Vorlesung Datenstrukturen

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Datenstrukturen"

Transkript

1 Vorlesung Datenstrukturen Graphen (2) Spannbäume Kürzeste Wege Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 455

2 Wiederholung Traversierung eines Graphen via Tiefendurchlaufs / Breitendurchlauf 1. Wähle einen beliebigen Knoten aus dem Graph 2. Lege diesen Knoten in einem Stapel / einer Schlange ab 3. Solange der Stapel / die Schlange nicht leer ist Entnimm einen Knoten v aus dem Stapel / der Schlange Wenn v nicht markiert ist, dann Markiere v als besucht Füge alle zu v adjazenten, nicht markierten Knoten dem Stapel / der Schlange hinzu Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 456

3 Spannbaum Grundidee Aufgrund der systematischen Verarbeitung der Knoten eines Graphen sowie des Ignorierens bereits besuchter Knoten kann man aus der Reihenfolge der besuchten Knoten des Graphen einen Baum konstruieren, der alle Graphknoten enthält, die vom Startknoten aus erreichbar sind. Erzeugung Man generiert aus dem jeweils im Traversierungsalgorithmus verarbeiteten (noch nicht markierten) Knoten v einen Baum, bei dem v immer die (Teilbaum-)Wurzel seiner (noch nicht markierten) adjazenten Knoten darstellt, folgt dem Weg der Verarbeitung und entfernt gegebenenfalls bei Markierung eines Knotens Duplikate auf schon existierenden Ebenen. Spannwald Falls nicht alle Knoten des Graphen im Spannbaum enthalten sind, können wir den Vorgang für die nicht besuchten Knoten wiederholen und erhalten dann einen Wald von Spannbäumen. Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 457

4 Gewichtete Graphen Verallgemeinerung von Graphen Sehr viele Probleme auf Graphen beruhen auf der Auswertung einer Kostenfunktion, die Kanten ein Gewicht zuordnet, z.b. Routenplanung (Distanzen zwischen Städten, Übertragungskosten von Energie im Energieverbund, Informationsweg zwischen Kommunikationspartnern im Internet,...) Realisierung Adjazenzmatrix: Wir speichern die tatsächlichen Gewichte der Kanten statt der Binärgewichte (Kante vorhanden / keine Kante). Adjazenzliste: Wir erweitern die Liste der adjazenten Knoten um eine Strukturkomponente, die das Gewicht der Kante zum aktuellen Knoten aufnimmt. Einschränkung Negative Gewichte sind nicht erlaubt. Diese Forderung stellt jedoch keine wirkliche Einschränkung dar, da sich Graphen entsprechend umformen lassen (Gallo, Pallottino, 1986). Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 458

5 Kürzester Weg zwischen zwei Knoten Algorithmus von Dijkstra Berechnet von einem gegebenen Startknoten aus die kürzesten Wege zu allen Knoten eines Graphen (die von diesem Startknoten aus erreichbar sind). Allgemeines Funktionsprinzip Für jeden Knoten u wird zusätzlich festgehalten, zu welchen günstigsten Gesamtkosten und über welchen Vorgängerknoten u vom Startknoten aus am günstigsten erreichbar ist. Falls ein Knoten v gefunden werden kann, über den man kostengünstiger zu u gelangt, werden die Gesamtkosten aktualisiert und der Vorgängerknoten von u auf v gesetzt. Startzustand Initialisiere alle Knoten mit Kosten Initialisiere Startknoten mit Kosten 0 Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 459

6 Algorithmus von Dijkstra Eingabe Gewichteter Graph mit Knotenmenge V und Kantenmenge E mit Kantengewicht w(e E) Startknoten s V Pseudocode K(v) = für alle v V // Initialisierung der Gesamtkosten eines Knotens K(s) = 0 // Startknoten hat Kosten 0 R = V Solange R nicht leer ist Wähle v R mit kleinstem K(v) // Menge noch zu untersuchender Knoten // Verwende immer den billigsten Knoten Entferne v aus R Für alle zu v adjazenten Knoten u mit u R Wenn K(v) + w(v,u) < K(u) K(u) = K(v) + w(v,u) Vorgänger(u) = v // u ist über v billiger zu erreichen // aktualisiere Kosten von u // aktualisiere Vorgänger von u Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 460

