F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

Größe: px
Ab Seite anzeigen:

Download "F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder"

Transkript

1 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder F R = Dx (c) losgelassen a) b) c) Bewegung erfolgt nach den bekannten Gesetzen: M a = Dx (. Newtonsches Axiom)

2 Hier werden wir mal differenzieren: a = dv dt v = dx ergibt a = d x ; dt dt (mit unseren Differenzen könnten wir auch schreiben: a = v t v = x t ergibt a = x t t Mit diesen Ableitungen erhalten wir aus dem. Newtonschen Axiom eine neue Gleichung: (*) ; M d x dt + Dx = 0 ist eine Differentialgleichung. Die Lösung muß eine Funktion x(t) sein, deren. Ableitung proportional zur Funktion selber ist.

3 Lösungsansatz: (**) x( t)= A 0 cos( ω 0 t + ϕ 0 ) (Sinusfunktion wäre auch möglich.) harmonische Schwingung x(t) momentane Auslenkung A 0 = maximale Auslenkung = maximale Amplitude φ(t): = ω 0 t + φ 0 =Phase der Schwingung, wobei Anfangsphase φ 0 beliebig. dϕ dt = ω 0 = Kreisfrequenz ω π 0 f0 = = 1 T ist Frequenz der Schwingung. T ist die Periode der Schwingung

4 Setzen wir (**) in (*) ein und verwenden, dass d(sin(ω 0 t) dt = ω 0 cos(ω 0 t) ist, so erhalten wir: d(cos(ω 0 t) dt = ω 0 sin(ω 0 t) und -Mω 0 cos(ω 0 t + ϕ 0 ) + D cos(ω 0 t + ϕ 0 ) = 0. Daraus folgt: ω 0 = D M Maximalamplitude A 0 ist beliebig und hängt nur von der Anfangsbedingung ab. Graphische Darstellung der Lösung: x(t) =A 0 cos(ωt + φ 0 ) = A 0 cos(φ(t)) Wenn die Kraft auf einen Körper proportional zur Auslenkung aus der Ruhelage ist, vollführt er eine harmonische Schwingung.

5 Anderes Beispiel: Schwerependel Idealfall mathematisches Pendel : Punktmasse m, Faden masselos (sonst: physikalisches Pendel ) Die Schwerkraft F G = mg wird zerlegt in F (wird durch Fadenspannung F Faden kompensiert) und F tangential = =sin α mg α mg (kleine Auslenkung). Diese bewirkt eine Beschleunigung d x/dt = l d α/dt : m l d α/dt = α m g d α/dt = (g/l) α Lösung: α = α 0 cosωt (Newton II), F = -F Faden Bogenstrecke dx = l α, d x d α =l dt dt Einsetzen in obige Differenzialgleichung ergibt: ω= g l Die Schwingungsdauer T = π/ω =π hängt also nicht von der Masse ab, nur von der Fadenlänge. l g

6 Gedämpfte Schwingung Zusätzlich zur Rückstellkraft (-D x) wirkt eine Reibungskraft (-γ v=-γ dx/dt) z.b. Stokesche Reibung bei Schwingung in Flüssigkeit oder Gas. Kräftegleichung (Differentialgleichung) d x dt M dx + γ + Dx dt = 0 Ansatz: x(t) = A 0 e -δt cos(ω t + φ 0 ) Diese Funktion erfüllt die Gleichung und ergibt δ=γ/(m) und ω = δ = ω δ Im Vergleich mit der ungedämpften Schwingung (s.o., ω = ω 0 = D / M ) ist die Schwingung langsamer und nimmt exponentiell ab. D M 0 Versuch Sandpendel mit Styroporplatte Einhüllende e -δt mit Dämpfungsfaktor δ

7 Starke Dämpfung Obige Lösung gilt für schwache Dämpfung (ω 0 > δ). Bei stärkerer Dämpfung schwingt das System nicht mehr, sondern kriecht zum Nullpunkt. Kriechfall D m δ < 0 Anwendungen des aperiodischen Grenzfalls: Stoßdämpfer, Anzeigegeräte D δ = m 0 D δ > m 0 (gedämpfte Schwingung)

8 Erzwungene (gedämpfte) Schwingung Treibende periodische Kraft mit Kreisfrequenz ω x 1 (t) x 1 (t) x(t) x(t) Bewegungsgleichung: d x dx + γ Dx = F cos( ωt) + dt dt M 1

