Grundkurs Codierung Lösungsvorschläge zu den Fragen in den Unterkapiteln Was blieb? Stand Unterkapitel 4.4 Seite 261

Größe: px
Ab Seite anzeigen:

Download "Grundkurs Codierung Lösungsvorschläge zu den Fragen in den Unterkapiteln Was blieb? Stand Unterkapitel 4.4 Seite 261"

Transkript

1 Grundkur Codierung Löungvorchläge zu den Fragen in den Unterkapiteln Wa blieb? Stand Unterkapitel 4.4 Seite 261 Zu Frage 1: Nein, damit bleibt da one time pad-verfahren nicht perfekt. Man kann ich da klar machen, wenn man den anderen Extremfall nur eine Schlüel betrachtet, mit dem ja gemäß den Bildern 4.14 und 4.15 die Verteilung der Geheimtextzeichen überhaupt nicht verändert wird. Verwendet man nun zwei zufällig verteilte Schlüel, o tehen hinter jedem Geheimtextzeichen zwei mögliche Klartextzeichen, nämlich die, deren Summen mit den beiden Schlüeln immer denelben Wert ergeben. Die Verteilung der Geheimtextzeichen wird alo im Mittel Doppeläulen aufweien und man mu durch Probieren nur noch ermitteln, welche Klartextzeichen mit welchen beiden Schlüeln zum Wert dieer Doppeläulen führen. Diee Verchlüelung it alo noch weit davon entfernt, perfekt zu ein. Bei drei zufällig verteilten Schlüeln verhält e ich ähnlich, in der Verteilung der Geheimtextzeichen erhält man nun Dreifachäulen, wa eine weitere Abflachung de Profil bewirkt. Damit wird allerding auch da Probieren zum Betimmen der dann drei verchiedenen Klartextzeichen aufwändiger uw. Mit jedem neu hinzu genommenen Schlüel flacht die Häufigkeitverteilung weiter ab, bewegt ich immer mehr auf einen perfekten Zutand zu, iehe Bild 4.16, und erreicht dieen im Extremfall gleich vieler verchiedener Schlüel wie Klartextzeichen. Zu Frage 2: Nein, e gibt dann keine Möglichkeit. Zu Frage 3: Wenn ein Angreifer einige zuammenhängende Teiltücke von Geheim- und Klartext in die Hände bekommt, kann er die zugehörigen Schlüel berechnen. Dann hat er eine Chance, mit Hilfe de in Unterkapitel 4.3, Seiten 258 ff, bechriebenen Verfahren Länge und Rückkopplungpolynom de Schieberegiter zu ermitteln. Damit wäre ihm auch die geamte Peudo-Zufallfolge bekannt. Zu Frage 4: Nein, maximale Längen von Schieberegiterfolgen (= Maximallängenfolgen) werden nur mit denjenigen irreduziblen Rückkopplungpolynomen erzeugt, deren zugehörige Wurzeln die maximale Ordnung aufweien, oder, etwa genauer: Deren Wurzeln primitive Elemente ind. Ein über die Koeffizienten eine Polynom m-ten Grade g(x) mit Koeffizienten im Z 2 rückgekoppelten binären Schieberegiter mit m Speichern gemäß Bild 4.1 in Unterkapitel 4.1, Seite 235, wirkt wie ein MOD g(x)-dividierer. Ein Beipiel für g(x) = x 3 + x + 1 it in Bild 3.12 im Unterkapitel 3.7.2, Seite 109, dargetellt. Für die obere Tabelle in Bild 3.12 wurden die 3 Speicher zum Startzeitpunkt von link nach recht mit belegt. Am Eingang recht teht ein Folge von Nullen. Beim Ablauf tellen ich = 7 verchiedene Speicherzutände ein, der achte it die Wiederholung de erten. Bei der Diviion MOD g(x) wurde alo eine Zutandfolge maximaler Länge erzeugt oder al gleichwertige Beobachtung eine Binärfolge de Augangignal, die ich ert nach 7 Stellen wiederholt. Diee Ergebni erhält man auch bei fortlaufender Berechnung und Linkverchiebung de zu Grundkur Codierung Copyright 2006 Seite 1 von 5