7 Kürzeste Wege zwischen allen Knoten Floyd-Warshal-Algorithmus Wir testen für alle möglichen Kantenkombinationen (j,k), ob man über irgendeinen dritten Knoten i günstiger (bzw. überhaupt) von j nach k gelangen kann, also ob w(j,i) + w(i,k) < w(j,k). Wenn ja, aktualisieren wir das Gewicht w(j,k). Voraussetzung Darstellung des gewichteten Graphen mittels Adjazenzmatrix. Ergebnis Modifizierte Adjazenzmatrix, die die günstigsten Verbindungen zwischen allen Knoten (auch indirekter Art) enthält. Besonderheit Negative Gewichte sind direkt möglich. for i = 1 to V for j = 1 to V for k = 1 to V if w(j,i) + w(i,k) < w(j,k) w(j,k) = w(j,i) + w(i,k) Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 461

8 Floyd-Warshall-Algorithmus Zyklenerkennung Der Floyd-Warshall-Algorithmus beinhaltet eine implizite Zyklenerkennung. Voraussetzung Die Elemente der Hauptdiagonalen der Adjazenzmatrix müssen mit initialisiert werden. Ergebnis Falls nach der Ausführung des Algorithmus mindestens ein Gewicht auf der Hauptdiagonalen ungleich ist, dann existiert (mindestens) ein Zyklus im Graphen. Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 462

9 Bewertung der Verfahren Floyd-Warshall-Algorithmus Dijkstra-Algorithmus berechnet die kürzesten Wege zwischen allen Knoten eines Graphen negative Gewichte sind direkt möglich sehr hohe Berechnungskomplexität O( V 3 ) berechnet die kürzesten Wege / Kosten zwischen einem Startknoten und allen anderen Knoten nur positive Gewichte sind möglich hohe Berechnungskomplexität O( V 2 ) Fazit (für Berechnung der kürzesten Wege zwischen allen Knoten) für lichte Graphen bietet sich die V -malige Berechnung des kürzesten Weges zwischen jedem v V und den anderen Knoten nach der Methode von Dijkstra an für dichte Graphen ist die Laufzeit des Floyd-Warshall-Algorithmus akzeptabel Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 463

10 Ein Anwendungsbeispiel Weg- bzw. Zielsuche in einem Labyrinth: Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 464

11 Modellierung des Labyrinths als Graph Jeden Punkt im Labyrinth, an dem sich eine Wahlmöglichkeit für den Weg bietet oder ein Weg endet, modellieren wir als Knoten und alle verbindenden Wege als Kanten eines Graphen. Da die Wege im Labyrinth in beide Richtungen beschritten werden können, sind die Kanten ungerichtet. Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 465

12 Suchen in Graphen Suchen mittels Graphtraversierung Mit Hilfe der Graphmodellierung des Labyrinths können wir mit Hilfe der bekannten Traversierungsalgorithmen einen Weg durch das Labyrinth von dessen Eingang (dem Startknoten) zum Ausgang (einem Zielknoten) finden. Im Gegensatz zur Traversierung aller Knoten können wir die Suche abbrechen, sobald wir einen Zielknoten gefunden haben. Tiefensuche & Breitensuche Analog zum Tiefen- oder Breitendurchlauf eines Graphen bezeichnen wir das korrespondierende Suchverfahren als Tiefen- oder Breitensuche. Wegsuche & Zielsuche Je nach Aufgabenstellung kann sowohl der Zielknoten als auch der Weg dahin (oder auch beides) gefordert sein. Deshalb unterscheiden wir Suchalgorithmen bezüglich Weg- oder Zielsuche: Beispiel für Zielsuche: Floyd-Warshall-Algorithmus Beispiel für Wegsuche: Navigation eines Roboters durch ein Labyrinth (via Dijkstra-Algorithmus) Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 466

13 Weg- und Zielsuche im Labyrinth Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 467

14 Ende der Vorlesung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 468

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47 Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford

Mehr

12. AuD Tafelübung T-C3

12. AuD Tafelübung T-C3 12. AuD Tafelübung T-C3 Simon Ruderich 2. Februar 2011 Kollisionen (Primär)Kollision Stelle mit normal eingefügtem Element schon belegt (gleicher Hashwert) tritt bei verketteten Listen und Sondierung auf