9 Lösung x(t) = A cos(ωt φ ) für t >> Einschwingzeit Nach Einschwingvorgang verblüffend einfach: Schwingung mit anregender Frequenz ω Amplitude und Phase abhängig von relativer Anregungsfrequenz (und Dämpfung) Maximale Auslenkung Phasenverschiebung φ gegenüber der Auslenkung der Anregung γω tan ϕ = ω ω 0 kleine Dämpfung große Dämpfung

10 Das Phänomen Resonanz Bei erzwungenen Schwingungen reichen kleine Kräfte aus, um mit der Zeit sehr große Amplituden zu erzeugen. Voraussetzung: Antriebsfrequenz ganz nahe an Resonanzfrequenz ω 0 (erreicht durch genaues Einstellen oder durch Rückkopplung) und schwache Dämpfung. Auto mit kaputten Stoßdämpfern

11 Anharmonische periodische Vorgänge Viele periodische Vorgänge kann man nicht durch eine einzelne Sinus- oder Kosinusfunktion beschreiben, obwohl die Bewegung einen definierte Periode (T = 1/f 0 = π/ω 0 ) besitzt. Mathematisch kann man aber beweisen (Fourier-Theorem), dass ein periodischer Vorgang durch eine Summe (Überlagerung) von (i. A.) sehr vielen harmonischen Teilschwingungen (sin(ω n t), cos(ω n t) mit ω n =n ω 0 ) beschrieben werden kann: x( t)= a 0 + a 1 cos( ω 0 t)+ a cos( ω 0 t)+... b 1 sin ( ω 0 t)+ b sin ( ω 0 t)+... Fourieranalyse: Zerlegung einer periodischen Funktion in diese Teilschwingungen

12 Überlagerung von Schwingungen ähnlicher Frequenz führt zu Amplitudenmodulationen bzw. Schwebungen 5 Perioden 5.5 Perioden

13

14 Gekoppelte Oszillatoren z.b. Schwerependel mit zwischengespannter Feder. Es gibt zwei Schwingungsmoden ( Eigenschwingungen ): Überlagerung beider Schwingungsmoden ergibt Schwebung: Oszillation wechselt von einem Pendel zum anderen Bei Kette aus N Pendeln: N longitudinale Eigenschwingungen + N transversale Eigenschwingungen

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

I. Mechanik. 10.Vorlesung EP WS2008/9. 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Viskosität Fortsetzung: Hagen-Poisenille

I. Mechanik. 10.Vorlesung EP WS2008/9. 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Viskosität Fortsetzung: Hagen-Poisenille 10.Vorlesung EP WS2008/9 I. Mechanik 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Viskosität Fortsetzung: Hagen-Poisenille 7. Schwingungen Versuche: Pendel mit zwei Längen Sandpendel

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen 2 Mechanische Schwingungen und Wellen 2.1 Mechanische Schwingungen 2.1.1 Harmonische Schwingungen Federpendel, Fadenpendel 2.1.2 Gedämpfte Schwingungen 2.1.3 Erzwungene Schwingungen 2.2 Wellen 2.2.1 Transversale

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

Schwingungen und Wellen Teil I

Schwingungen und Wellen Teil I Schwingungen und Wellen Teil I 1.. 3. 4. 5. 6. 7. 8. 9. 10. Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung

Mehr

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 4., aktualisierte Auflage thomas GÖRNE TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 18 1 Schall und Schwingungen 1.1 Mechanische

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907 Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

4. Schwingungen und Wellen

4. Schwingungen und Wellen Bei manchen Systemen (z.b. Fadenpendel) führt die Krafteinwirkung zu sich wiederholenden Vorgängen. Sind diese periodisch, so spricht man von Schwingungsvorgängen (um ortsfeste Ruhelage). Breiten sich

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

EPI WS 2008/09 Dünnweber/Faessler

EPI WS 2008/09 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte

Mehr

POHLsches 1 Drehpendel

POHLsches 1 Drehpendel POHLsches 1 Drehpendel Aufgabenstellung: Charakterisieren Sie das Schwingungsverhalten eines freien sowie eines periodisch angeregten Drehpendels. Stichworte zur Vorbereitung: Schwingungen, harmonische

