sei p R n ein Preisvektor. Dann heißt B(p, ω) := { x R n + : p x p ω } da Anfangsausstattungs-Budget.

17 Optimierungsprobleme mit Haushaltsoptimum Problem Problem sei gegeben als (B(p, m), ). Gesucht x R (p, m), s.d.: 1 p x R m 2 Für alle y x R folgt y p > m

18 Optimierungsprobleme mit MRS und MOC X R 2 +, U : X R diffbar. Definition Grenzrate der Substitution (MRS) MRS := U x1 U x2 Wenn der Haushalt eine zusätzliche Einheit x 1 konsumiert, wie viele Einheiten x 2 kann er aufgeben um indifferent zu bleiben MRS

19 Optimierungsprobleme mit MRS und MOC X R 2 +, U : X R diffbar. Definition Grenzkosten (MOC) MOC := m x1 m x2 = p 1 p 2 Wenn der Haushalt eine zusätzliche Einheit x 1 erwirbt, wie viele Einheiten x 2 muss er aufgeben um auf der Budgetgeraden zu bleiben MOC

20 Optimierungsprobleme mit MRS und MOC

21 Optimierungsprobleme mit MRS und MOC

22 Optimierungsprobleme mit Konvexe Präferenzen

23 Optimierungsprobleme mit Perfekte Substitute

24 Optimierungsprobleme mit Konkave Präferenzen

25 Optimierungsprobleme mit Perfekte Komplemente

26 Quellen Von Präferenz zur Nutzenfunktion Optimierungsprobleme mit Mehta, Ghanshyam B., Preference and Utility, in: Barberà, Salvador (ed.), Handbook of Utility Theory. Priciples, Vol.1, 1998, S Wiese, Harald, Advanced Microeconomics. Comparative statics and duality theory, in: (zuletzt aufgerufen: ). Wiese, Harald, Mikroökonomie. Eine Einführung, Berlin 2014.

Mikroökonomik. Präferenzen, Indi erenzkurven und Nutzenfunktionen. Harald Wiese. Universität Leipzig

Mikroökonomik. Präferenzen, Indi erenzkurven und Nutzenfunktionen. Harald Wiese. Universität Leipzig Mikroökonomik Präferenzen, Indi erenzkurven und Nutzenfunktionen Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Präferenzen, Indi erenzkurven und Nutzenfunktionen 1 / 33 Gliederung

Mehr

Mikroökonomik 2. Vorlesungswoche

Mikroökonomik 2. Vorlesungswoche Mikroökonomik 2. Vorlesungswoche Tone Arnold Universität des Saarlandes 30. Oktober 2007 Tone Arnold (Universität des Saarlandes) 2. Vorlesungswoche 30. Oktober 2007 1 / 108 Präferenzen Wie treffen Konsumenten/Individuen

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie Vorlesung: Nicht-kooperative Spieltheorie Teil 1: Organisatorisches, Inhalte der Vorlesung Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 / 15 Organisatorisches

Mehr

Mietinteressent A B C D E F G H Vorbehaltspreis a) Im Wettbewerbsgleichgewicht beträgt der Preis 250.

Mietinteressent A B C D E F G H Vorbehaltspreis a) Im Wettbewerbsgleichgewicht beträgt der Preis 250. Aufgabe 1 Auf einem Wohnungsmarkt werden 5 Wohnungen angeboten. Die folgende Tabelle gibt die Vorbehaltspreise der Mietinteressenten wieder: Mietinteressent A B C D E F G H Vorbehaltspreis 250 320 190

Mehr

Kapitel 1: Präferenzen

Kapitel 1: Präferenzen Kapitel 1: Präferenzen Hauptidee: Eine Konsumentscheidung kann als Wahl zwischen Güterbündeln modelliert werden, gemäß der Präferenzen des Konsumenten. Die Konzepte Indifferenzkurve, Grenzrate der Substitution,

Mehr

IK Ökonomische Entscheidungen & Märkte

IK Ökonomische Entscheidungen & Märkte LVA-Leiter: Martin Halla Einheit 4: Das Verbraucherverhalten (Kapitel 3) Einheit 4-1 - Verbraucherverhalten Budgetbeschränkung: Man kann nicht alles haben, was man sich wünscht! Konsumentenpräferenzen:

Mehr

Allgemeines Gleichgewicht

Allgemeines Gleichgewicht Allgemeines Gleichgewicht Dr. Alexander Westkamp 30. November 2010 Allgemeines Gleichgewicht I 1/ 46 Einleitung Partielle Gleichgewichtsanalyse nützlich, wenn es wenig Interdependenzen zwischen verschiedenen

Mehr

2. Theorie des Haushalts

2. Theorie des Haushalts . Theorie des Haushalts. Konsumentenpräferenzen. Theorie des Haushalts Theorie des Verbraucherverhaltens Theorie des Faktorangebots Vorgehensweise in drei Schritten: ) Konsumentenpräferenzen ) Budgetrestriktion

Mehr

Übung zur Vorlesung Multiagentensysteme

Übung zur Vorlesung Multiagentensysteme Ludwig-Maximilians-Universität München SS 2007 Institut für Informatik Aufgabenblatt 1 Dr. Brandt / Fischer & Harrenstein 23. April 2007 Übung zur Vorlesung Multiagentensysteme Tutorübung: 25. April 2007

Mehr

Vorkurs Mikroökonomik

Vorkurs Mikroökonomik Vorkurs Mikroökonomik Entscheidungen über Arbeitsangebot und Sparen Harald Wiese Universität Leipzig WS 2015/2016 Harald Wiese (Universität Leipzig) Entscheidungen über Arbeitsangebot und Sparen WS 2015/2016

Mehr

Einführung in die Volkswirtschaftslehre

Einführung in die Volkswirtschaftslehre Einführung in die Volkswirtschaftslehre Übung 1: Mathematische Analyseinstrumente Dipl.-Volksw. J.-E.Wesselhöft/ Dipl.-Volksw. J.Freese Bachelor Modul Volkswirtschaftliche Analyse (WS-14-V-03) HT 2009

Mehr

Probeklausur zur Mikroökonomik I

Probeklausur zur Mikroökonomik I Prof. Dr. Robert Schwager Sommersemester 2005 Probeklausur zur Mikroökonomik I 08. Juni 2005 Name: Matrikelnr.: Bei Multiple-Choice-Fragen sind die zutreffenden Aussagen (wahr bzw. falsch) anzukreuzen.

Mehr

Mikroökonomie 1. Präferenzen

Mikroökonomie 1. Präferenzen Mikroökonomie 1 Präferenzen 18.03.2010 1 Wiederholung: ökonomische Theorie des Konsumenten was man sich leisten kann (Budgetrestriktion) die besten Dinge wählen (Präferenzen) In der letzten Veranstaltung

Mehr

IK Ökonomische Entscheidungen und Märkte LVA

IK Ökonomische Entscheidungen und Märkte LVA IK Ökonomische Entscheidungen und Märkte LVA LVA-Leiter: Michael Noldi Einheit 4: Das Verbraucherverhalten (Kap. 3) Verbraucherverhalten IK WS 2014/15 1 Verbraucherverhalten Bugetbeschränkung: Einkommen,

Mehr

Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05. Klausur Mikroökonomik. Matrikelnummer: Studiengang:

Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05. Klausur Mikroökonomik. Matrikelnummer: Studiengang: Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05 Klausur Mikroökonomik Matrikelnummer: Studiengang: Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05 Klausur Mikroökonomik Bitte bearbeiten Sie alle zehn

Mehr

Probeklausur zur Mikroökonomik II

Probeklausur zur Mikroökonomik II Prof. Dr. Robert Schwager Wintersemester 005/006 Probeklausur zur Mikroökonomik II Dezember 005 Name: Matrikelnr.: Bei Multiple-Choice-Fragen ist das zutreffende Kästchen (wahr bzw. falsch) anzukreuzen.

Mehr

VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt 1

VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt 1 Georg Nöldeke Frühjahrssemester 2009 VWL 3: Mikroökonomie Lösungshinweise zu Aufgabenblatt Siehe Abbildung x 2 m p = 25 2 Budgetgerade: { xpx + px 2 2 = m} Budgetmenge: { xpx + px 2 2 m} 0 0 m p = 20 x

Mehr

Nutzentheorie und Präferenzen

Nutzentheorie und Präferenzen Mikroökonomische Theorie 5 Nutzentheorie und Präferenzen 50 Nutzentheorie und Präferenzen Prof Dr Winfried Reiß, Universität Paderborn Mikroökonomische Theorie 5 Nutzentheorie und Präferenzen 51 Lernziele

Mehr

U (x 1 ; x 2 ) = x x 2 2.