Mehr

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 1 Agenda Kontrollfragen Graphen Graphenalgorithmen 2

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die nformatik 2 raphenexploration Sven Kosub A Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Stefan Thater & Michaela Regneri Universität des Saarlandes FR 4.7 Allgemeine Linguistik (Computerlinguistik) Übersicht Topologische Sortierung (einfach) Kürzeste Wege finden

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Kürzeste Wege Maike Buchin 4. und 6.7.2017 Einführung Motivation: Bestimmung von kürzesten Wegen ist in vielen Anwendungen, z.b. Routenplanung, ein wichtiges Problem. Allgemeine

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 16 (2.7.2014) Graphtraversierung II, Minimale Spannbäume I Algorithmen und Komplexität Tiefensuche: Pseusocode DFS Traversal: for all u in

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

10. Übungsblatt zu Algorithmen I im SS 2010

10. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 13 (8.6.2016) Graphenalgorithmen I Algorithmen und Komplexität Graphen Knotenmenge V, typischerweise n V Kantenmenge E, typischerweise

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest SS Juni 2009

Algorithmen und Datenstrukturen 1 VL Übungstest SS Juni 2009 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 2. Übungstest SS 2009 09. Juni

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen

Mehr

Algorithmen & Datenstrukturen 2 Praktikum 3

Algorithmen & Datenstrukturen 2 Praktikum 3 Algorithmen & Datenstrukturen 2 Praktikum 3 Thema: Graphalgorithmen Sommersemester 2016 Prof. Dr. Christoph Karg Hochschule Aalen Dieses Praktikum widmet sich dem Thema Graphalgorithmen. Ziel ist die Implementierung

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 13. Übung minimale Spannbäume, topologische Sortierung, AVL-Bäume Clemens Lang Übungen zu AuD 4. Februar 2010 Clemens Lang (Übungen zu AuD) Algorithmen und Datenstrukturen

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 13 (6.6.2018) Graphenalgorithmen II Yannic Maus Algorithmen und Komplexität Repräsentation von Graphen Zwei klassische Arten, einen Graphen

Mehr

3.2 Generischer minimaler Spannbaum-Algorithmus

3.2 Generischer minimaler Spannbaum-Algorithmus 3.2 Generischer minimaler Spannbaum-Algorithmus Initialisiere Wald F von Bäumen, jeder Baum ist ein singulärer Knoten (jedes v V bildet einen Baum) while Wald F mehr als einen Baum enthält do wähle einen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

Graphalgorithmen. 9. November / 54

Graphalgorithmen. 9. November / 54 Graphalgorithmen 9. November 2017 1 / 54 Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen

Mehr

Graphalgorithmen II. Sebastian Ehrenfels Sebastian Ehrenfels Graphalgorithmen II / 44

Graphalgorithmen II. Sebastian Ehrenfels Sebastian Ehrenfels Graphalgorithmen II / 44 Graphalgorithmen II Sebastian Ehrenfels 4.6.2013 Sebastian Ehrenfels Graphalgorithmen II 4.6.2013 1 / 44 Inhalt 1 Datenstrukturen Union-Find Fibonacci-Heap 2 Kürzeste wege Dijkstra Erweiterungen Bellman-Ford

Mehr

Kap. 6.5: Minimale Spannbäume ff

Kap. 6.5: Minimale Spannbäume ff Kap. 6.: Minimale Spannbäume ff Professor Dr. Karsten Klein Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 20. VO 2. TEIL DAP2 SS 2009 2. Juli 2009 SS08 1 Überblick 6.:

Mehr

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012 Algorithmen und Datenstrukturen Tafelübung 14 Jens Wetzl 8. Februar 2012 Folien Keine Garantie für Vollständigkeit und/oder Richtigkeit Keine offizielle Informationsquelle LS2-Webseite Abrufbar unter:

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 12 (4.6.2018) Graphenalgorithmen I Yannic Maus Algorithmen und Komplexität Graphen Knotenmenge V, typischerweise n V Kantenmenge E, typischerweise

Mehr

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / Traversierung ADS: Algorithmen und Datenstrukturen Teil Prof. Peter F. Stadler & Sebastian

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt: 3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),

Mehr

Software Entwicklung 1. Graphen. Motivation. Definitionen: Graph. Annette Bieniusa / Arnd Poetzsch-Heffter

Software Entwicklung 1. Graphen. Motivation. Definitionen: Graph. Annette Bieniusa / Arnd Poetzsch-Heffter Software Entwicklung 1 Annette Bieniusa / Arnd Poetzsch-Heffter Graphen AG Softech FB Informatik TU Kaiserslautern Literaturhinweis: Kapitel 4.5 aus R. Sedgewick, K. Wayne: Einführung in die Programmierung

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdurchläufe Maike Buchin 22. und 27.6.2017 Graphexploration Motivation: Für viele Zwecke will man den gesamten Graphen durchlaufen, zb. um festzustellen ob er (stark) zusammenhängt.

Mehr

Wir nennen einen Pfad in einem gerichteten Graphen Zyklus, wenn der Pfad im gleichen Knoten beginnt und endet, d. h.

Wir nennen einen Pfad in einem gerichteten Graphen Zyklus, wenn der Pfad im gleichen Knoten beginnt und endet, d. h. aaacmxicdvdlsgmxfl1t3/vv69jntaiuyowubbdcwy1lbfuqwkomtwuyzgri7ltgwa9wa7/cr+lo3potpq2c9xegcdjnxu7j8wmpdlru2mktlc4tr6yu5dc3nre2czvfhlgjzrzolfs65vpdpyh4hqvk3oo1p6evedmpzid+c8i1esq6xjtmnzaoitexjkkvbozdl5yrytfofkpu+bhacu+q5dfxyu4updp+pkobwgv3xyne9hrlqh4hk9sytufg2mmorsekf8zfjobhlav0wnuwrjtkppnnez+sq6v0sf9p+yiku/x7rkzdy9lqt5mhxtvz05uif3q+ugfs38zdz1aedznlwqtwndwpjarvvfmrfpuvtiaioeeesvnqfiijkjkpj/se5gxlagllwti/enzhnwvos87bfr+qiv+txnhzc8velveqvwcgvdidazgcd06hbhdwcxvgemitpmpiexhgzqvznhvnoz87uzah5/0djy+sia==

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Graphen 9/1 Begriffsdefinitionen Ein Graph besteht aus Knoten und Kanten. Ein Knoten(Ecke) ist ein benanntes Objekt. Eine Kante verbindet zwei Knoten. Kanten haben ein Gewicht

Mehr

Software Entwicklung 1

Software Entwicklung 1 Software Entwicklung 1 Annette Bieniusa / Arnd Poetzsch-Heffter AG Softech FB Informatik TU Kaiserslautern Graphen Literaturhinweis: Kapitel 4.5 aus R. Sedgewick, K. Wayne: Einführung in die Programmierung

Mehr

Graphentheorie. Yichuan Shen. 10. Oktober 2013

Graphentheorie. Yichuan Shen. 10. Oktober 2013 Graphentheorie Yichuan Shen 0. Oktober 203 Was ist ein Graph? Ein Graph ist eine kombinatorische Struktur, die bei der Modellierung zahlreicher Probleme Verwendung findet. Er besteht ganz allgemein aus

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Übersicht. Datenstrukturen und Algorithmen. Das Rechenproblem: kürzeste Pfade. Übersicht. Vorlesung 17: Kürzeste Pfade (K24) Bellman-Ford Dijkstra

Übersicht. Datenstrukturen und Algorithmen. Das Rechenproblem: kürzeste Pfade. Übersicht. Vorlesung 17: Kürzeste Pfade (K24) Bellman-Ford Dijkstra Datenstrukturen und Algorithmen Vorlesung 17: (K) Joost-Pieter Katoen Lehrstuhl für Informat Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 1. Juni 15 1 Joost-Pieter

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 02. Mai 2017 [Letzte Aktualisierung: 10/07/2018,

Mehr

Programmierung 2 Studiengang MI / WI

Programmierung 2 Studiengang MI / WI Programmierung 2 Studiengang MI / WI Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 Fachbereich Automatisierung

Mehr

Datenstrukturen. einfach verkettete Liste

Datenstrukturen. einfach verkettete Liste einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten

Mehr

Algorithmen und Datenstrukturen 13

Algorithmen und Datenstrukturen 13 19. Juli 2012 1 Besprechung Blatt 12 Fragen 2 Bäume AVL-Bäume 3 Graphen Allgemein Matrixdarstellung 4 Graphalgorithmen Dijkstra Prim Kruskal Fragen Fragen zu Blatt 12? AVL-Bäume AVL-Bäume ein AVL-Baum

Mehr

Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S.

Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S. Lange Klausurvorbereitung Hier finden Sie alle Begriffe, Zusammenhänge und Algorithmen, die mit Blick auf die Klausur relevant sind. Um es

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 9 Graphen Version vom 13. Dezember 2016 1 / 1 Vorlesung Fortsetzung 13. Dezember

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Kap. 6.6: Kürzeste Wege

Kap. 6.6: Kürzeste Wege Kap. 6.6: Kürzeste Wege Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1./. VO DAP SS 009./9. Juli 009 1 Nachtest für Ausnahmefälle Di 1. Juli 009, 16:00 Uhr,

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Graphenalgorithmen I

Graphenalgorithmen I Graphenalgorithmen I Vortrag im Seminar Hallo Welt! für Fortgeschrittene 7. Juni 211 Graphenalgorithmen I 1/33 Motivation Problem Wie komme ich am schnellsten ins Kanapee? Problem Wie kommt ein Datenpaket

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Kürzeste Wege in einem gewichteten Graphen. Anwendungen

Kürzeste Wege in einem gewichteten Graphen. Anwendungen Kürzeste Wege in einem gewichteten Graphen Dazu werden die Gewichte als Weglängen interpretiert. Der kürzeste Weg zwischen zwei Knoten in einem zusammenhängenden Graphen ist derjenige, bei dem die Summe

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 5: Suchalgorithmen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 20. März 2018 1/91 WIEDERHOLUNG - BÄUME / bin etc home

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Graphenalgorithmen I. Geschickt Programmieren für den ICPC- Wettbewerb. Felix Weissenberger

Graphenalgorithmen I. Geschickt Programmieren für den ICPC- Wettbewerb. Felix Weissenberger Graphenalgorithmen I Geschickt Programmieren für den ICPC- Wettbewerb Felix Weissenberger Inhalt Grundlagen zu Graphen Begriffe Darstellung von Graphen Graphenalgorithmen Breitensuche Tiefensuche Topologisches

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

1 Kürzeste Pfade in Graphen

1 Kürzeste Pfade in Graphen Praktikum Algorithmen-Entwurf (Teil 3) 03.11.2011 1 1 Kürzeste Pfade in Graphen Es sei ein gerichteter Graph G = (V, E) mit V = n Knoten, E = m Kanten und Kantengewichten c : E R gegeben. Ein Pfad in G

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest WS Jänner 2009

Algorithmen und Datenstrukturen 1 VL Übungstest WS Jänner 2009 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 2. Übungstest WS 2008 16. Jänner

Mehr

Abgabe: (vor der Vorlesung)

Abgabe: (vor der Vorlesung) TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 0 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Teil 2: Graphenalgorithmen

Teil 2: Graphenalgorithmen Teil : Graphenalgorithmen Anwendungen Definitionen Datenstrukturen für Graphen Elementare Algorithmen Topologisches Sortieren Kürzeste Wege Minimal aufspannende Bäume Problemstellung Algorithmus von Prim

Mehr

Aufgaben zur Klausurvorbereitung

Aufgaben zur Klausurvorbereitung Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014

Mehr

Kap. 6.6: Kürzeste Wege

Kap. 6.6: Kürzeste Wege 0.0.00 Nachtest für Ausnahmefälle Kap..: Kürzeste Wege Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund./. VO DAP SS 00./. Juli 00 Di. Juli 00, :00 Uhr, OH, R.

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

7. Transitive Hülle. Kante des Graphen. Zusatz-Kante der transitiven Hülle

7. Transitive Hülle. Kante des Graphen. Zusatz-Kante der transitiven Hülle In Anwendungen ist es oft interessant zu wissen, ob man überhaupt von einem Knoten v zu einem Knoten w gelangen kann, ganz gleich wie lang der Weg auch ist. Gegeben sei dabei ein gerichteter Graph G =

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Algorithmen und Datenstrukturen Kapitel 9. und

Algorithmen und Datenstrukturen Kapitel 9. und Algorithmen und Datenstrukturen Kapitel 9 und Kürzeste Pfade Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Dezember 0 Frank Heitmann heitmann@informatik.uni-hamburg.de / Problemstellung Definition

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

2.4 Starke Zusammenhangskomponenten in Digraphen

2.4 Starke Zusammenhangskomponenten in Digraphen Starke Zusammenhangskomponenten Einleitung 2.4 Starke Zusammenhangskomponenten in Digraphen Definition 2.4.1 Zwei Knoten v und w in einem Digraphen G heißen äquivalent, wenn v w und w v gilt. Notation:

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Approximationsalgorithmen auf metrischen Instanzen Minimum Spanning Tree Definition (Spannbaum) Ein Spannbaum in einem Graphen G = (V,E) ist ein kreisfreier Teilgraph

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

Algorithmen und Datenstrukturen Kapitel 9. und

Algorithmen und Datenstrukturen Kapitel 9. und Algorithmen und Datenstrukturen Kapitel 9 Minimale Spannbäume und Kürzeste Pfade Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Dezember 01 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/13

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 24. April 2019 [Letzte Aktualisierung: 24/04/2019,

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen Lerneinheit : Kürzeste Pfade in Graphen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 016.6.01 Einleitung Diese Lerneinheit beschäftigt

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 21 1 Approximationsalgorithmen auf

Mehr

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Tiefensuche: Die globale Struktur Der gerichtete oder ungerichtete Graph G werde durch seine Adjazenzliste A repräsentiert. Im Array besucht wird vermerkt,

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Folien aus der Vorlesung Optimierung I SS2013

Folien aus der Vorlesung Optimierung I SS2013 Folien aus der Vorlesung Optimierung I SS2013 Dr. Jens Maßberg Institut für Optimierung und Operations Research, Universität Ulm July 10, 2013 Datenstrukturen für Graphen und Digraphen Graph Scanning Algorithmus

Mehr

Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22

Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22 Graphalgorithmen II Werner Sembach 14.04.2014 Werner Sembach Graphalgorithmen II 14.04.2014 1 / 22 Übersicht Datenstrukturen Union-Find Fibonacci-Heap Werner Sembach Graphalgorithmen II 14.04.2014 2 /

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 12, Donnerstag, 23.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 12, Donnerstag, 23. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 0 / 04 Vorlesung, Donnerstag,. Januar 04 (Graphen, Breiten/Tiefensuche, Zusammenhangskomponenten) Junior-Prof.

Mehr

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. 8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Teil 2: Graphenalgorithmen

Teil 2: Graphenalgorithmen Teil : Graphenalgorithmen Anwendungen Definitionen Datenstrukturen für Graphen Elementare Algorithmen Topologisches Sortieren Kürzeste Wege Problemstellung Ungewichtete Graphen Distanzgraphen Gewichtete

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 I NSTITUT F U R T HEORETISCHE I NFORMATIK, P ROF. D R. D OROTHEA WAGNER KIT Universita t des Landes Baden-Wu rttemberg und nationales

Mehr

Kürzeste Pfade. Organisatorisches. VL-17: Kürzeste Pfade. (Datenstrukturen und Algorithmen, SS 2017) Walter Unger

Kürzeste Pfade. Organisatorisches. VL-17: Kürzeste Pfade. (Datenstrukturen und Algorithmen, SS 2017) Walter Unger Organisatorisches VL-17: Kürzeste Pfade (Datenstrukturen und Algorithmen, SS 2017) Walter Unger Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Sprechstunde: Mittwoch 11:15 12:00 Übungen: Tim Hartmann,

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 6 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 16. Mai 2018 [Letzte Aktualisierung: 18/05/2018,

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Klausur Wichtige Hinweise: 2.7.07, Beginn 9 Uhr Bitte spätestens 8:4 Uhr vor Ort sein Sporthalle + Audimax Informationen

Mehr

Lösungsvorschlag Hausübung 8

Lösungsvorschlag Hausübung 8 Lösungsvorschlag Hausübung 8 Peter Kling 16. Juli 2007 Aufgabe 27 Betrachten Sie den Algorithmus Heapsort (vgl. Alg. 1) aus der Vorlesung. Illustrieren Sie die Arbeitsweise von Heapsort am Beispiel des

Mehr