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

Resonanz und Dämpfung

Resonanz und Dämpfung Resonanz und ämpfung Wenn eine Masse m an einem Federpendel (Federkonstante ) frei ohne ämpfung schwingt, genügt die Elongation s = s ( t ) der ifferentialgleichung m # s ( t ) + # s( t ) = 0. ies ist

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Erzwungene mechanische Schwingungen. Sebastian Finkel Sebastian Wilken

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Erzwungene mechanische Schwingungen. Sebastian Finkel Sebastian Wilken PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Erzwungene mechanische Schwingungen Sebastian Finkel Sebastian Wilken Versuchsdurchführung:. Januar 006 0. Inhalt. Einleitung. Theoretischer Teil.. Ungedämpfter harmonischer

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

PS1. Schwingungen I Version vom 12. April 2016

PS1. Schwingungen I Version vom 12. April 2016 Schwingungen I Version vom 1. April 016 Inhaltsverzeichnis 1 Allgemeine Grundlagen 1.1 Begrie..................................... 1. Schwingungen.................................. 1.3 Freie gedämpfte

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

I. Mechanik. 10.Vorlesung EP WS2009/10

I. Mechanik. 10.Vorlesung EP WS2009/10 10.Vorlesung EP WS2009/10 I. Mechanik 6. Hydro- und Aerodynamik a) Kontinuitäts- und Bernoulli-Gleichung b) Definition von Viskosität Hagen-Poiseuille - und Stokes - Gesetz 7. Schwingungen Versuche: Druckabfall

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Versuch M2 für Nebenfächler Gekoppelte Pendel

Versuch M2 für Nebenfächler Gekoppelte Pendel Versuch M2 für Nebenfächler Gekoppelte Pendel I. Physikalisches Institut, Raum HS102 Stand: 9. Oktober 2015 generelle Bemerkungen bitte Versuchsaufbau (links/mitte/rechts) angeben bitte Versuchspartner

Mehr

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T Kreisbewegung ================================================================== Damit sich ein Körper der Masse m auf einer Kreisbahn vom Radius r, dannmuss die Summe aller an diesem Körper angreifenden

Mehr

Schwingungen und Wellen

Schwingungen und Wellen IV, 1 117 (2015) c 2015 Schwingungen und Wellen Dr. Jürgen Bolik Technische Hochschule Nürnberg ω 0 2 x 0, a A 10 4 10 3 10 2 δ ω 0 =10 4 10 2 0,1 10 0,2 0,4 0,6 1 1 0 0,5 1,0 ω 0 TH Nürnberg 2 Inhaltsverzeichnis

Mehr

Versuch e - Lineares Pendel

Versuch e - Lineares Pendel UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Grundlagenpraktikum A für Bachelor of Nanoscience Versuch e - Lineares Pendel 23. überarbeitete Auflage 2011 Dr. Stephan

Mehr

SCHWINGUNGEN. Aufgabe 1 Zeichnen Sie in Abbildung 1 qualitativ alle auf das Gewichtsstück wirkenden Kräfte ein.

SCHWINGUNGEN. Aufgabe 1 Zeichnen Sie in Abbildung 1 qualitativ alle auf das Gewichtsstück wirkenden Kräfte ein. SCHWINGUNGEN sind besondere Formen der Bewegung. Sie sind in der modernen Physik grundlegend für die Beschreibung vieler Phänomene. Wir werden diese Bewegung zuerst wieder darstellen in Graphen und die

Mehr

II. Grundlagen der Mechanik

II. Grundlagen der Mechanik II. Grundlagen der Mechanik 1. Bewegung eines Massenpunktes 1.1. Geschwindigkeit und Bewegung Die Mechanik beschreibt, wie sich massive Körper unter dem Einfluss von Kräften in Raum und Zeit bewegen. Eine

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

gp : Gekoppelte Pendel

gp : Gekoppelte Pendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch gp : Gekoppelte Pendel Dr. Stephan Giglberger Dr. Tobias Korn Manuel

Mehr

Der Pohlsche Resonator

Der Pohlsche Resonator Physikalisches Praktikum für das Hauptfach Physik Versuch 01 Der Pohlsche Resonator Sommersemester 005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent:

Mehr

Physikalisches Grundpraktikum V10 - Koppelschwingungen

Physikalisches Grundpraktikum V10 - Koppelschwingungen Aufgabenstellung: 1. Untersuchen Sie den Einfluss des Kopplungsgrades zweier gekoppelter physikalischer Pendel auf die Schwingungsdauern ihrer Fundamentalschwingungen. 2. Charakterisieren Sie die Schwebungsschwingung

Mehr

Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator

Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator I. Physikalisches Institut, Raum HS102 Stand: 23. Juni 2014 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

1. ZIEL 2. FRAGEN ZUR VORBEREITUNG. A02 Schwingungen A02

1. ZIEL 2. FRAGEN ZUR VORBEREITUNG. A02 Schwingungen A02 Schwingungen 1. ZIEL In diesem Versuch sollen Sie Schwingungen und ihre Gesetzmäßigkeiten untersuchen. Sie werden die Erdbeschleunigung messen und mit einem Foucault-Pendel die Drehung der Erde um ihre

Mehr

M 1a Freie und erzwungene Schwingungen

M 1a Freie und erzwungene Schwingungen M 1a Freie und erzwungene Schwingungen Aufgabenbeschreibung In dem Versuch sollen anhand von Drehschwingungen freie und erzwungene Schwingungen untersucht werden. Bei den freien Schwingungen sollen Begriffe

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende

Mehr

Schwingungen und Wellen

Schwingungen und Wellen II, 1 110 (2012) c 2012 Schwingungen und Wellen Dr. Jürgen Bolik Georg-Simon-Ohm-Hochschule Nürnberg f (t) e δ t cos(ω t) e δ t t e δ t Georg-Simon-Ohm-Hochschule Nürnberg 2 Inhaltsverzeichnis 1 Schwingungen

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Primzahlen Darstellung als harmonische Schwingung

Primzahlen Darstellung als harmonische Schwingung Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

Schwingungen

Schwingungen - 238-4.1. Allgemeines 4. Schwingungen 4.1.1. Beispiele und Definition Das klassische Beispiel eines schwingenden Systems ist das Pendel. Exp1: Ebenes Pendel Allgemein ist eine Schwingung definiert als

Mehr

1.1 Bestimmung der Erdbeschleunigung mit dem Pendel

1.1 Bestimmung der Erdbeschleunigung mit dem Pendel Kapitel 1 Mechanik 1.1 Bestimmung der Erdbeschleunigung mit dem Pendel Aufgaben In diesem Experiment werden die Schwingungen eines physikalischen Pendels untersucht. Aus den Messungen der Schwingungsdauern

Mehr

Schwingungen und Resonanzphänomene

Schwingungen und Resonanzphänomene Schwingungen und Resonanzphänomene oder...... warum Männer am liebsten in der Badewanne und Frauen lieber auf der Toilette singen. Prof. Dr. Christian Schröder Fachbereich Elektrotechnik und Informationstechnik

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I M20 Name: Das Federpendel Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Elektrische Schwingungen und Wellen. Wechselströme. Elektrischer Schwingkreis i. Wiederholung Schwingung ii. Freie Schwingung iii. Erzwungene Schwingung iv. Tesla Transformator 3. Elektromagnetische Wellen

Mehr

Erzwungene Schwingungen und Resonanzphänomene

Erzwungene Schwingungen und Resonanzphänomene Agenda Erzwungene Schwingungen und Resonanzphänomene oder...... warum Männer am liebsten in der Badewanne und Frauen lieber auf der Toilette singen. Dr. Christian Schröder Schwingungen: Freund oder Feind?

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Versuch M3b für Physiker Erzwungene Schwingung / Resonanz

Versuch M3b für Physiker Erzwungene Schwingung / Resonanz Versuch M3b für Physiker Erzwungene Schwingung / Resonanz I. Physikalisches Institut, Raum HS0 Stand: 3. April 04 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner angeben

Mehr

S4 Erzwungene Schwingung Protokoll

S4 Erzwungene Schwingung Protokoll Christian Müller Jan Philipp Dietrich S4 Erzwungene Schwingung Protokoll I. Freie Schwingung a) Erläuterung b) Bestimmung der Eigenkreisfrequenz c) Bestimmung des Dämpfungsmaß β II. Erzwungene Schwingung

Mehr

1 Fouriersynthese und Fourieranalyse

1 Fouriersynthese und Fourieranalyse Schwingungslehre in Kursstufe 5/ 57 Ernst Schreier Fouriersynthese und Fourieranalyse. Stehende Wellen / Eigenschwingungen / Resonanz Bei einfacher Reflexion bildet sich immer eine stehende Welle vor der

Mehr

Physik-Praktikum. für Studierende des Studiengangs Fach-Bachelor Chemie Teil 1. Wintersemester 2015/16. Versuch 2: Mechanische Größen, Schwingungen

Physik-Praktikum. für Studierende des Studiengangs Fach-Bachelor Chemie Teil 1. Wintersemester 2015/16. Versuch 2: Mechanische Größen, Schwingungen Physik-Praktikum für Studierende des Studiengangs Fach-Bachelor Chemie Teil 1 Versuch : Mechanische Größen, Schwingungen Wintersemester 015/16 Carl von Ossietzky Universität Oldenburg Institut für Physik

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik

9. Akustik. I Mechanik. 12. Vorlesung EP. 7. Schwingungen 8. Wellen 9.Akustik 12. Vorlesung EP I Mechanik 7. Schwingungen 8. Wellen 9.Akustik Versuche: Stimmgabel und Uhr ohne + mit Resonanzboden Pfeife Schallgeschwindigkeit in Luft Versuch mit Helium Streichinstrument Fourier-Analyse

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. 9. Schwingungen & Wellen 9.1.1 Der harmonische

Mehr

Schwingungen. Im Experiment sehen wir, dass die Kraft, die man zum Auslenken einer Feder braucht, proportional zur Auslenkung ist.

Schwingungen. Im Experiment sehen wir, dass die Kraft, die man zum Auslenken einer Feder braucht, proportional zur Auslenkung ist. Schwingungen Im Experiment sehen wir, dass die Kraft, die man zum Auslenken einer Feder braucht, proportional zur Auslenkung ist. Mit Kraft = Masse Beschleunigung, also F = m a, oder F = m ẍ erhalten wir

Mehr

Physik I Übung 11 - Lösungshinweise

Physik I Übung 11 - Lösungshinweise Physik I Übung - Lösungshinweise Stefan Reutter WS 0/ Moritz Kütt Stand: 7. Februar 0 Franz Fujara Aufgabe Christbaumkugeln Kater Nocturno lässt seine trainierten (d.h. todesängstigen) Mäuse folgendes

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 .1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 Hypothesenbildung Von welchen Größen hängt die Periode eines

Mehr

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis Vorlesungen: 16.1. 2006 30.1. 2006 7 Differentialgleichungen Inhaltsverzeichnis 7 Differentialgleichungen 1 7.1 Differentialgleichungen 1. Ordnung...................... 2 7.1.1 Allgemeine Bemerkungen zu

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Als indifferentes Gleichgewicht bezeichnet man ein solches, bei dem eine Änderung eine keine Wirkung nach sich zieht

Als indifferentes Gleichgewicht bezeichnet man ein solches, bei dem eine Änderung eine keine Wirkung nach sich zieht Gleichgewicht: Stabil, indifferent, labil Als stabiles Gleichgewicht bezeichnet man ein solches, bei dem eine Lage-Änderung eine Wirkung (Kraft, Drehmoment) nach sich zieht, die dieser Änderung entgegenwirkt

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k 2 H d xt ( ) Bewegungsgleichung: m k x t 2

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Physik 2. Schwingungen.

Physik 2. Schwingungen. Physik Schwingungen 3 Physik 2. Schwingungen. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH Physik Fluide 5 Themen Parameter einer Schwingung Harmonischer Oszillator Gedämpfter harmonischer Oszillator Resonanz

Mehr

Trignonometrische Funktionen 6a

Trignonometrische Funktionen 6a Schuljahr 2015/16 andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )

Mehr

Und die Physik-Vorlesung? Physik, FB 3, Sternberg

Und die Physik-Vorlesung? Physik, FB 3, Sternberg Und die Physik-Vorlesung? Ziel des Physik-Kurses Vermittlung des notwendigen anwendungsorientierten Grundwissens Vermittlung eines naturwissenschaftlich/ technischen Modelldenkens zur Lösung technischer

Mehr

Anharmonische Schwingungen / Gekoppelte Pendel

Anharmonische Schwingungen / Gekoppelte Pendel Anharmonische Schwingungen / Gekoppelte Pendel Die Charakterisierung periodischer Vorgänge mit Hilfe der Fourieranalyse wird am Beispiel eines physikalischen Pendels, zweier gekoppelten Pendel sowie elektrischer

Mehr

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante

Mehr