U (x 1 ; x 2 ) = x x 2 2. Aufgabe (2 Punkte) Horsts Nutzenfunktion ist gegeben durch U ( ; 2 ) = 2 + 4 2 2. Dabei steht für die von ihm konsumierte Menge von Gut und 2 für die von ihm konsumierte Menge von Gut 2. Der Preis einer

Mehr

Lösungen zu den Übungsbeispielen aus Einheit

Lösungen zu den Übungsbeispielen aus Einheit Lösungen zu den Übungsbeispielen aus Einheit Haushaltstheorie Haushaltstheorie IK Ökonomische Entscheidungen & Märkte (239.120) Sommerssemester 2010 Übung 1: Die Budgetbeschränkung Gegeben sind das Einkommen

Mehr

2. Welche Mengen Bier und Wein konsumiert Barney im Optimum? 1. Die Grenzrate der Substitution bestimmt sich wie folgt: = x 1 MRS = MU 1 MU 2.

2. Welche Mengen Bier und Wein konsumiert Barney im Optimum? 1. Die Grenzrate der Substitution bestimmt sich wie folgt: = x 1 MRS = MU 1 MU 2. Aufgabe 1 (10 min): Barneys Nutzenfunktion ist gegeben durch u( ; x 2 ) = 1 2 x2 1 + x 2 2. Dabei steht für die von ihm konsumierte Menge Bier und x 2 für die von ihm konsumierte Menge Wein. Der Preis

Mehr

Studiengang (Zutreffendes bitte ankreuzen):

Studiengang (Zutreffendes bitte ankreuzen): Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur Mikroökonomik Matrikelnummer: Studiengang (Zutreffendes bitte ankreuzen): SozÖk Sozma AÖ WiPäd Wiwi Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur

Mehr

Mikroökonomik 4. Vorlesungswoche Fortsetzung

Mikroökonomik 4. Vorlesungswoche Fortsetzung Mikroökonomik 4. Vorlesungswoche Fortsetzung Tone Arnold Universität des Saarlandes 14. November 2007 Tone Arnold (Universität des Saarlandes) 4. Vorlesungswoche Fortsetzung 14. November 2007 1 / 41 Slutzky

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Musterlösungen Mikroökonomie II

Musterlösungen Mikroökonomie II Musterlösungen Mikroökonomie II Kardinaler Nutzen Aufgabe 1 Man hält den Nutzen, der aus dem Konsum von Gütern entsteht für meßbar. Konkret wird angenommen, daß man den Nutzenabstand zwischen zwei Güterbündeln

Mehr

Mikroökonomik. Das Budget. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Das Budget 1 / 21

Mikroökonomik. Das Budget. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Das Budget 1 / 21 Mikroökonomik Das Budget Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Das Budget 1 / 21 Überblick über die Haushaltstheorie Budget Kap. B Präferenzen Kap. C Haushaltsoptimum Kap.

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014 Mathematik für Kapitel 4-6 Universität Trier Wintersemester 2013 / 2014 Kapitel 4 1. Extremwerte 2. Lokale Optimalpunkte 3. Wendepunkte 2 Kapitel 4.1 EXTREMWERTE 3 Extrempunkte und Extremwerte 4 Strikte

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Vorlesung: Einführung in die Volkswirtschaftslehre

Vorlesung: Einführung in die Volkswirtschaftslehre Vorlesung: Einführung in die Volkswirtschaftslehre Prof. Dr. Michael Berlemann Bachelor Modul WS-11-V-01.1 HT 2009 Prof. Dr. Michael Berlemann (HSU) Vorlesung: Einführung in die Volkswirtschaftslehre HT

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

Mikroökonomie I Kapitel 3 Das Käuferverhalten WS 2004/2005

Mikroökonomie I Kapitel 3 Das Käuferverhalten WS 2004/2005 Mikroökonomie I Kapitel 3 Das Käuferverhalten WS 2004/2005 Die Themen in diesem Kapitel Konsumentenpräferenzen Budgetbeschränkungen Verbraucherentscheidung Die Grenznutzen und die Verbraucherentscheidung

