Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder.

Größe: px
Ab Seite anzeigen:

Download "Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder."

Transkript

1 Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung Statt dann als schreibt man auch oder ähnlich, die Folge wird notiert, und das wird abgekürzt mit. Die nennt man die Folgenglieder. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.1/37

2 Beispiele,, ist ungerade ist gerade.. Die Definitionen gelten jeweils für alle. Natürlich kann man die Definition von Folge so erweitern, dass auch erlaubt ist, usw. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.2/37

3 Rekursiv definierte Folgen Statt der expliziten Definition kann man Folgen auch durch rekursive Bildungsgesetze angeben. Dazu zwei Beispiele: 1. Durch für wird die berühmte Folge der Fibonacci-Zahlen erklärt. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.3/37

4 Rekursiv definierte Folgen 2. Für jede natürliche Zahl erhält man eine Folge durch und falls sonst. gerade Für ergibt sich die Folge Es ist bis heute unbekannt, ob diese Folgen für jeden Anfangswert die Zahl enthalten ( Collatz Problem ). Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.4/37

5 Monoton Man nennt eine Folge alle monoton wachsend, wenn für gilt. Gilt für kein das Gleichheitszeichen, dann nennen wir die Folge streng monoton wachsend. Entsprechend wird definiert, wann eine Folge (streng) monoton fallend ist. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.5/37

6 Beispiele Die Folge Die Folge,,,... ist streng monoton wachsend. ist streng monoton fallend. Die Folge ist streng monoton fallend, falls, denn es gilt Die Folge ist monoton für alle. Es ist Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.6/37

7 Beschränkt Eine Folge heißt nach oben beschränkt, wenn es eine reelle Zahl gibt mit für alle. Entsprechend wird definiert, wann eine Folge nach unten beschränkt ist. Diese Sprechweisen sind Spezialfälle der bereits eingeführten Sprechweisen für geordnete Mengen. Ist eine Folge reeller Zahlen nach oben beschränkt, dann hat sie auch eine kleinste obere Schranke, ihr Supremum. Dual nennt man die größte untere Schranke (falls es eine solche gibt) das Infimum. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.7/37

8 Fast alle Fast alle bedeutet in der Mathematik: alle, bis auf endlich viele. Man sagt also, dass fast alle Glieder einer Folge eine bestimmte Eigenschaft haben, wenn nur endlich viele Folgenglieder diese Eigenschaft nicht haben. Gleichbedeutend dazu ist, dass ab einem genügend großen Index alle Folgenglieder diese Eigenschaft haben. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.8/37

9 Konvergenz Wir nennen eine Zahlenfolge konvergent mit dem Grenzwert, wenn sich für jeden Abstand fast alle Folgenglieder um weniger als von unterscheiden. Man sagt dann, dass die Folge gegen schreibt dafür konvergiert und Eine Folge, die gegen konvergiert, ist eine Nullfolge. Eine Folge, die nicht konvergiert, ist divergent. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.9/37

10 Monoton, beschränkt, konvergent Jede konvergente Folge ist beschränkt. Jede monotone beschränkte Folge ist konvergent. Sind, konvergente Folgen mit und ist eine Folge mit der Eigenschaft, dass für jedes oder gilt, dann ist auch Grenzwert. konvergent mit dem selben Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.10/37

11 Man schreibt falls für jede natürliche Zahl gilt, dass fast alle Folgenglieder größer als sind. Man beachte, dass eine Folge mit divergiert. Folgen mit werden analog definiert. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.11/37

12 Limes Sätze Sind und konvergente Folgen mit den Grenzwerten und, dann sind Summe, Differenz, Produkt und (sofern ) Quotient dieser Folgen ebenfalls konvergent: Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.12/37

13 Beispiele Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.13/37

14 Beispiele Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.13/37

15 Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.13/37 Beispiele

16 Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.13/37 Beispiele

17 Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.13/37 Beispiele Konvergent.

18 Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.13/37 Beispiele Konvergent.

19 Beispiele Konvergent. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.13/37

20 Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.13/37 Beispiele Konvergent.