2 Syndrompolynom (x) (x) = 1 (x) = 0001 MOD g(x) = 001, Linkverchiebung von 1 (x) über 1 (x) x und erneute Diviion ergibt nacheinander 2 (x) = 1 (x) x = 0010 MOD g(x) = (x) = 2 (x) x = 0100 MOD g(x) = (x) = 3 (x) x = 1000 MOD g(x) = (x) = 4 (x) x = 0110 MOD g(x) = (x) = 5 (x) x = 1100 MOD g(x) = (x) = 6 (x) x = 1000 MOD g(x) = (x) = 8 (x) x = 1000 MOD g(x) = 001 = 1 (x) Mit den Elementen α de Galoikörper GF(2 3 ), welcher über die Nulltelle α 3 = α + 1 de irreduziblen Polynom g(x) definiert wird, kann dieer Ablauf mit Hilfe von (x), v(x) = x 0 = 1 und x= α auch folgendermaßen dargetellt werden: (α) = 1 (α) = v(α) = α 0 = 1 2 (x) = 1 (x) x = 1 (α) α = α 3 (x) = 2 (x) x = 2 (α) α = α 2 4 (x) = 3 (x) x = 3 (α) α = α 3 5 (x) = 4 (x) x = 4 (α) α = α 4 6 (x) = 5 (x) x = 5 (α) α = α 5 7 (x) = 6 (x) x = 6 (α) α = α 6 8 (x) = 7 (x) x = 7 (α) α = α 7 = 1 (α) =1. Hier it direkt zu ehen, da die Maximallängenfolgen mit der Ordnung der Wurzel de definierenden irreduziblen Polynom g(x) zuammenhängen. Nach Unterkapitel eignet ich hierzu im GF(2 m ) aber nicht jede irreduzible Polynom vom Grad m. Zu Frage 5: Die Frage it alo, ob und wie ich die mittlere Entropie eine nach dem one time pad-verfahren erzeugten Geheimtexte G gegenüber der Entropie de Klartexte verändert. Wenn zur Dartellung eine Zeichen n Bit verwendet werden, dann it die Entropie H bei Gleichverteilung p(x 1 ) = p(x 2 ) =... p(x ) = 1/ aller =2 n Zeichen am größten, alo H= p x i max mit der Nebenbedingung =1, wenn p x 1 =p x 2 =... =p x Da one time pad-verfahren bewirkt aber gerade eine Gleichverteilung bei der Abbildung de Klartext- Zeichenatze in die Geheimtextzeichen. Alo erhöht ich die Entropie der Geheimtextzeichen, wenn die Klartextzeichen nicht gleich verteilt ind. Sie ändert ich nicht, wenn ie gleich verteilt ind (Zuatzfrage: bringt da one time pad-verfahren überhaupt etwa? Siehe unten *), jedoch wird ie in keinem Fall größer. Da ich die maximale Entropie bei Gleichverteilung ergibt, ieht man, wenn man z. B. die Wahrcheinlichkeit p(x ) gemäß der Nebenbedingung durch die Summe der übrigen Wahrcheinlichkeiten audrückt p x =1 und in da Entropie-Funktional H einetzt: zu Grundkur Codierung Copyright 2006 Seite 2 von 5

3 H= p x log 2 p x = 1 1 Die Ableitungen diee Funktional nach den -1 verbleibenden unabhängigen Wahrcheinlichkeiten ergeben -1 Gleichungen, die zur Betimmung de Extremwerte von H alle Null ein müen: H p x k = 1 1 =0 für k=1, 2,..., H p x k = log 2p x k p x k p x k ln2 log ln2 nach Elimination de zweiten und vierten Term owie Exponenzieren der beiden verbleibenden Summanden erhält man da Gleichungytem p x k 1 =0 für k=1, 2,..., oder a 1 p x 1 a 2 p x 2... a p x =1, a i =2 für i=k, a i =1 für i k, k=1, 2,..., E it nur für =0 p x k = 1,, 2,..., erfüllt, wie man ich durch Einetzen überzeugen kann. Die Wahrcheinlichkeit p(x ) ergibt ich au der oben genannten Nebenbedingung ebenfall al p x = 1 Beipiel: Die Koeffizientenmatrix A und ihre Invere A -1 de Gleichungytem bei =5: ] =[ A=[2 A ], *) Da gleiche Geheimtextzeichen hier immer zu gleichen Klartextzeichen gehören, it die Anzahl der brute force -Entchlüelungveruche bedeutend geringer al bei einer one time pad-verchlüelung, bei der jede Geheimtextzeichen nacheinander allen Klartextzeichen zugeordnet werden mu. Die perfekte Verchlüelung it alo - unabhängig von der Verteilung der Klartextzeichen - nur mit dem one tim pad- Verfahren möglich. Trotzdem eine weitere Frage: Gibt e überhaupt natürliche Alphabete mit gleich verteilten Zeichen? zu Grundkur Codierung Copyright 2006 Seite 3 von 5

4 Zu Frage 6:... mit dem Verfahren der Kreuzkorrelation zwichen dem Sende- und dem Empfangignal, iehe Unterkapitel 4.2. Zu Frage 7: Da zum irreduziblen Polynom f(x) = x m vom Grad m reziproke Polynom f * (x) hat dieelben Nulltellen wie f(x). Die Koeffizienten ercheinen wegen f * (x) =x m f(1/x) in umgekehrter Reihenfolge bezogen auf die Potenzen von x. Mit f(x) = x m + a m-1 x m it f * (x) = 1 + a m-1 x + a m-2 x x m Beipiel: f(x) = x 3 + x + 1 f*(x) = x 3 (x -3 + x ) = x 3 + x Anmerkung: Irreduzible Polynome haben bei x 0 (warum?). immer einen von Null verchiedenen Koeffizienten Zu Frage 8: Der Entdecker der Steinlau (Gattung Petrophaga au der Ordnung der Fabelnager - Rodentia inexita) war der Frankfurter Zoologe Dr. Bernhard Grzimek, veröffentlicht wurde diee Entdeckung allerding ert 1976 von Loriot in einem Wienchaftbeitrag der ARD. Die genaue Klaifikation findet man z. B. in Wikipedia oder im medizinichen Wörterbuch Pchyrembel. Hier da Foto eine gechlechtreifen Steinlau- Weibchen: Zu Frage 9: Gemäß Unterkapitel 4.3, Seite 258 ff, kann ein Angreifer veruchen, au zwei zuammengehörigen Stücken Klar- und Geheimtext da Rückkopplungpolynom de die Schlüelfolge erzeugenden Schieberegiter zu ermitteln. Bei Annahme zu niedriger oder zu hoher Polynomgrade ergeben ich linear abhängige Zeilen im betimmenden Gleichungytem, o da ich der paende Grad durch ytematiche Probieren ermitteln lät. (Anmerkung: Heute it die bei der Abicherung im WLAN mit Hilfe de WEPzu Grundkur Codierung Copyright 2006 Seite 4 von 5

5 Verfahren akut geworden. Zuletzt hat eine Forchergruppe der TU Darmtadt gezeigt, da der 128-Bit- WEP-Schlüel in etwa einer Minute geknackt werden kann. WEP it al Sicherungverfahren damit unbrauchbar). Zu Frage 10: Die Autokorrelationfunktion de Empfangignal enthält keine Information über die zeitliche Verchiebung (= Laufzeit) zum Sendeignal, die aber für dieen Zweck gerade betimmt werden oll. zu Grundkur Codierung Copyright 2006 Seite 5 von 5

Beispiel-Schulaufgabe 2

Beispiel-Schulaufgabe 2 Anregungen zur Ertellung von Aufgaben Aufgaben für Leitungnachweie Die zeichnet ich durch eine augewogene Berückichtigung der allgemeinen mathematichen Kompetenzen au. Aufgaben, deren Bearbeitung in auffallendem

Mehr

( ) = ( ) ( ) ( ) ( )

( ) = ( ) ( ) ( ) ( ) R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Löungen Grundaufgaben für lineare und quadratiche Funktionen I e: E e f( x) = x+ Py 0 f( x) = x+ Px 0 E E E E E6 E7 E8 E9 E0 f x = mx + b mit m = und P(

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zentrale chriftliche Abiturprüfungen i Fach Matheatik Analyi Grundkur Aufgabe 5: Helikopter In der Abbildung it ein Auchnitt de Graphen einer quadratichen Funktion zu ehen, der i Zeitinterall on 0 bi 60

Mehr

Lineare Funktionen. Arbeitsschritte Tastenfolge Display. Arbeitsschritte Tastenfolge Display. y p TableStart bei x = -10 Schrittweite: 0,5

Lineare Funktionen. Arbeitsschritte Tastenfolge Display. Arbeitsschritte Tastenfolge Display. y p TableStart bei x = -10 Schrittweite: 0,5 Lineare Funktinen Beiiel: y = 2x - 1 1. Eingabe der Funktingleichung Eingabe der Funktingleichung Y 1 eingeben Á ¹À 2. Wertetabelle Eintellungen für die Wertetabelle y TableStart bei x = -10 Schrittweite:

Mehr

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation Prof. Dr. W. Roenheinrich 30.06.2009 Fachbereich Grundlagenwienchaften Fachhochchule Jena Übungmaterial Löen von Anfangwertproblemen mit Laplacetranformation Nachtehend ind einige Anfangwertprobleme zu

Mehr

Beobachten und Messen mit dem Mikroskop

Beobachten und Messen mit dem Mikroskop Phyikaliche Grundpraktikum Veruch 006 Veruchprotokolle Beobachten und een mit dem ikrokop Aufgaben 1. Betimmen de ildungmaßtabe der vorhandenen ektive mit Hilfe eine echraubenokular. Vergleich mit den

Mehr

Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von:

Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von: Protokoll zur Laborübung Verahrentechnik Übung: Filtration Betreuer: Dr. Gerd Mauchitz Durchgeührt von: Marion Pucher Mtk.Nr.:015440 Kennzahl: S6 Mtk.Nr.:015435 Kennzahl: S9 Datum der Übung:.06.004 1/11

Mehr

Diplomhauptprüfung. "Regelung linearer Mehrgrößensysteme" 17. März Aufgabenblätter

Diplomhauptprüfung. Regelung linearer Mehrgrößensysteme 17. März Aufgabenblätter Diplomhauptprüfung "Regelung linearer Mehrgrößenyteme" 7. Mär 008 Aufgabenblätter Die Löungen owie der volltändige und nachvolliehbare Löungweg ind in die dafür vorgeehenen Löungblätter einutragen. Nur

Mehr

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analytische Geometrie / Stochastik Aufgabe B 1 - Lösungen

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analytische Geometrie / Stochastik Aufgabe B 1 - Lösungen 1 Abiturprüfung Mathematik 214 Baden-Württemberg Allgemeinbildende Gymnaien Wahlteil Analytiche Geometrie / Stochatik Aufgabe B 1 - Löungen klau_mener@eb.de.elearning-freiburg.de Wahlteil 214 Aufgabe B

Mehr

Zentralabitur 2014 Physik Schülermaterial Aufgabe II ga Nachschreibtermin Bearbeitungszeit: 220 min

Zentralabitur 2014 Physik Schülermaterial Aufgabe II ga Nachschreibtermin Bearbeitungszeit: 220 min Thema: Interferenz In Aufgabe 1 wird Interferenz von Licht am Gitter behandelt. In Aufgabe 2 geht e um die Eigenchaften verchiedener Quantenobjete. Aufgabe 3 befat ich mit Michelon-Interferometern. Aufgabentellung

Mehr

Lösungsvorschlag. Qq r 2 F C = 1

Lösungsvorschlag. Qq r 2 F C = 1 Löungvorchlag 1. Zunächt zwei Skizzen zur Verdeutlichung der Situation: Link it da Kügelchen mit der Ladung q zu ehen. Recht it die Kugel mit der Ladung Q 1 µc an die Stelle de Kügelchen gebracht worden.

Mehr

Kooperatives Lernen SINUS Bayern

Kooperatives Lernen SINUS Bayern Kooperative Lernen SINUS Bayern Mathematik Fachoberchule/Berufoberchule Jgt. 11/1 Partnerpuzzle zu quadratichen Funktionen Mit der Methode Partnerpuzzle wird die Betimmung der Nulltellen und de Scheitelpunkte

Mehr

R. Brinkmann Seite Aufgabe Prüfen Sie ob die Geraden g, h, i durch einen Punkt verlaufen.

R. Brinkmann  Seite Aufgabe Prüfen Sie ob die Geraden g, h, i durch einen Punkt verlaufen. R. Brinkmann http://brinkmann-du.de Seite 9.09.0 Löungen lineare Funktionen Teil V en: A A A Prüfen Sie ob die Geraden g, h, i durch einen Punkt verlaufen. a) g(x) = x+ ; h:y+ x+ 4 = 0 ; i:y x = 7 b) g(x)

Mehr

7. Reglerentwurf im Frequenzbereich

7. Reglerentwurf im Frequenzbereich H A K O 7 Reglerentwurf im Frequenzbereich In dieem Kapitel werden zwei unterchiedliche Reglerentwurfverfahren im Frequenzbereich dikutiert Da o genannte Frequenzkennlinienverfahren it auf Regelkreie mit

Mehr

1 Potenzen und Polynome

1 Potenzen und Polynome 1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels

Mehr

Bestimmung der Messunsicherheit

Bestimmung der Messunsicherheit Betimmung der Meunicherheit 1 Arten der Meabweichungen 1.1 Grobe Abweichungen Urachen Verehen de Beobachter bei Bedienung/Ableung der Meintrumente Irrtum de Beobachter bei Protokollierung/Auwertung der

Mehr

Polynome Teil VI: Die Potenzsummenformeln von NEWTON

Polynome Teil VI: Die Potenzsummenformeln von NEWTON Die WURZEL Werkstatt Mathematik Polynome Teil VI: Die Potenzsummenformeln von NEWTON In der letzten Ausgabe der Werkstatt haben wir gesehen, dass sich Potenzsummen, etwa die symmetrischen Funktionen p

Mehr

Überlegungen zum Bremsweg eines Wagens Seite 1. Rechnung Bremsweg. F g. m g,m=0,8 1000kg 10 N Hy. =μ H

Überlegungen zum Bremsweg eines Wagens Seite 1. Rechnung Bremsweg. F g. m g,m=0,8 1000kg 10 N Hy. =μ H Überlegungen zum Bremweg eine Wagen Seite 1 Rechnung Bremweg Ein Auto mit v=72km/h und m=1000kg Mae macht eine Vollbremung. Der Reibfaktor zwichen Reifen und Straße beträgt dabei μ H =0,8. Impultrom Impul

Mehr

Regelungstechnik (A)

Regelungstechnik (A) Intitut für Elektrotechnik und Informationtechnik Aufgabenammlung zur Regelungtechnik (A) Prof. Dr. techn. F. Gauch Dipl.-Ing. C. Balewki Dipl.-Ing. R. Berat 08.01.2014 Übungaufgaben in Regelungtechnik

Mehr

Lehreinheit 09 Prozesssimulation II: Prozesssimulation mit einfachen Petri-Netzen Wintersemester 2012/2013

Lehreinheit 09 Prozesssimulation II: Prozesssimulation mit einfachen Petri-Netzen Wintersemester 2012/2013 Dynamiche Unternehmenmodellierung und -imulation (ehemal: Buine Dynamic - Dynamiche Modellierung und Simulation komplexer Gechäftyteme, Arbeitwienchaft V) Lehreinheit 09 Prozeimulation : Prozeimulation

Mehr

2. Laboreinheit - Hardwarepraktikum SS 2005

2. Laboreinheit - Hardwarepraktikum SS 2005 2. Laboreinheit - Hardwarepraktikum SS 2 1. Veruch: Der bipolare Tranitor al Schalter Tranitor (Funktion, Betrieb, etc) idealer und realer Schalter Flankenantieg-, Flankenabfallzeit und Signallaufzeit

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorleung. Falltudie Bipartite Graphen. Grundbegriffe 3. Elementare Graphalgorithmen und Anwendungen 4. Minimal pannende Bäume 5. Kürzete Pfade 6. Traveling Saleman Problem 7. Flüe in Netzwerken

Mehr

Physikpraktikum. Versuch 2) Stoß. F α F * cos α

Physikpraktikum. Versuch 2) Stoß. F α F * cos α Phyikpraktikum Veruch ) Stoß Vorbereitung: Definition von: Arbeit: wenn eine Kraft einen Körper auf einem betimmten Weg verchiebt, o verrichtet ie am Körper Arbeit Arbeit = Kraft * Weg W = * S = N * m

Mehr

Partialbruchzerlegung in oder

Partialbruchzerlegung in oder www.mathematik-netz.de opyright, Page of 0 Partialbruchzerlegung in oder. Einführung und Grundlagen Die Partialbruchzerlegung kann man nur dann umfaend begreifen, wenn man grundlegende Kenntnie im Bereich

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2 Inhaltsverzeichnis 1 Translationen 2 2 Skalierungen 4 3 Die

Mehr

Quadrate und Wurzelziehen modulo p

Quadrate und Wurzelziehen modulo p Quadrate und Wurzelziehen modulo p Sei im Folgenden p eine Primzahl größer als. Wir möchten im Körper Z p Quadratwurzeln ziehen. Die Quadrierabbildung Q :Z p Z p ist aber nicht surjektiv, daher gibt es

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Einfacher loop-shaping Entwurf

Einfacher loop-shaping Entwurf Intitut für Sytemtheorie technicher Prozee Univerität Stuttgart Prof. Dr.-Ing. F. Allgöwer 6.4.24 Regelungtechnik I Loophaping-Entwurf t http://www.it.uni-tuttgart.de/education/coure/rti/ Einfacher loop-haping

Mehr

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander

Mehr

Statistische Analyse von Messergebnissen

Statistische Analyse von Messergebnissen Da virtuelle Bildungnetzwerk für Textilberufe Statitiche Analye von Meergebnien 3 Hochchule Niederrhein Stand: 17..3 Seite 1 / 8 Im Abchnitt "Grundlagen der Statitik" wurde u.a. bechrieben, wie nach der

Mehr

1. Bestimmung der Wellenlänge des Laserlichtes

1. Bestimmung der Wellenlänge des Laserlichtes . Betimmung er Wellenlänge e Laerlichte Um mit em Veruch anfangen zu können wure al erte er Laer jutiert, inem er Veruchaufbau o veränert wure, a er Laer exakt gerae un waagerecht auf en Schirm traf. Die

Mehr

Fehlererkennende und fehlerkorrigierende Codes

Fehlererkennende und fehlerkorrigierende Codes Fehlererkennende und fehlerkorrigierende Codes Claudiu-Vlad URSACHE, 5AHITN Inhalt 1. Codes... 2 2. Hammingdistanz... 3 3. Fehlererkennende Codes... 4 4. Fehlerkorrigierende Codes... 5 1. Codes a 2 a 00

Mehr

Definition. Wichtige Beziehungen. Geometrische Konstruktion

Definition. Wichtige Beziehungen. Geometrische Konstruktion Mathematik/Informatik Gierhardt Goldener Schnitt und Kreiteilung Definition Eine Strecke mit der Länge r oll nach dem Verfahren de Goldenen Schnitt geteilt werden. Dann verhält ich die Geamttreckenlänge

Mehr

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können Energiefreietzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfuion freigeetzt. Waertoffkerne(Protonen) können bei güntigen Bedingungen zu Heliumkernen verchmelzen, dabei

Mehr

Statitik für Kommunikationienchaftler Winteremeter 010/011 Vorleung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauer, Monia Mahling Löung Thema 5 Homepage zur Verantaltung: http://.tatitik.lmu.de/~kraemer/k10/index.html

Mehr

Der Kugelring. Verfasser: Praxelius. Beschreibung des Kugelrings und Herleitung der Formeln

Der Kugelring. Verfasser: Praxelius. Beschreibung des Kugelrings und Herleitung der Formeln Der Kugelring Verfaer: Praxeliu Bechreibung de Kugelring und Herleitung der Formeln PDF-Dokument: Kugelring.pdf Da Dokument it urheberrechtlich gechützt. Alle Rechte vorbehalten. KR-850-00 Dieen Beitrag

Mehr

Diffusion in der Gasphase

Diffusion in der Gasphase Diffuion in der Gaphae Bericht für da Praktikum Chemieingenieurween I WS06/07 Zürich, 22. Januar 2007 Studenten: Francico Joé Guerra Millán fguerram@tudent.ethz.ch Andrea Michel michela@tudent.ethz.ch

Mehr

Kapitel 9: Informationstheorie. 2. Entropie

Kapitel 9: Informationstheorie. 2. Entropie ZHAW, NT, FS2008, Rumc, Kapitel 9: 2-1 Kapitel 9: Informationstheorie 2. Entropie Inhaltsverzeichnis 2.1. INFORATIONSQUELLEN...2 2.2. INFORATIONSGEHALT...3 2.3. INIALE ANZAHL BINÄRE FRAGEN...5 2.4. ENTROPIE

Mehr

K l a u s u r N r. 2 G k P h 12

K l a u s u r N r. 2 G k P h 12 10.1.10 K l a u u r N r. G k P h 1 Aufgabe 1 Bechreiben Sie einen Veruch, mit dem man die Schallgechwindigkeit mit Hilfe einer fortchreitenden Welle betimmen kann. (Veruchkizze mit Bechriftung, Veruchdurchführung,

Mehr

Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale. Peychyn Lai

Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale. Peychyn Lai Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale Peychyn Lai 10. Oktober 2007 1 Einleitung Wir haben im letzten Vortrag die Weierstrass sche -Funktion kennengelernt, die

Mehr

Prüfung SS 2002. Regelungstechnik 1. Aufgabe 1: Standardregelkreis (10 P) Prof. Dr.-Ing. K. Wöllhaf

Prüfung SS 2002. Regelungstechnik 1. Aufgabe 1: Standardregelkreis (10 P) Prof. Dr.-Ing. K. Wöllhaf Prüfung SS Aufgabe : Standardregelkrei ( P) Regelungtechnik Prof. Dr.-Ing. K. Wöllhaf Anmerkungen: Aufgabenblätter auf Volltändigkeit überprüfen Nur Blätter mit Namen und Matr.Nr. werden korrigiert. Keine

Mehr

DM280-1F Luftkissenfahrbahn

DM280-1F Luftkissenfahrbahn DM80-F Luftkienfahrbahn Die Luftkienfahrbahn DM80-F dient zur Demontration von Veruchen zur Dynamik und Kinematik geradliniger Bewegung feter Körper. Diee Anleitung oll Sie mit der Bedienung und den Demontrationmöglichkeiten

Mehr

Drehzahlregelung eines Gleichstrommotors 1

Drehzahlregelung eines Gleichstrommotors 1 Techniche Univerität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungyteme Leitung: Prof. Dr.-Ing. Jörg Raich Praktikum Digitale Signalverabeitung Praktikum Regelungtechnik 1 (Zeitdikrete

Mehr

Schleifeninvarianten. Dezimal zu Binär

Schleifeninvarianten. Dezimal zu Binär Schleifeninvarianten Mit vollstandiger Induktion lasst sich auch die Korrektheit von Algorithmen nachweisen. Will man die Werte verfolgen, die die Variablen beim Ablauf eines Algorithmus annehmen, dann

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Statistische Mechanik

Statistische Mechanik tatitiche Mechanik Die hermodynamik bechreibt makrokopiche Eigenchaften von Materie. Molekulare Eigenchaften werden mit der Quantenmechanik unterucht. Der Verknüpfung von Quantenmechanik und hermodynamik

Mehr

Lösungsvorschlag TECHNISCHE UNIVERSITÄT MÜNCHEN. Fakultät für Informatik ... Midterm-Klausur Final-Klausur

Lösungsvorschlag TECHNISCHE UNIVERSITÄT MÜNCHEN. Fakultät für Informatik ... Midterm-Klausur Final-Klausur Name Studiengang (Hauptfach) Vorname Fachrichtung (Nebenfach)... Note Matrikelnummer Unterchrift der Kandidatin/de Kandidaten 1 I II TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Informatik Midterm-Klauur

Mehr

Analyse zeitkontinuierlicher Systeme im Frequenzbereich

Analyse zeitkontinuierlicher Systeme im Frequenzbereich Übung 3 Analye zeitkontinuierlicher Syteme im Frequenzbereich Diee Übung bechäftigt ich mit der Analye von Sytemen im Frequenzbereich. Die beinhaltet da Rechnen mit Übertragungfunktionen, den Begriff der

Mehr

8.6.5 Diffusion von Bromdampf ******

8.6.5 Diffusion von Bromdampf ****** 8.6.5 ****** Motivation Die Langamkeit der Diffuion wird mit Hilfe von Bromdampf veranchaulicht. Die quantitative Meung der Diffuion erlaubt die Betimmung der mittleren freien Weglänge und die Meung der

Mehr

5. Die Schallgeschwindigkeit c in Luft beträgt bei 0 C c 0 = 331, 5 m und bei 20 C c 20 = 343, 4 m. Wie viel % beträgt die Erhöhung?

5. Die Schallgeschwindigkeit c in Luft beträgt bei 0 C c 0 = 331, 5 m und bei 20 C c 20 = 343, 4 m. Wie viel % beträgt die Erhöhung? Wenn nicht ander angegeben, und ich nicht andere al innvoll erweit, runden Sie die Ergebnie auf zwei Nachkommatellen. Berechnen Sie. 1. In einer Gruppe von 30 Veruchperonen ind 18 männlich, der Ret weiblich.

Mehr

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte 6. Klae 1. Schularbeit 1999-10-0 Gruppe A 1) Betrachte da Wettrennen zwichen Achille und der Schildkröte für folgende Angaben: Gechwindigkeit von Achille 10 m, Gechwindigkeit der Schildkröte m Vorprung

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

Aufgabenblatt 4: Wachstum

Aufgabenblatt 4: Wachstum Aufgabenblatt 4: Wachtum Löungkizze Bitten beachten Sie, da diee Löungkizze lediglich al Hilfetellung zur eigentändigen Löung der Aufgaben gedacht it. Sie erhebt weder Anpruch auf Volltändigkeit noch auf

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist

Mehr

HOCHSCHULE RAVENSBURG-WEINGARTEN

HOCHSCHULE RAVENSBURG-WEINGARTEN Prof. Dr.-Ing. Tim J. Noper Mathematik Lapace-Tranformation Aufgabe : Betimmen ie mit Hife der Definitiongeichung der Lapace-Tranformation die Bidfunktionen fogender Originafunktionen: f(t) co( ωt) b)

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte Aufgabe 1 Aufgabe 2 Die Funktion f ist eine ganzrationale Funktion dritten Grades. Die Summanden sind nicht in der richtigen Reihenfolge und müssen deshalb nach absteigenden x- Potenzen geordnet werden.

Mehr

Dr. Ing. Wilfried Dankmeier Eppstein im Taunus,

Dr. Ing. Wilfried Dankmeier Eppstein im Taunus, Modulare Quadratwurzeln beim Fiat-Shamir-Verfahren zur Authentikation (zu Grundkurs Codierung, 3. Auflage 2006, Vieweg Verlag, ISBN 3-528-25399-1, Unterkapitel 5.10, Seiten 303 ff) update vom 20.03.1996

Mehr

Studienarbeit. Thema: Bestimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Messgerät VSM100

Studienarbeit. Thema: Bestimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Messgerät VSM100 Studienarbeit Thema: Betimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Megerät VSM00 angefertigt von: Robert Uath Matrikelnummer: 99047 Betreuer: Prof. Dr.-Ing. B. K. Glück

Mehr

Themen der Übung. Rekursion. Dateien einlesen Sudokus. Assertions

Themen der Übung. Rekursion. Dateien einlesen Sudokus. Assertions Themen der Übung Rekurion CoMa-Übung X TU Berlin.0.0 Themen heute Evaluation Aertion Einleen von Dateien Queue und Breitenuche Rekurion Wegrekontruktion Tiefenuche Backtracking Evaluation Diee Woche bekommt

Mehr

Protokoll: Mechanische Schwingungen

Protokoll: Mechanische Schwingungen Datum: Namen: Protokoll: Mechaniche Schwingungen 1. Definieren Sie: mechaniche Schwingung. Nennen Sie die Vorauetzungen für da Enttehen mechanicher Schwingungen. Geben Sie die phyikalichen Größen zur Bechreibung

Mehr

Beispiellösungen zu Blatt 84

Beispiellösungen zu Blatt 84 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? 2009 + 2010 + 2010 + 2009, 2009 + 2009

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Partialbruchzerlegung für Biologen

Partialbruchzerlegung für Biologen Partialbruchzerlegung für Biologen Rationale Funktionen sind Quotienten zweier Polynome, und sie tauchen auch in der Biologie auf. Die Partialbruchzerlegung bedeutet, einen einfacheren Ausdruck für eine

Mehr

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Inhaltsverzeichnis 1 Einführung 1 2 Gleichungen dritten Grades 3 3 Gleichungen vierten Grades 7 1 Einführung In diesem Skript werden

Mehr

Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Mathematik und angewandte Mathematik 1. HLW (1.

Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Mathematik und angewandte Mathematik 1. HLW (1. Unterrichtfach Lehrplan HAK: Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Lehrplan HLW: Mathematik und angewandte Mathematik 1. HLW (1. Jahrgang) Lehrplan HTL: Mathematik

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

Physik I Übung 3 - Lösungshinweise

Physik I Übung 3 - Lösungshinweise Phyik I Übung 3 - Löunghinweie Moritz Kütt WS / Stefan Reutter Stand:.. Franz Fujara Aufgabe Der erte Blick Ein Fahrradfahrer fährt die Hälfte einer Strecke mit km/h, die zweite Hälfte mit km/h. Schätze

Mehr

A.12 Nullstellen / Gleichungen lösen

A.12 Nullstellen / Gleichungen lösen A12 Nullstellen 1 A.12 Nullstellen / Gleichungen lösen Es gibt nur eine Hand voll Standardverfahren, nach denen man vorgehen kann, um Gleichungen zu lösen. Man sollte in der Gleichung keine Brüche haben.

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am 11.12.212 Löung Blatt 8 Übungen zur Vorleung PN1 Löung zum Übungblatt 8 Beprochen am 11.12.212 Aufgabe 1: Moleküle al tarre rotierende Körper Durch Mikrowellen laen ich Rotationen von Molekülen mit einem

Mehr

Lineare Schieberegisterfolgen

Lineare Schieberegisterfolgen Lineare Schieberegisterfolgen Sei K ein endlicher Körper. Man nehme zwei Vektoren x 0 a0 x n 1, a n 1 K n n 1 x n := a i x i und betrachte die lineare Abbildung : K n K n, die durch i=0, berechne x 0 x

Mehr

12.6 Aufgaben zur Laplace-Transformation

12.6 Aufgaben zur Laplace-Transformation 292 12. Aufgaben zu linearen Gleichungen 12.6 Aufgaben zur Laplace-Tranformation A B C D Man löe die folgenden Anfangwertprobleme durch Laplace-Tranformation: 1) ẍ ẋ x = ; x() = ẋ() = 1 2) x (3) 6ẍ + 12ẋ

Mehr

Polynome. Analysis 1 für Informatik

Polynome. Analysis 1 für Informatik Gunter Ochs Analysis 1 für Informatik Polynome sind reelle Funktionen, die sich ausschlieÿlich mit den Rechenoperation Addition, Subtraktion und Multiplikation berechnen lassen. Die allgemeine Funktionsgleichung

Mehr

Grundlagen der Technischen Chemie - Praktikum WS2015/ Februar Protokoll. Nitritreduktion

Grundlagen der Technischen Chemie - Praktikum WS2015/ Februar Protokoll. Nitritreduktion 2. Faung Protokoll Nitritreduktion Gruppe 29 Guido Petri, Matrikelnummer 364477 Rami Michael Saoudi, Matrikelnummer 356563 1 Aufheizgechwindigkeit Gruppe 29 Inhaltverzeichni Aufgabentellung...2 1. Theorie...2

Mehr

30 Vierecke. Zeichne die Figuren in Originalgröße. Quadrat s = 6 cm. Raute s = 5 cm, e = 8 cm. Parallelogramm a = 10 cm, b = 5 cm, h a = 4 cm

30 Vierecke. Zeichne die Figuren in Originalgröße. Quadrat s = 6 cm. Raute s = 5 cm, e = 8 cm. Parallelogramm a = 10 cm, b = 5 cm, h a = 4 cm Vierecke Parallelogramme ind Vierecke mit zwei Paaren paralleler Seiten. Auch Rauten, Quadrate und Rechtecke ind Vierecke, je doch mit weiteren peziellen Eigenchaften. 1 Zeichne die Figuren in Originalgröße.

Mehr

9.4 Sicherheit von Verschlüsselungsverfahren

9.4 Sicherheit von Verschlüsselungsverfahren 9.4 Sicherheit von Verschlüsselungsverfahren ist bedroht durch = Resistenz gegenüber Kryptoanalyse kleine Schlüsselräume (erlauben systematisches Ausprobieren aller möglichen Schlüssel) Beispiel: Cäsars

Mehr

Immer noch rund um die Wechselspannung = Sinuskurve

Immer noch rund um die Wechselspannung = Sinuskurve Ier noch rund u die Wechelpannung Sinukurve Wozu da da nun wieder? Da it it da Wichtigte ür un. Wir achen darau doch Funkwellen, alo üen wir un dait auch aukennen, pata! Wir üen den Begri Frequenz gründlich

Mehr

WURZEL Werkstatt Mathematik Polynome Grundlagen Teil II

WURZEL Werkstatt Mathematik Polynome Grundlagen Teil II Die WURZEL Werkstatt Mathematik Polynome Grundlagen Teil II Polynome nur zu addieren, multiplizieren oder dividieren ist auf die Dauer langweilig. Polynome können mehr. Zum Beispiel ist es manchmal gar

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007 KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 5. Dezember 007 Name: Studiengang: Aufgabe 3 4 5 Summe Punktzahl /40 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

a) Geben Sie einen geeigneten Ergebnisraum Ω an. Wieviele Elemente hat dieser?

a) Geben Sie einen geeigneten Ergebnisraum Ω an. Wieviele Elemente hat dieser? Statitik für Kommunikationienchaftler Sommeremeter 008 Vorleung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauer, Manuel Wieenfarth, Monia Mahling Löung Thema 3 Homepage zur Verantaltung: http://.tatitik.lmu.de/~helmut/k08.html

Mehr

Experimente zur Bestimmung von Federkonstanten

Experimente zur Bestimmung von Federkonstanten Experiente zur Betiung von ederontanten heoretiche Grundlagen: I. Herleitung zweier oreln zur Berechnung der ederontante auf unabhängigen Wegen.. über die Kraft : Einheitenbetrachtung: [ ]. über die Periodendauer

Mehr

Skalenparameter. Beispiel (Filiale) Untersuchungseinheiten U 1,...,U n. Merkmal X. Urliste x 1,...,x n. geordnete Urliste x (1),...

Skalenparameter. Beispiel (Filiale) Untersuchungseinheiten U 1,...,U n. Merkmal X. Urliste x 1,...,x n. geordnete Urliste x (1),... Skalenparameter Unteruchungeinheiten U,,U n Merkmal X Urlite x,,x n geordnete Urlite x (),,x (n) E gilt iallg: x x( ), i, K n i i, Merkmalauprägungen a,, a k Beipiel In einer wetdeutchen Großtadt gibt

Mehr

6.2. Ringe und Körper

6.2. Ringe und Körper 62 RINGE UND K ÖRPER 62 Ringe und Körper Wir betrachten nun Mengen (endlich oder unendlich) mit zwei Operationen Diese werden meist als Addition und Multiplikation geschrieben Meist ist dabei die additiv

Mehr

Autonome Mobile Systeme

Autonome Mobile Systeme Autonome Mobile Syteme Teil II: Sytemtheorie für Informatiker Dr. Mohamed Oubbati Intitut für Neuroinformatik Univerität Ulm SS 2007 Warum Sytemtheorie? Informatiker werden zunehmend mit Sytemen konfrontiert,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil Hash-Verfahren Version vom: 18. November 2016 1 / 28 Vorlesung 9 18. November 2016

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

Aus meiner Skriptenreihe: "Keine Angst vor "

Aus meiner Skriptenreihe: Keine Angst vor Dipl.-Kaufm. Wolfgang Schmitt Aus meiner Skriptenreihe: "Keine Angst vor " Verfahren der Nullstellenberechnung der Funktionen n n 1 n 2 n i 1 f x ax a x a x... ax... a x 0 1 2 3 i n für n > 1 http://www.nf-lernen.de

Mehr

zu Aufgabe 26: a) A 3 A 2 A 4 A 1 A 5 A 0 A 6

zu Aufgabe 26: a) A 3 A 2 A 4 A 1 A 5 A 0 A 6 zu ufgabe 6: a) 3 5 6 7 p( ) p( ) p( 3 ) p( ) p( 5 ) p( 6 ) p( 7 ) = p( 3 ) = p( 3 ) = p( 3 ) = p( ) = p( ) = p( ) = p( ) = p( ) = p( ) = p( ) = p( ) = 8 p( ) = p( ) = p( ) = p( ) Lösung: b) binär 8 p(

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Formelsammlung Kanalcodierung

Formelsammlung Kanalcodierung Formelsammlung Kanalcodierung Allgemeines Codewortlänge: N Anzahl der Informationsstellen: K Coderate: R = K/N Hamming-Distanz: D( x i, x j ) = w( x i xj ) Codedistanz: d = min D( x i, x j ); i j Fehlerkorrektur:

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

Lösungen der Probleme aus der dritten bis fünften Werkstatt

Lösungen der Probleme aus der dritten bis fünften Werkstatt Die WURZEL Werkstatt Mathematik Lösungen der Probleme aus der dritten bis fünften Werkstatt Es ist eine Binsenweisheit: Man kann nicht allein durch Zuschauen Mathematik erlernen. Nur im Umgang mit komplexen

Mehr

Animation: Approximation von sin(x) durch Polynome 1-25.Grades

Animation: Approximation von sin(x) durch Polynome 1-25.Grades of 1 19/03/14 09:00 Taylorpolynome zurück Approximation durch Polynome höheren Grades Erklärung Bis jetzt haben wir Funktionen nur durch Polynome 1. und 2.Grades approximiert, nämlich durch die Tangentengerade

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

6 Polynominterpolation

6 Polynominterpolation Vorlesungsskript HM-Numerik (SS 2014): Kapitel 6 Version: 1 Juli 2014 6 Polynominterpolation Gegeben: Wertepaare { (x i,f i ) R 2 i = 0,,n } Gesucht: Einfache Funktion g : R R mit g(x i ) = f i i {0,1,,n}

Mehr