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Einführung in die Volkswirtschaftslehre

Einführung in die Volkswirtschaftslehre Einführung in die Volkswirtschaftslehre Übung zu Kapitel 2: Theorie des Haushalts Dipl.-Volksw. J.-E.Wesselhöft/ Dipl.-Volksw. J.Freese Bachelor WS-11-V-01.1 HT 2009 Dipl.-Volksw. J.-E.Wesselhöft/ Dipl.-Volksw.

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.2 2014/04/14 13:19:35 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d In diesem einleitenden Paragraphen wollen wir Untermannigfaltigkeiten des R d studieren, diese sind die

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

Was bisher geschah: Formale Sprachen

Was bisher geschah: Formale Sprachen Was bisher geschah: Formale Sprachen Alphabet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen Darstellung unendlicher Sprachen durch reguläre Ausdrücke (Syntax, Semantik, Äquivalenz)

Mehr

Universität Ulm SS 2007 Institut für Betriebswirtschaft Hellwig/Meuser Blatt 5. w l = W. q l = l=1. l=1

Universität Ulm SS 2007 Institut für Betriebswirtschaft Hellwig/Meuser Blatt 5. w l = W. q l = l=1. l=1 Universität Ulm SS 2007 Institut für Betriebswirtschaft 27.06.2007 Hellwig/Meuser Blatt 5 Lösungen zu AVWL III Aufgabe 20 Wir betrachten hier eine reine Tauschökonomie ohne Produktion mit m Konsumenten

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Musterlösung 11.Übung Mathematische Logik

Musterlösung 11.Übung Mathematische Logik Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Reinhardt SS 2015 Aufgabe 2 Musterlösung 11.Übung Mathematische Logik Geben Sie für die folgenden

Mehr

Mikroökonomik. Entscheidungen über Arbeitsangebot und Sparen. Harald Wiese. Universität Leipzig

Mikroökonomik. Entscheidungen über Arbeitsangebot und Sparen. Harald Wiese. Universität Leipzig Mikroökonomik Entscheidungen über Arbeitsangebot und Sparen Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Entscheidungen über Arbeitsangebot und Sparen 1 / 18 Gliederung Einführung

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Allgemeine Volkswirtschaftslehre I für WiMA und andere (AVWL I)

Allgemeine Volkswirtschaftslehre I für WiMA und andere (AVWL I) I WiMA und andere WS 007/08 Institut Wirtschaftswissenschaften www.mathematik.uni-ulm.de/wiwi/ . Grundzüge der Mikroökonomik WS 007/08.6 Theorie des Haushalts .6 Theorie des Haushalts WS 007/08 Haushaltstheorie

Mehr

Lösungsskizze zur Probeklausur Einführung in die Mikroökonomie

Lösungsskizze zur Probeklausur Einführung in die Mikroökonomie Lösungsskizze zur Probeklausur Einführung in die Mikroökonomie Prof. Dr. Dennis A. V. Dittrich, Universität Erfurt Aufgaben 1. Ein Konsument habe die Nutzenfunktion U(x, y) = x + y. Der Preis von x ist

Mehr

Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457.

Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457. Exkurs A: Bedingte Erwartungswerte, bedingte Verteilungen (Ω, A, P ) sei W-Raum, X : Ω IR P-quasiintegrierbar, F A Unter - σ- Algebra. E(X F) = E P (X F) (Version des) bedingter Erwartungswert von X unterf

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

11 Optimierung von Funktionen einer Veränderlichen

11 Optimierung von Funktionen einer Veränderlichen 11 Optimierung von Funktionen einer Veränderlichen In diesem Kapitel werden die bis hier behandelten Grundlagen der Analysis genutzt, um Methoden aus der Optimierungstheorie für eindimensionale Entscheidungsmengen

Mehr

Kapitel IV. Endliche, abzählbare und überabzählbare Mengen. IV.1 Abzählbare Mengen