21 Beispiele Konvergent. Divergent, da der Nenner gegen Null geht, der Zähler aber nicht. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.13/37

22 Beispiel: für einen Wir untersuchen die Folge Anfangswert und finden. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.14/37

23 Konvergenz von Die Folge konvergiert für gegen den Grenzwert Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.15/37

24 Sauerteigbrot Zur Teigbereitung für das Brotbacken verwenden Amateure statt des Sauerteiges gern einen Levain. Darunter versteht man Brotteig, der von einem früheren Backen übrig geblieben ist. Um Wirkung zu entfalten, sollte Teig etwa 20% mindestens zwei Tage alten Levain enthalten. Unser Amateur bereitet täglich einen Teig von 500g, fügt diesem die Hälfte seines Levain Vorrates zu, vermischt, nimmt vom Teig ab und ergänzt damit den Levain. Benutzt er genügend viel alten Levain? Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.16/37

25 Antworten (1) Es bezeichne die Levainmenge am -ten Tag. Man hat also Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.17/37

26 Antworten (1) Es bezeichne die Levainmenge am -ten Tag. Man hat also Also: mit und. Die Levainmenge geht also langfristig gegen 500g. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.17/37

27 Antworten (2) Der Anteil am Levain, der älter als ein Tag ist, geht gegen. Begründung: Die Hälfte des Levains verbleibt jeweils im Vorrat. Von der anderen Hälfte kehrt ein Drittel in den Vorrat zurück. Da die Vorratmenge konvergiert (gegen 500g), enthält der Levain etwa alten Teig. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.18/37

28 Antworten (2) Der Anteil am Levain, der älter als ein Tag ist, geht gegen. Begründung: Die Hälfte des Levains verbleibt jeweils im Vorrat. Von der anderen Hälfte kehrt ein Drittel in den Vorrat zurück. Da die Vorratmenge konvergiert (gegen 500g), enthält der Levain etwa alten Teig. Aus dem Levain-Vorrat von etwa 500g werden jeweils die Hälfte zum Teig gegeben. davon, also ca. 167g, sind alter Levain. In 750g Teig sind also ca. 167g alter Levain, das sind ca. 22%. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.18/37

29 Reihen Als unendliche Reihe über der Folge bezeichnet man den Ausdruck Die Reihe steht für die Folge der Partialsummen Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.19/37

30 Wert einer Reihe Die Reihe konvergiert oder divergiert je nachdem, ob die Folge der Partialsummen konvergiert oder divergiert. Der Wert oder die Summe einer konvergenten Reihe ist der Grenzwert ihrer Partialsummenfolge. Der Summationsindex durchläuft die natürlichen Zahlen. Das kann man natürlich wieder verallgemeinern; wir lassen ohne weiteres auch Reihen der Form oder ähnlich zu. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.20/37

31 Beispiel Die Reihe hat als -te Partialsumme also Deshalb konvergiert die Reihe. Ihre Summe ist 2. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.21/37

32 Geometrische Reihe Die Reihen (mit ) werden die geometrische Reihen genannt. Die Reihe im vorigen Beispiel ist eine geometrische Reihe mit und. Als -te Partialsumme erhält man für Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.22/37

33 Konvergenz der geometrischen Reihe Die geometrische Reihe konvergiert zur Summe falls Sie divergiert für.. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.23/37

34 Ein Divergenzkriterium Eine Reihe kann nur dann konvergieren, wenn die Folge eine Nullfolge ist. Also: Wenn nicht existiert oder existiert, aber ungleich Null ist, dann divergiert die Reihe Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.24/37

35 Beispiel zur Divergenz Die Reihe divergiert, denn Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.25/37

36 Hinreichend, nicht notwendig! Die Reihe divergiert, obwohl die Folge der Reihenglieder eine Nullfolge ist. Das Divergenzkriterium ist also hinreichend, aber nicht notwendig für Divergenz. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.26/37

37 Die harmonische Reihe Die harmonische Reihe divergiert. Allgemeiner gilt: Die Reihe divergiert für und konvergiert für alle. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.27/37

38 Eine alternierende Reihe Die Reihe konvergiert, denn Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.28/37

39 Polynome Es sei ein Ring und der Form ein Variablensymbol. Ausdrücke nennen wir Polynome in der Variablen aus. mit Koeffizienten Die Menge aller solchen Polynome wird mit bezeichnet. Sie bildet einen Ring, den Polynomring in der Variablen über. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.29/37

40 Grad eines Polynoms Wenn dann ist Nullpolynom. das Für jedes andere Polynom gibt es eine größte Zahl mit. Diese Zahl nennt man den Grad des Polynoms. Das Nullpolynom erhält den Grad. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.30/37

41 Potenzreihen Eine Reihe der Form wird als Potenzreihe in bezeichnet. Man denkt sich dabei und die als konstant und als variabel. Genau genommen, liegt für jedes eine Reihe vor. Eine Potenzreihe kann für manche manche divergieren. konvergieren und für Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.31/37

42 Entwicklungspunkt Besonders einfach sind Potenzreihen mit von der Form. Sie sind Man kann sie sich als Polynome von unendlichem Grad merken. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.32/37

43 Beispiel Die Potenzreihe konvergiert für und divergiert für. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.33/37

44 Konvergenz von Potenzreihen Eine Potenzreihe konvergiert für oder und divergiert für alle anderen, es gibt eine positive Zahl, für die gilt: die Reihe konvergiert für alle und divergiert für alle, oder konvergiert für alle. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.34/37

45 Konvergenzradius Die Zahl nannt man den Konvergenzradius der Potenzreihe, das Intervall ist das Konvergenzintervall. Diese Sprechweise wird sinnvoll noch etwas erweitert: Falls die Potenzreihe nur für konvergiert, so sagt man, sie habe Konvergenzradius. Falls die Potenzreihe für alle konvergiert, so sagt man, sie habe Konvergenzradius. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.35/37

46 Quotientenkritrium bezeichne den Konvergenzradius der Potenzreihe. Dann gilt: existiert und nicht Null ist, dann ist Falls. gleich Null ist, dann ist Falls., dann ist Falls Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.36/37

47 Beispiel Für welche konvergiert die Potenzreihe Es ist Die Reihe konvergiert für und divergiert für. Mathematik I für Hochleistungsinformatiker Folgen und Reihen p.37/37

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const.

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const. Folgen und Reihen Folgen: Def.: Eine Abbildung a N K, n a(n) := a n (K = R C) wird Zahlenfolge genannt. Sie heißt reelle (komplexe) Zahlenfolge, falls K = R(C) ist. Symbole: a n K: Elemente der Folge,

Mehr

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben.

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben. 4 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei (a k ) k N eine Folge. Wir definieren

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei

Mehr

Analysis I. Vorlesung 9. Reihen

Analysis I. Vorlesung 9. Reihen Prof. Dr. H. Brenner Osnabrück WS 20/204 Analysis I Vorlesung 9 Reihen Wir haben in der siebten Vorlesung gesagt, dass man eine Dezimalentwicklung, also eine (unendliche) Ziffernfolge mit Ziffern zwischen

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

19 Folgen. Grenzwerte. Stetigkeit

19 Folgen. Grenzwerte. Stetigkeit 19 Folgen. Grenzwerte. Stetigkeit Jörn Loviscach Versionsstand: 27. Dezember 2014, 16:35 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen.

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen. Unendliche Reihen Wegen der elementaren Eigenschaften der Zahlen ist lar, was unter einer endlichen Summe von Zahlen a + a 2 +... + zu verstehen ist. Vorderhand ist noch nicht erlärt, was unter einer unendlichen

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Die Taylorreihe einer Funktion

Die Taylorreihe einer Funktion Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist

Mehr

Kapitel 7. Reihen. Konvergenz unendlicher Reihen. Konvergenzkriterien. Potenzreihen und Taylorreihen. Anwendungen

Kapitel 7. Reihen. Konvergenz unendlicher Reihen. Konvergenzkriterien. Potenzreihen und Taylorreihen. Anwendungen Kapitel 7 Reihen Konvergenz unendlicher Reihen Konvergenzkriterien Potenzreihen und Taylorreihen Anwendungen Reihen Konvergenz unendlicher Reihen Konvergenz unendlicher Reihen Betrachtet man die unendliche

Mehr

Einführung in die Analysis

Einführung in die Analysis Ergänzungen zur Vorlesung Einführung in die Analysis Christian Schmeiser 1 Vorwort In dieser Vorlesung werden Grundbegriffe der Analysis wie Folgen und Reihen, Konvergenz und Vollständigkeit am Beispiel

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II 1 / 31 Didaktik der Mathematik der Sekundarstufe II 3. Folgen und Grenzwerte H. Rodner, G. Neumann Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung:

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n.

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n. Folgen Es sei X eine beliebige Menge. Eine Folge mit Werten in X ist eine Abbildung von N nach X. Es wird also jeder natürlichen Zahl n (dem Index) ein Element a n aus X zugeordnet (das n-te Folgenglied).

Mehr

KAPITEL 9. Funktionenreihen

KAPITEL 9. Funktionenreihen KAPITEL 9 Funktionenreihen 9. TaylorReihen............................ 28 9.2 Potenzreihen............................ 223 9.3 Grenzfunktionen von Funktionenfolgen bzw. reihen........ 230 9.4 Anwendungen............................

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel 2 Stetige Funktionen 2. Grenzwerte von Funktionen Definition Sei I R ein Intervall, a I ein innerer Punkt und f eine reellwertige Funktion, die auf I \ {a} (aber eventuell nicht in a) definiert ist. Wir

Mehr

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Informatier II (Sommersemester 00) Lösungen zu Aufgabenblatt

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Analysis I. Vorlesung 16. Funktionenfolgen

Analysis I. Vorlesung 16. Funktionenfolgen Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Analysis I Vorlesung 16 Funktionenfolgen Eine (vertikal gestauchte) Darstellung der ersten acht polynomialen Approximationen der reellen Exponentialfunktion

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Folgen und Grenzwerte

Folgen und Grenzwerte Wintersemester 2015/201 Folgen und Grenzwerte von Sven Grützmacher Dieser Vortrag wurde für den (von der Fachschaft organisierten) Vorkurs für die Studienanfänger an der Fakultät für Mathematik und Informatik

Mehr

2 Folgen und Reihen. 2.1 Folgen. Definition 2.1 (Zahlenfolge). Betrachten Sie folgende Liste von Zahlen:

2 Folgen und Reihen. 2.1 Folgen. Definition 2.1 (Zahlenfolge). Betrachten Sie folgende Liste von Zahlen: 2 Folgen und Reihen 2. Folgen Betrachten Sie folgende Liste von Zahlen:,, 2, 3, 5, 8, 3, 2... Erkennen Sie ein Gesetz, mit dem man die Liste sinnvoll fortsetzen kann? Offenbar können Sie mit diesem Gesetz

Mehr

Mathematik I. Vorlesung 25. Der große Umordnungssatz

Mathematik I. Vorlesung 25. Der große Umordnungssatz Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 5 Der große Umordnungssatz Satz 5.1. (Großer Umordnungssatz) Es sei a i, i I, eine summierbare Familie von komplexen Zahlen mit der Summe

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Kapitel II. Konvergenz von Folgen und Reihen

Kapitel II. Konvergenz von Folgen und Reihen Kapitel II Konvergenz von Folgen und Reihen 7 Einführende Beispiele und Rechenregeln für konvergente Folgen 8 Konvergenzkriterien und Häufungswerte von Folgen in R 9 Konvergenz und absolute Konvergenz

Mehr

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

Es geht nun um spezielle Folgen, deren Glieder durch Summation entstehen. Reihen gibt es spezielle Konvergenzkriterien. n k=1

Es geht nun um spezielle Folgen, deren Glieder durch Summation entstehen. Reihen gibt es spezielle Konvergenzkriterien. n k=1 Kapitel 3 Reihen Es geht nun um spezielle Folgen, deren Glieder durch Summation entstehen. Für diese Reihen gibt es spezielle Konvergenzriterien. 3. Definitionen, Beispiele, Sätze Definition 3.: (Reihen)

Mehr

Mathematik I für Wirtschaftsinformatiker

Mathematik I für Wirtschaftsinformatiker e von Folgen und Reihen 13.11.2008 Allgemeine Folgen Nullfolgen Allgemeine Folgen Erinnerung: Folgen Wird jeder natürlichen Zahl n eine reelle Zahl a n zugeordnet, so spricht man von einer Zahlenfolge

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II Heinrich Voß Institut für Angewandte Mathematik der Universität Hamburg 99 Inhaltsverzeichnis Folgen und Reihen 2. Einführende

Mehr

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler)

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler) 1 Handreichung zur Mathematikvorlesung für Wirtschaftswissenschaftler) Dr.Dr. Christina Schneider 2 Hinweis Das vorliegende Manuskript versteht sich als kurze und kompakte Handreichung zu meiner Vorlesung

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Reihen, Einleitung. 1-E1 Ma 2 Lubov Vassilevskaya

Reihen, Einleitung. 1-E1 Ma 2 Lubov Vassilevskaya Reihen, Einleitung 1-E1 Ma 2 Lubov Vassilevskaya Einleitung Im Folgenden werden wir Reihen, d.h. Summen von Zahlen untersuchen. Wir unterscheiden zwischen einer endlichen Reihe, bei der die Summe endlich

Mehr

Höhere Mathematik II

Höhere Mathematik II Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Höhere Mathematik II (Beilagen) Univ. Prof. Dr. sc. math. Kurt Marti 2 2 L A TEX-Satz

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

KAPITEL 9. Funktionenreihen. 9.1 Taylor-Reihen Potenzreihen Methoden der Reihenentwicklung Anwendungen...

KAPITEL 9. Funktionenreihen. 9.1 Taylor-Reihen Potenzreihen Methoden der Reihenentwicklung Anwendungen... KAPITEL 9 Funtionenreihen 9. Taylor-Reihen.................................... 74 9.2 Potenzreihen..................................... 77 9.3 Methoden der Reihenentwiclung.......................... 90

Mehr

4 Konvergenz von Folgen und Reihen

4 Konvergenz von Folgen und Reihen 4 KONVERGENZ VON FOLGEN UND REIHEN 4 Konvergenz von Folgen und Reihen 4.1 Konvergenzkriterien für reelle Folgen Definition: Eine reelle Folge(a n ) n N heißt monoton wachsend streng monoton wachsend nach

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Analysis I. 11. Beispielklausur mit Lösungen

Analysis I. 11. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 11. Beispielklausur mit en Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Ein angeordneter Körper. ) Eine Folge in

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4.1 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle.

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

7.2.1 Zweite partielle Ableitungen

7.2.1 Zweite partielle Ableitungen 72 72 Höhere Ableitungen 72 Höhere Ableitungen Vektorwertige Funktionen sind genau dann differenzierbar, wenn ihre Koordinatenfunktionen differenzierbar sind Es ist also keine wesentliche Einschränkung,

Mehr

Und so weiter... Annäherung an das Unendliche Lösungshinweise

Und so weiter... Annäherung an das Unendliche Lösungshinweise Stefanie Anzenhofer, Hans-Georg Weigand, Jan Wörler Numerisch und graphisch. Umfang einer Quadratischen Flocke Abbildung : Quadratische Flocke mit Seitenlänge s = 9. Der Umfang U der Figur beträgt aufgrund

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

5 Reihen. s n := a k. k=0

5 Reihen. s n := a k. k=0 5 Reihen 5. Folgen von Partialsummen Definitionen und Beispiele Ist a. eine beliebige Folge von Zahlen oder Vetoren, so heisst der formale Ausdruc a = a 0 + a + a 2 +... () eine Reihe, die einzelnen a

Mehr

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis I III Vorlesungsskriptum WS 2005/06 WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Aufbau des Zahlsystems 5 I.1. Die natürlichen Zahlen

Mehr

Die Harmonische Reihe

Die Harmonische Reihe Die Harmonische Reihe Wie stellt sich Determinismus in der Mathematik dar? Wie stellt man Daten dar? Wie findet man das Resultat von unendlich vielen Schritten? Mehrere Wege können zu demselben Ziel führen

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

Fibonacci-Zahlen. Geschichte. Definition. Quotienten

Fibonacci-Zahlen. Geschichte. Definition. Quotienten Mathematik/Informatik Die Fibonacci-Zahlen Gierhardt Fibonacci-Zahlen Geschichte Im Jahre 0 wurde in Pisa ein Buch über das indischarabische Dezimalsystem von dem italienischen Mathematiker Leonardo Fibonacci

Mehr

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004 Höhere Mathεmatik für Informatiker Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2 24 ii Inhaltsverzeichnis I Eindimensionale

Mehr

Folgen und Reihen. Das Spiel ist immer lösbar. Doch wie viele Umlegungen sind es im günstigsten Fall?

Folgen und Reihen. Das Spiel ist immer lösbar. Doch wie viele Umlegungen sind es im günstigsten Fall? Kantonsschule Solothurn Fachmaturität RYSWS12/13 Folgen und Reihen Einstiegsaufgaben 1. Der Turm von Hanoi Aufgabe Bewege alle Scheiben vom linken Stapel zum rechten Stapel. Dabei darf jeweils nur die

Mehr

Copyright, Page 1 of 5 Stetigkeit in

Copyright, Page 1 of 5 Stetigkeit in www.mathematik-netz.de Copyright, Page 1 of 5 Stetigkeit in Definition: (Stetigkeit) Sei ad, wobei D ist. Sei f eine Abbildung aus Abb(D,B) mit B und B. (i) f heißt stetig im Punkt a, wenn es zu jeder

Mehr

von und deren Werte in liegen, dabei ist wie bisher immer entweder oder. Verallgemeinerungen, etwa auf Abbildungen

von und deren Werte in liegen, dabei ist wie bisher immer entweder oder. Verallgemeinerungen, etwa auf Abbildungen III Stetigkeit, Grenzwerte bei Funktionen Natura non facit saltus (Die Natur macht keine Sprünge), dieser Anspruch von Raoul Fournier (1627) galt lange bei der mathematischen Behandlung von Naturvorgängen

Mehr

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Leonhard Euler Auch wenn ich diesen Gegenstand schon des Öfteren betrachtet habe, sind die meisten Dinge, die sich

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Mathematik für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen Teil III (Analysis): WiSe 04/05

Mathematik für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen Teil III (Analysis): WiSe 04/05 Mathematik für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen Teil III (Analysis): WiSe 04/05 Bodo Werner mailto:werner@math.uni-hamburg.de 23. April 2009 2 Inhaltsverzeichnis III Analysis

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier- Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;

Mehr

Die Exponentialfunktion. exp(x)

Die Exponentialfunktion. exp(x) Die Exponentialfunktion exp(x) Wir erinnern: Ist f : R R eine glatte Funktion, dann bezeichnet f (x) die Steigung von f im Punkt x. f (x) x x 0 x Wie sehen Funktionen aus mit 3 2 f f (x) = f(x) -3-2 -1

Mehr

20. Juni Einige andere wichtige algebraische Verknüpfungen lassen sich besser mit unendlichen

20. Juni Einige andere wichtige algebraische Verknüpfungen lassen sich besser mit unendlichen 20. Juni 200 33 4 Reihen 4. Beispiele von Reihen Bemerkung (Folgen Reihen).. Folgen und ihre Konvergenz lassen sich in beliebigen metrischen Räumen definieren und untersuchen und sind unabhängig von einer

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n.

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. Die Fakultät Definition: Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. n! = 1 2 3... (n 2) (n 1) n Zusätzlich wird definiert 0! = 1 Wie aus der Definition

Mehr

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 -

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 - 10.1 Grundwissen Mathematik Geometrie Klasse 10 Die Kugel Beispiele Kugeloberfläche: O Kugel = 4 r² π r Kugelvolumen: V Kugel = 4 3 r³ π - 1 - 10. Grundwissen Mathematik Geometrie Klasse 10 Kreissektor

Mehr

MatheBasics Teil 4 Grundlagen der Mathematik

MatheBasics Teil 4 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen,

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, 1 Die reellen Zahlen 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, präzise und logisch zu denken, komplexe Strukturen schnell und gründlich zu erfassen, Dinge kritisch zu hinterfragen

Mehr

GOLDENER SCHNITT UND FIBONACCI-FOLGE

GOLDENER SCHNITT UND FIBONACCI-FOLGE GOLDENER SCHNITT UND FIBONACCI-FOLGE NORA LOOSE. Der Goldene Schnitt - Eine Irrationalität am Ordenssymbol der Pythagoreer Schon im 5. Jahrhundert v. Chr. entdeckte ein Pythagoreer eine Konsequenz der

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

Analysis I. Prof. Dr. Andreas Griewank. Wintersemester 2012/2013. Dieses Skript wurde von Alexander Prang in Anlehnung an die Vorlesung erstellt.

Analysis I. Prof. Dr. Andreas Griewank. Wintersemester 2012/2013. Dieses Skript wurde von Alexander Prang in Anlehnung an die Vorlesung erstellt. Analysis I Prof. Dr. Andreas Griewank Wintersemester 2012/2013 Dieses Skript wurde von Alexander Prang in Anlehnung an die Vorlesung erstellt. Es enthält lediglich die Definitionen, Sätze, Lemmata, Korollare

Mehr