4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik

Größe: px
Ab Seite anzeigen:

Download "4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik"

Transkript

1 c 2 B 2 Schwerpunkt S P 2 S P 1 c 1 m, J O O B 1 Prof. Dr. Wandinger 6. Schwingungen Dynamik

2 Aufgabenstellung: 4. Drehschwinger Der Drehschwinger besteht aus einem starren Körper, der im Punkt O gelenkig gelagert ist. Die Masse des Körpers ist m und das Massenträgheitsmoment um den Drehpunkt ist J. An den Punkten P i sind Federn mit den Federsteifigkeiten c i angebracht. Aufzustellen ist die Schwingungsgleichung für kleine Schwingungen um die statische Ruhelage. Prof. Dr. Wandinger 6. Schwingungen Dynamik

3 Rückstellmoment einer Feder: Geometrie: y O φ a ψ a P' P x L 0 + ΔL Δβ β B L 0 Prof. Dr. Wandinger 6. Schwingungen Dynamik

4 Koordinaten von Punkt P in der Ruhelage: x P =a cos, y P =a sin Koordinaten von Punkt B: x B =x P L 0 cos, y B = y P L 0 sin Koordinaten von Punkt P in der ausgelenkten Lage: x P =a cos =x B L 0 L cos y P =a sin = y B L 0 L sin Prof. Dr. Wandinger 6. Schwingungen Dynamik

5 Für kleine Auslenkungswinkel φ ist auch der Winkel Δβ und die Längenänderung ΔL klein. Dann gelten die Linearisierungen: cos =cos cos sin sin cos sin sin =sin cos cos sin sin cos cos cos sin sin sin cos Prof. Dr. Wandinger 6. Schwingungen Dynamik

6 Mit den Linearisierungen lauten die Koordinatengleichungen für den ausgelenkten Zustand: x P a cos a sin =x P a sin x P L 0 cos L 0 L cos sin x P L cos L 0 sin y P a sin a cos = y P a cos y P L 0 sin L 0 L sin cos y P L sin L 0 cos Prof. Dr. Wandinger 6. Schwingungen Dynamik

7 Daraus folgt: a sin = L cos L 0 sin a cos = L sin L 0 cos Aus diesem Gleichungssystem lassen sich Δβ und ΔL berechnen: a cos cos sin sin =L 0 a sin cos cos sin = L L 0 =a cos L=a sin Prof. Dr. Wandinger 6. Schwingungen Dynamik

8 Moment der Federkraft: 4. Drehschwinger y P' F x F y F β + Δβ O x B Prof. Dr. Wandinger 6. Schwingungen Dynamik

9 Federkraft: F =F 0 c L F 0 ist die Vorspannkraft der Feder, die in der statischen Ruhelage vorhanden ist. Für die Komponenten der Federkraft gilt: F x = F 0 c L cos F 0 c L cos sin F 0 cos c L cos F 0 sin F y = F 0 c L sin F 0 c L sin cos F 0 sin c L sin F 0 cos Prof. Dr. Wandinger 6. Schwingungen Dynamik

10 Das Moment der Federkraft um den Drehpunkt O berechnet sich zu M F = y P F x x P F y = y p a cos F 0 cos c L cos F 0 sin x P a sin F 0 sin c Lsin F 0 cos y P F 0 cos x P F 0 sin a F 0 cos c L y P cos x P sin F 0 x P cos y P sin =M F0 F 0 a cos c a 2 sin 2 F 0 a2 L cos2 Prof. Dr. Wandinger 6. Schwingungen Dynamik

11 Dabei ist M F0 = y P F 0 cos x P F 0 sin das Moment der Federkraft in der statischen Ruhelage. Zusammengefasst ergibt sich: M F =M F0 F 0 a cos [ 1 a L cos ] c a 2 sin 2 Prof. Dr. Wandinger 6. Schwingungen Dynamik

12 Geometrische Zusammenhänge in der Ruhelage: O r ψ a s ψ + β P β ψ β B s=a cos r=a sin Prof. Dr. Wandinger 6. Schwingungen Dynamik

13 r ist der Abstand der Wirkungslinie der Federkraft vom Drehpunkt. s ist der Abstand des Federangriffspunktes vom Lotpunkt. Mit diesen Bezeichnungen gilt für das Moment: s M F =M F0 F 1 s 0 L c r 2 Prof. Dr. Wandinger 6. Schwingungen Dynamik

14 Steifigkeiten: Die Steifigkeit s c G =F 1 s 0 L =F 0 a cos 1 a L cos ist die geometrische Steifigkeit der Feder. Sie beschreibt die Änderung des Rückstellmomentes infolge der Änderung der Richtung der Feder. Die geometrische Steifigkeit verschwindet, wenn die Vorspannkraft verschwindet oder wenn die Wirkungslinie der Federkraft senkrecht auf dem Abstand des Federangriffspunktes vom Drehpunkt steht. Prof. Dr. Wandinger 6. Schwingungen Dynamik

15 Die Steifigkeit c E =c r 2 =c a sin 2 ist die materielle Steifigkeit der Feder. Sie beschreibt die Änderung des Rückstellmomentes infolge der Änderung der Länge der Feder. Damit gilt für das Rückstellmoment: M F =M F0 c G c E Prof. Dr. Wandinger 6. Schwingungen Dynamik

16 Rückstellmoment der Gewichtskraft: y S M G = m g e cos m g e cos sin =M G0 m g e sin O e γ mg x M G0 ist das Moment der Gewichtskraft in der statischen Ruhelage. Prof. Dr. Wandinger 6. Schwingungen Dynamik

17 Schwingungsgleichung: 4. Drehschwinger Für ein System mit n Federn berechnet sich das gesamte Rückstellmoment zu Dabei ist n M =M G i=1 M F0i =M G n c = D i=1 n m g esin i=1 n i=1 M F0i c D c Gi c Ei m g esin c Gi c Ei die resultierende Steifigkeit des Drehschwingers. Prof. Dr. Wandinger 6. Schwingungen Dynamik

18 Der Drallsatz bezüglich des Drehpunktes O lautet: n J =M=M G i=1 M F0i c D In der statischen Ruhelage gilt =0 und =0. Daher muss gelten: n 0=M G i=1 M F0i Damit lautet die Schwingungsgleichung: c D J =0 Prof. Dr. Wandinger 6. Schwingungen Dynamik

19 Zusammenfassung: Schwingungsgleichung: Resultierende Steifigkeit: Geometrische Steifigkeit: 4. Drehschwinger c D J =0 c D = i=1 c Gi =F 0i s i 1 s i L =F 0i a i cos i i i n c Gi c Ei m g esin 1 a i L i cos i i Materielle Steifigkeit: c Ei =c i r i 2 =c i a i sin i i 2 Prof. Dr. Wandinger 6. Schwingungen Dynamik

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

3. Systeme von starren Körpern

3. Systeme von starren Körpern Systeme von starren Körpern lassen sich folgendermaßen berechnen: Die einzelnen starren Körper werden freigeschnitten. Für jeden einzelnen Körper werden die Bewegungsgleichungen aufgestellt. Die kinematischen

Mehr

1. Prinzip von d'alembert

1. Prinzip von d'alembert 1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik 2 5.1-1 1.1

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

1. Impuls- und Drallsatz

1. Impuls- und Drallsatz 1. Impuls- und Drallsatz Impulssatz Bewegung des Schwerpunkts des örpers aufgrund vorgegebener räfte Drallsatz Drehung des örpers aufgrund vorgegebener Momente Prof. Dr. Wandinger 3. inetik des starren

Mehr

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1 Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

4.3 Schwingende Systeme

4.3 Schwingende Systeme Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine

Mehr

2. Exzentrischer Stoß

2. Exzentrischer Stoß 2. Exzentrischer Stoß 2.1 Ebener Stoß zwischen freien Körpern 2.2 Ebener Stoß auf gelagerten Körper 3.2-1 2.1 Ebener Stoß zwischen freien Körpern Aufgabenstellung: Zwei glatte Körper stoßen aufeinander.

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Mechanik 1. Übungsaufgaben

Mechanik 1. Übungsaufgaben Mechanik 1 Übungsaufgaben Universitätsprofessor Dr.-Ing. habil. Jörg Schröder Universität Duisburg-Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 1 Seite 1 Aufgabe

Mehr

Technische Mechanik I

Technische Mechanik I Technische Mechanik I m.braun@uni-duisburg.de Wintersemester 2003/2004 Lehrveranstaltung Zeit Hörsaal Beginn Technische Mechanik I V 3 Mi 14:00 15:30 LB 104 15.10.2003 r 08:15 09:45 LB 104 17.10.2003 14tägig

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Technische Mechanik Dynamik

Technische Mechanik Dynamik Hans Albert Richard Manuela Sander Technische Mechanik Dynamik Grundlagen - effektiv und anwendungsnah Mit 135 Abbildungen Viewegs Fachbiicher der Technik vieweg VII VII 1 Fragestellungen der Dynamik 1

Mehr

2. Der ebene Spannungszustand

2. Der ebene Spannungszustand 2. Der ebene Spannungszustand 2.1 Schubspannung 2.2 Dünnwandiger Kessel 2.3 Ebener Spannungszustand 2.4 Spannungstransformation 2.5 Hauptspannungen 2.6 Dehnungen 2.7 Elastizitätsgesetz Prof. Dr. Wandinger

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

2. Anfangswertprobleme 2. Ordnung

2. Anfangswertprobleme 2. Ordnung Zu einem Anfangswertproblem 2. Ordnung gehören folgende Daten: Eine Differenzialgleichung 2. Ordnung: ẍ t f [ x t, ẋ t,t ] Die Anfangsbedingungen: x 0 x 0, ẋ 0 ẋ 0 Das zu untersuchende Zeitintervall: t

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt. 5. Schwerpunkt. Prof. Dr. Wandinger 1. Statik TM 1.5-1

5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt. 5. Schwerpunkt. Prof. Dr. Wandinger 1. Statik TM 1.5-1 5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt 5. Schwerpunkt Prof. Dr. Wandinger 1. Statik TM 1.5-1 5.1 Gruppe paralleler Kräfte G 1 G 2 G R G i G n P x x 1 S x S Gesucht: Angriffspunkt,

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

7. Lektion Drehmoment, Hebel, Schwerpunkt. H. Zabel 7. Lektion: Drehmoment 1

7. Lektion Drehmoment, Hebel, Schwerpunkt. H. Zabel 7. Lektion: Drehmoment 1 7. Lektion Drehmoment, Hebel, Schwerpunkt H. Zabel 7. Lektion: Drehmoment 1 Lernziel: Drehmoment bewirkt eine zeitliche Änderung des Drehimpulses, analog zur Kraft, die eine zeitliche Änderung des Impulses

Mehr

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit:

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit: Kurs: Statik Thema: Resultierende bestimmen Aufgabe 1) Wo liegt bei der Berechnung der Resultierenden der Unterschied zwischen Kräften mit einem gemeinsamen Angriffspunkt und Kräften mit unterschiedlichen

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

Probe-Klausur Technische Mechanik B

Probe-Klausur Technische Mechanik B Haburg, den 8.. Prof. Dr.-Ing. habil. Thoas Kletschkowski Hochschule für Angewandte Wissenschaften Haburg Fakultät Technik und Inforatik Departent Fahreugtechnik und Flugeugbau Berliner Tor 9 99 Haburg

Mehr

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk.

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk. TechMech Zusammenfassung Ebene & räumliche Bewegungen Drehmoment M [Nm] Andreas Biri, D-ITET 31.07.13 1. Grundlagen Eine starre ebene Bewegung ist entweder eine Translation: alle Punkte haben parallele

Mehr

5.3 Drehimpuls und Drehmoment im Experiment

5.3 Drehimpuls und Drehmoment im Experiment 5.3. DREHIMPULS UND DREHMOMENT IM EXPERIMENT 197 5.3 Drehimpuls und Drehmoment im Experiment Wir besprechen nun einige Experimente zum Thema Drehimpuls und Drehmoment. Wir betrachten ein System von N Massenpunkten,

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Probeklausur WS 2014/2015 27.03.2015 Bearbeitungszeit: 90 Minuten Aufgabe 1: Romeo und Julia (ca. 15 min) Julia befindet

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

M 7 - Trägheitsmoment

M 7 - Trägheitsmoment 18..8 PHYSIKALISCHES PAKTIKU FÜ ANFÄNGE LGyGe ersuch: 7 - Trägheitsmoment Das Trägheitsmoment regelmäßiger Körper sollen gemessen werden. Literatur Gerthsen-Kneser-ogel: Physik; Kap.: Dynamik des starren

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Potentialströmung und Magnuseffekt

Potentialströmung und Magnuseffekt Potentialströmung und Magnuseffekt (Zusammengefasst und ergänzt nach W Albring, Angewandte Strömungslehre, Verlag Theodor Steinkopff, Dresden, 3 Aufl 1966) Voraussetzungen Behandelt werden reibungs und

Mehr

Abstände und Zwischenwinkel

Abstände und Zwischenwinkel Abstände und Zwischenwinkel Die folgenden Grundaufgaben wurden von Oliver Riesen, KS Zug, erstellt und von Stefan Gubser, KS Zug, überarbeitet. Aufgabe 1: Bestimme den Abstand der beiden Punkte P( 3 /

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Arbeitsblatt 1 Einführung in die Vektorrechnung

Arbeitsblatt 1 Einführung in die Vektorrechnung Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Weitere Beispiele zu harmonischen Schwingungen

Weitere Beispiele zu harmonischen Schwingungen Weitere Beispiele zu harmonischen Schwingungen 1. Schwingung eines Wagens zwischen zwei horizontal gespannten, gleichartigen Federn Beide Federn besitzen die Federhärte D * und werden nur auf Zug belastet;

Mehr

Lösung Serie 3 (Modellieren (SIMULINK + MATLAB))

Lösung Serie 3 (Modellieren (SIMULINK + MATLAB)) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Serie 3 (Modellieren (SIMULINK + MATLAB Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:

Mehr

3. Zentrales ebenes Kräftesystem

3. Zentrales ebenes Kräftesystem 3. Zentrales ebenes Kräftesystem Eine ruppe von Kräften, die an einem starren Körper angreifen, bilden ein zentrales Kräftesystem, wenn sich die Wirkungslinien aller Kräfte in einem Punkt schneiden. f

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte) KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte

Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte 1 Aufgaben FB Maschinenbau Institut für Mechanik FG Maschinendynamik Prof. Dr.-Ing. H. Irretier Dipl.-Ing. A. Stein Klausur Schwingungstechnik 0. September 011 Name Vorname Matr. - Nr. Punkte =50 Aufgabe

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:

Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift: echnische Mechanik III Übung WS 2002 / 2003 Klausur eil 1 Abteilung für obotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer el.: +43/732/2468-9786 Fax: +43/732/2468-9792 bremer@mechatronik.uni-linz.ac.at Sekretariat:

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

M13. Gekoppeltes Pendel

M13. Gekoppeltes Pendel M3 Gekoppeltes Pendel In diesem Versuch werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken werden die Schwingungsdauern

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:

Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift: Technische Mechanik III Übung WS 004 / 005 Klausur Teil Institut für Robotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer Tel.: +43/73/468-9786 Fax: +43/73/468-979 bremer@mechatronik.uni-linz.ac.at Sekretariat:

Mehr

k = 1, 2,..., n (4.44) J k ϕ

k = 1, 2,..., n (4.44) J k ϕ 236 4 Torsionsschwinger und Längsschwinger ( J1 J2) M J M J2/ J1= 02, 10 0,5 8 1 + 6 2 max 4 5 2 10 2 bezogenes Moment 0 Bild 45 1 2 5 10 relatives Spiel ctϕ S/ M10 Maximales Moment infolge Spiel im Antrieb

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ Vektorprodukt Satz: Für a, b, c V 3 und λ IR gilt: 1 a b = b a (Anti-Kommutativität) ( ) 2 a b + c ( 3 a λ ) b = λ = a b + a c (Linearität) ( a ) b (Linearität) Satz: Die Koordinatendarstellung des Vektorprodukts

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

M1 - Gravitationsdrehwaage

M1 - Gravitationsdrehwaage Aufgabenstellung: Bestimmen Sie die Gravitationskonstante mit der Gravitationsdrehwaage nach Cavendish. Stichworte zur Vorbereitung: Gravitation, Gravitationsgesetz, Gravitationsgesetze, NEWTONsche Axiome,

Mehr

Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2

Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2 19 9. Harmonische Schwingungen (Sinusschwingungen) Der Punkt P rotiert gleichförmig in der Grundebene um den Ursprung O mit der Winkelgeschwindigkeit in positivem Drehsinn. Zur Zeit t = 0 schliesst uuur

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

Ingenieurmathematik I Lernstandserhebung 2 24./

Ingenieurmathematik I Lernstandserhebung 2 24./ Ingenieurmathematik I Lernstandserhebung 4./5..7 Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:............................................................................ Vorname:.........................................................................

Mehr

4. Allgemeines ebenes Kräftesystem

4. Allgemeines ebenes Kräftesystem 4. llgemeines ebenes Kräftesystem Eine Gruppe von Kräften, die an einem starren Körper angreifen, bilden ein allgemeines Kräftesystem, wenn sich ihre Wirkungslinien nicht in einem gemeinsamen Punkt schneiden.

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung

Mehr

Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide

Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann, Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Aufgabe: a) Zeige, dass das Viereck ABCD mit

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

2 Bewegungen ihre Ursachen und Folgen

2 Bewegungen ihre Ursachen und Folgen 2 Bewegungen ihre Ursachen und Folgen Die Dynamik ist die Lehre von den Bewegungen und den Kräften, welche diese Bewegungen hervorrufen. Bevor nun die Bewegungen von Massenpunkten, Massenpunktsystemen

Mehr