Kapitel IV. Endliche, abzählbare und überabzählbare Mengen. IV.1 Abzählbare Mengen Kapitel IV Endliche, abzählbare und überabzählbare Mengen Wir haben schon einige Mengen in den Kapiteln I und II kennengelernt, etwa die Zahlenmengen N, Z, Q und R. Jede dieser Zahlenmengen enthält unendlich

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10 Mathematik für Wirtschaftswissenschaften I Wintersemester 05/6 Universität Leipzig Lösungvorschläge Präsenzaufgaben Serien -0 Inhaltsverzeichnis Serie Serie 5 3 Serie 8 4 Serie 9 5 Serie 3 6 Serie 6 7

Mehr

Probeklausur zur Mikroökonomik II

Probeklausur zur Mikroökonomik II Prof. Dr. Robert Schwager Wintersemester 2004/2005 Probeklausur zur Mikroökonomik II 08. Dezember 2004 Name: Matrikelnr.: Bei Multiple-Choice-Fragen ist das zutreffende Kästchen (wahr bzw. falsch) anzukreuzen.

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Wie alle Informationen über die Nachfrageseite in der Nachfragekurve verdichtet werden

Wie alle Informationen über die Nachfrageseite in der Nachfragekurve verdichtet werden Wie alle Informationen über die Nachfrageseite in der Nachfragekurve verdichtet werden 6.1 Hauptthemen des Kapitels... 48 6.2 Aufgaben... 49 6.2.1 Übungen... 49 6.2.2 Kontrollfragen... 51 6.3 Lösungen...

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Klausur AVWL 1. Klausurtermin: Ich studiere nach: Bachelor-Prüfungsordnung Diplom-Prüfungsordnung. Bitte beachten Sie:

Klausur AVWL 1. Klausurtermin: Ich studiere nach: Bachelor-Prüfungsordnung Diplom-Prüfungsordnung. Bitte beachten Sie: Klausur AVWL 1 Klausurtermin: 9.09.014 Dieses Deckblatt bitte vollständig und deutlich lesbar ausfüllen! Vom Prüfer Vom Prüfer Name: auszufüllen: auszufüllen: Aufg.1: / 5 Vorname: Punkte: Aufg.: / 19 Matrikelnummer:

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Mikroökonomik B 1. Intertemporale Entscheidung

Mikroökonomik B 1. Intertemporale Entscheidung Mikroökonomik B 1. Intertemporale Entscheidung Paul Schweinzer 23. April 2009. Intertemporale Entscheidung Literaturangaben: Varian (2007), Kapitel 10, 11 und 30.3. Ausgangspunkt: Konsumententheorie, d.h.

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Spickzettel Mathe C1

Spickzettel Mathe C1 Spickzettel Mathe C1 1 Mengenlehre 1.1 Potenzmenge Die Potenzmenge P (Ω) einer Menge Ω ist die Menge aller Teilmengen von Ω. Dabei gilt: P (Ω) := {A A Ω} card P (Ω) = 2 card Ω P (Ω) 1.2 Mengenalgebra Eine

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Lösungen zu den Aufgaben zum Kapitel 5

Lösungen zu den Aufgaben zum Kapitel 5 Lösungen zu den Aufgaben zum Kapitel 5 Aufgabe 5. (Aufgabe, SS 000, VWL B, 9.07.000 [. Wdh. vom WS 999/000]) Der Präferenztheorie liegen bestimmte Annahmen bezüglich der Wünsche der Individuen zugrunde.

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer In diesem Vortrag werden die Eigenschaften von kompakten, metrischen Räumen vertieft. Unser Ziel ist es Techniken zu erlernen, um

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Avant Propos Formale Sprachen und Automaten Sie [die Theorie der formalen Sprachen] ist ein Musterbeispiel einer informatischen Theorie, weil es ihr gelingt, einen großen Bestand an Einsichten und Zusammenhängen

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Einführung in die Wirtschaftswissenschaften für Nicht-ÖkonomInnen. Teil 2: Haushaltstheorie

Einführung in die Wirtschaftswissenschaften für Nicht-ÖkonomInnen. Teil 2: Haushaltstheorie Einführung in die Wirtschaftswissenschaften für Nicht-ÖkonomInnen Teil 2: Haushaltstheorie Dieses Werk ist unter einem Creative Commons Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Christoph Lex Dominik Lohmaier http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_04/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr