2 Kombinatorik. 56 W.Kössler, Humboldt-Universität zu Berlin

Größe: px
Ab Seite anzeigen:

Download "2 Kombinatorik. 56 W.Kössler, Humboldt-Universität zu Berlin"

Transkript

1 2 Kombinatorik Aufgabenstellung: Anzahl der verschiedenen Zusammenstellungen von Objekten. Je nach Art der zusätzlichen Forderungen, ist zu unterscheiden, welche Zusammenstellungen als gleich, und welche als verschieden angesehen werden. Permutation (ohne Wiederholung) Permutation mit Wiederholung Variation ohne Wiederholung Variation mit Wiederholung Kombination (ohne Wiederholung) Kombination mit Wiederholung 56 W.Kössler, Humboldt-Universität zu Berlin

2 2. Klassische kombinatorische Probleme Permutation (ohne Wiederholung) Jede einendeutige Abbildung Π der geordenten Menge {,..., n} auf eine n-elementige Menge M = {s,...,s n } heißt Permutation (ohne Wiederholung), i {,...,n} : Π(i) = s i,s i M,s i s j (i j) Anzahl: N = n! 57 W.Kössler, Humboldt-Universität zu Berlin

3 Permutation mit Wiederholung Sei M = {s,...,s k }, k i > 0 i =,...,k mit k i= k i = n. Jedes geordnete n-tupel von Elementen aus M, wobei jedes Element s i genau k i mal vorkommt, heißt Permutation mit Wiederholung. Anzahl: N = n! k! k k! Bsp. 7 Wiewiel Möglichkeiten gibt es, die Karten beim Skatspiel zu vergeben? N = 32! 0!0!0!2! 58 W.Kössler, Humboldt-Universität zu Berlin

4 Variation ohne Wiederholung Sei M = {s,...,s n }. Jedes geordnete k-tupel, k n von verschiedenen Elementen aus M heißt Variation ohne Wiederholung. Anzahl: N = n(n ) (n k + ) Aufteilung von k Elementen auf n Fächer unter Berücksichtigung der Reihenfolge Wenn n = k gilt, so erhalten wir: N = n!. Bsp. 8 Wieviele Möglichkeiten für die drei Erstplazierten im 00m Endlauf gibt es? N = = W.Kössler, Humboldt-Universität zu Berlin

5 Variation mit Wiederholung Auswahl von k Elementen aus einer Menge mit Zurücklegen Es sei M = {s,...,s n }. Die Frage ist: Wieviel verschiedene Möglichkeiten gibt es, k Elemente aus dieser Menge zu entnehmen, wobei durchaus Elemente mehrfach entnommen werden können? N = n k. Bsp. 9 Anzahl der 0stelligen Dualzahlen: N = W.Kössler, Humboldt-Universität zu Berlin

6 Kombinationen (ohne Wiederholung) Jede k-elementige Teilmenge aus einer n-elementigen Menge M heißt Kombination (ohne Wiederholung) (von k aus n Elementen). Dabei sind Wiederholungen nicht erlaubt und die Reihenfolge der k Elemente wird nicht berücksichtigt. Die Anzahl der Kombinationen ist: N = n (n )... (n k+) = ( ) n k! k = n! (n k)!k!. 6 W.Kössler, Humboldt-Universität zu Berlin

7 Kombination (mit Wiederholung) Faßt man alle Variationen mit Wiederholung (n Elemente, Ordnung k) zu Äquivalenzklassen zusammen, so daß sie aus aus den gleichen Elementen der gleichen Anzahl bestehen, so heißt jede solche Klasse Kombination mit Wiederholung. N = ( n+k k Bsp. 0 n = 2,k = 3: 4 Klassen: {aaa}, {aab, aba, baa}, {abb, bab, bba}, {bbb} werden jeweils zu einer Klasse zusammengefaßt. Erläuterung zur Kombination mit Wiederholung: siehe Beispiele 4 und 5. (Dieses Problem wird auf den Fall unterscheidbarer )

8 Kombination von Elementen aus mehreren Mengen Wir betrachten beliebige Mengen S,...,S k, wobei S i = {s i,...,s ini } (i =,...,k) gilt. Es wird die folgende Frage gestellt: Wieviel verschiedene Kombinationen von je einem Element der Mengen S,...,S k können gebildet werden? Solche Kombinationen haben die Form (s i,...,s kik ), wobei s kik S k gilt für alle i =,...,k. Die Anzahl N der Möglichkeiten ist N = n n 2... n k. 63 W.Kössler, Humboldt-Universität zu Berlin

9 2.2 Beispiele Bsp. Eine Gruppe von r Studenten verreist in einem Zug. Dabei verteilen sich die Studenten zufällig auf n r Abteile. Es sei A das Ereignis, daß alle Studenten in verschiedenen Abteilen sitzen. (In jedem Abteil befindet sich also höchstens ein Student.) P(A) = n(a) N. N = n r = # Möglichkeiten für die Verteilung der r Studenten auf die n Abteile. n(a) = n (n )... (n r + ) P(A) = n(a) N = n (n )... (n r+) n r. 64 W.Kössler, Humboldt-Universität zu Berlin

10 Bsp. 2 In einer Urne sollen sich n Kugeln befinden. Von diesen seien n schwarz, n n dagegen weiß. Nun werden k Kugeln (zufällig) entnommen, und zwar ohne Zurücklegen. A: Ereignis, daß von diesen k Kugeln k schwarz sind P(A) = n(a) N. N = ( n k) = Anzahl der Möglichkeiten, k Kugeln aus n Kugeln auszuwählen. n(a)= Anzahl der günstigen Ereignisse= Anzahl der Möglichkeiten zur Entnahme von k Kugeln, bei denen genau k schwarze Kugeln ausgewählt werden. 65 W.Kössler, Humboldt-Universität zu Berlin

11 In einem solchen Fall sind dann auch genau k k weiße Kugeln entnommen worden. Also. Die Anzahl der Möglichkeiten, aus n schwarzen Kugeln k schwarze auszuwählen (ohne Wiederholung und ohne Berücksichtigung der Reihenfolge) ist ( n k ). 2. Die Anzahl der Möglichkeiten, aus n n weißen Kugeln k k weiße auszuwählen (ebenfalls ohne Wiederholung und ohne Berücksichtigung der Reihenfolge) ist ( n n k k ). Anzahl der günstigen Ereignisse n(a) = ( n k ) ( ) n n k k 66 W.Kössler, Humboldt-Universität zu Berlin

12 P(A) = n(a) N = ( n Der letzte Ausdruck heißt auch k k ) ) ( k n n ( n k) Hypergeometrische Wahrscheinlichkeit. 67 W.Kössler, Humboldt-Universität zu Berlin

13 Bsp. 3 (Lotto 6 aus 49) Wenn wir uns die Zahlen als Kugeln denken, die aus einer Urne entnommen werden, und außerdem gezogene Zahlen im nachhinein als schwarze Kugeln ansehen, so kann jeder Tip durch die Entnahme von 6 Kugeln verkörpert werden. Somit können wir die Formel des Beispiels 2 auf Seite 66 anwenden. A: Ereignis, daß vier Richtige getippt werden. Wenden wir also oben genannte Formel an mit n = 49, n = 6, k = 6, k = 4, dann gilt: ( 6 ( P(A) = 4) 49 6 ) 6 4 ( 49 ) 6 68 W.Kössler, Humboldt-Universität zu Berlin

14 Bsp. 4 Wie groß ist die Anzahl der Würfe mit 2 nicht zu unterscheidenden Würfeln? Wir vergeben die Zahlen (i,j), wenn i j. Wir vergeben die Zahlen (i, 7), wenn i = j. Die gesuchte Anzahl ist die Anzahl der möglichen Auswahlen aus der Menge {,...,7}, also gleich ( 7 2). 69 W.Kössler, Humboldt-Universität zu Berlin

15 Bsp. 5 Wie groß ist die Anzahl der Würfe mit 3 nicht zu unterscheidenden Würfeln? Sei o.b.d.a. i j k. Wir vergeben die Zahlen (i,j,k), wenn i < j < k. (i,k, 7), wenn i = j < k. (i,j, 8), wenn i < j = k. (i, 7, 8), wenn i = j = k. Die gesuchte Anzahl ist die Anzahl der möglichen Auswahlen aus der Menge {,...,8}, also gleich ( 8 3). 70 W.Kössler, Humboldt-Universität zu Berlin

16 Bsp. 6 Verteilen von n Geldstücken an k Studenten (k n). Auf wieviele Weisen ist das möglich? Fall a) jeder Student bekommt mindestens ein Stück. Geldstücke nebeneinander legen und k Trennstriche verteilen unter n möglichen N = ( ) n k Fall b) es wird zugelassen, daß Studenten nichts erhalten. Trick: Borgen von k Stücken n + k Stück k Trennstriche verteilen unter den jetzt n + k möglichen N = ( ) n+k k Dann gibt jeder Student genau ein Stück zurück. 7 W.Kössler, Humboldt-Universität zu Berlin

17 Bsp. 7 (Hashing) Beobachtungen (oder Daten) abspeichern auf einem Feld. k: Anzahl der Beobachtungen n: Feldlänge (k n) Das Abspeichern geschieht mit Hilfe von Hashfunktionen (oder Hashtafeln). zufällige Daten: Kollisionen können auftreten. A k,n : Ereignis, daß Kollisionen auftreten. ges.: P(A k,n ) 72 W.Kössler, Humboldt-Universität zu Berlin

18 P(A k,n ) = = n(n ) (n k + ) k ( i n ) i=0 = exp (k exp( = exp( i=0 k i=0 ln( x) < x für x < n k ln( i n )) i n ) (k )k 2n ) exp( k2 2n ) 73 W.Kössler, Humboldt-Universität zu Berlin

19 Bsp. 8 (Suche von Elementen) n = Ω. Greifen zufällig eine k-elementige Teilmenge A Ω heraus. ω,...: Schlüsselelemente (vorgegeben), ω,... Ω Frage: Mit welcher Wkt. ω A? P(A) = ( n k ( n k ) ) = k n Frage: Mit welcher Wkt. ω,...,ω r A? ( n r ) k r k(k ) (k r + ) P(A) = ) = n(n ) (n r + ) ( n k 74 W.Kössler, Humboldt-Universität zu Berlin

20 Sei r fest, k n p: P(A) pr P(A) 2, falls pr 2 falls k n 2 /r Soll also die Wkt., daß alle r Schlüsselelemente in der Teilmenge enthalten sind, größer als 2 sein, so muß k n 2 /r gewählt werden. 75 W.Kössler, Humboldt-Universität zu Berlin

21 Zusammenfassung n: # Elemente = Ω k: # auszuwählende Elemente k,...,k m : Häufigkeit der einzelnen Elemente ohne Wiederholung mit Wiederholung Permutationen n! n! k! k m! Variationen n(n ) (n k + ) n k ( Kombinationen n ( n+k ) k) k 76 W.Kössler, Humboldt-Universität zu Berlin

22 2.3 Arithmetische Beziehungen zwischen den Binomialkoeffizienten ( ) n k ( ) n k = = ( ) n n k ( ) n + k n k=0 ( ) n k = 2 n ( ) n k 77 W.Kössler, Humboldt-Universität zu Berlin

23 n i=0 n ( ) n ( ) k k k=0 n k=0 ( ) 2 n = k ( )( ) n m i k i n ( ) n k k k= = 0 ( ) 2n = n ( ) n + m k = n 2 n 78 W.Kössler, Humboldt-Universität zu Berlin

24 8. Definieren die Folge S n = n+ 2 k=0 ( ) n k k Zeigen Sie: S n+ = S n + S n. Beweis: 3 Methoden, vollständige Induktion algebraisch kombinatorisch teilweise Übungsaufgabe, teilweise Übung 79 W.Kössler, Humboldt-Universität zu Berlin

25 2.4 Die Stirling Formel Satz 3 Es gilt n! ( ) n n 2πn. e Beweis: Die Aussage des Satzes ist äquivalent zu ln n! ln 2π + (n + ) ln n n. 2 Sei d n := ln n! (n + ) ln n + n W.Kössler, Humboldt-Universität zu Berlin

26 Es genügt zu zeigen, lim n d n = ln 2π. Wir schätzen jetzt die Differenz d n d n+ ab, daraus dann das Verhalten der Folge {d n } und versuchen dann den Grenzwert zu bestimmen. 8 W.Kössler, Humboldt-Universität zu Berlin

27 Es gilt d n d n+ = ln n! ln(n + )! (n + 2 ) ln n + (n + + ) ln(n + ) 2 +n (n + ) n! = ln (n + )! + (n + )(ln(n + ) ln n) 2 +ln(n + ) = ln(n + ) + (n + 2 ) ln n + n = 2n + 2 ln n + n 2n+ = (2n + ) 2 ln + 2n+. + ln(n + ) 82 W.Kössler, Humboldt-Universität zu Berlin

28 Es gilt für < x < : ln( + x) = ln( x) = ( ) i+xi i ( ) i+( x)i i i= i= ln + x x = ln( + x) ln( x) = 2 i=0 x 2i+ 2i + 83 W.Kössler, Humboldt-Universität zu Berlin

29 Setzen x := 2n+ d n d n+ = x 2 2 = < und erhalten (x 0) i= i= 2i + 3 ( x + i= (2n + ) 2i (2n + ) 2i ) 2i + x2i+ = ( 3 q ) wobei q = = 3((2n + ) 2 ) (2n + ) 2 84 W.Kössler, Humboldt-Universität zu Berlin

30 Offenbar gilt auch 3(2n + ) = 2 i= 2i + (2n + ) 2i < d n d n+, also 3(2n + ) 2 < d n d n+ < 3((2n + ) 2 ). 85 W.Kössler, Humboldt-Universität zu Berlin

31 Wegen 3((2n + ) 2 ) = 3(2n + ) 2 = = > = = = 2n(n + ) = 2n 2(n + ) 2n(n + ) + 3 = 2 2(2n(n + ) + 3) 2 2 2n(n + ) n n + 24n n n (2n + )(2n + 3) 2n + 2(n + ) + 86 W.Kössler, Humboldt-Universität zu Berlin

32 Beide Ungleichungen zusammen 2n + 2(n + ) + < d n d n+ < 2n 2(n + ) (d n 2n ) (d n+ (d n 2(n + ) ) < 0 < 2n + ) (d n+ 2(n + ) + ) Folge {d n } monoton fallend 2n+ Folge {d n } monoton wachsend. 2n 87 W.Kössler, Humboldt-Universität zu Berlin

33 Beide Folgen haben denselben Grenzwert c := lim d n, Erinnerung: d n < c < d n 2n 2n + c + 2n + < d n < c + 2n d n e d n = ln n! (n + 2 ) ln n + n = n! ( n e ) nn 2 88 W.Kössler, Humboldt-Universität zu Berlin

34 e c n ( n e Bleibt zu zeigen e c+ 2n+ < e d n < e c+ 2n e c e 2n+ < n! ( n e ) ne ) nn 2 < e c e 2n 2n+ < n! < e c n ( n e e c = 2π. ) ne 2n 89 W.Kössler, Humboldt-Universität zu Berlin

35 Hilfsrechnungen I n := π/2 0 sin n xdx 90 W.Kössler, Humboldt-Universität zu Berlin

36 I n = π/2 0 sin n x sin xdx = sin n x ( cosx) π/2 0 π/2 0 = (n ) (n ) sin n 2 cosx ( cosx)dx π/2 = (n )(I n 2 I n ) I n = n n I n 2 I 0 = π 2 I 2 0 = 2 I 0 = 2 π 2 sin n 2 x( sin 2 x)dx I = I 3 = 2 3 I = W.Kössler, Humboldt-Universität zu Berlin

37 I 2n = I 2n+ = 3 5 (2n ) (2n) (2n) (2n + ) π 2 92 W.Kössler, Humboldt-Universität zu Berlin

38 0 < x < π 2 0 < sin x < sin 2n x > sin 2n x > sin 2n+ x I 2n > I 2n > I 2n+ 2n+ 2n I 2n I 2n+ > I 2n I 2n+ > > (2n ) (2n+) (2n) (2n) lim (2n ) (2n+) (2n) (2n) π = lim( (2n) (2n ) = lim 24n (n!) 4 ((2n)!) 2 (2n+) π π 2 > 2 = ) 2 2n+ 93 W.Kössler, Humboldt-Universität zu Berlin

39 n! = e c nn n e n e α n (2n)! = e c 2n2 2n n 2n e 2n e β n wobei lim n α n = lim n β n = 0. Einsetzen oben liefert e c = 2π. 94 W.Kössler, Humboldt-Universität zu Berlin

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Permutation und Kombination

Permutation und Kombination Permutation und Kombination Aufgaben Aufgabe 1 Wie viele verschiedene Wörter lassen sich durch Umstellen der Buchstaben aus den Wörtern a. Mississippi, b. Larissa, c. Stuttgart, d. Abrakadabra, e. Thorsten,

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren

Mehr

Musterlösung zur Probeklausur zur Kombinatorik

Musterlösung zur Probeklausur zur Kombinatorik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Kombinatorik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 00 Punkte Freitag,. Dezember

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

II Wahrscheinlichkeitsrechnung

II Wahrscheinlichkeitsrechnung 251 1 Hilfsmittel aus der Kombinatorik Wir beschäftigen uns in diesem Abschnitt mit den Permutationen, Kombinationen und Variationen. Diese aus der Kombinatorik stammenden Abzählmethoden sind ein wichtiges

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Kombinatorik. Cusanus-Gymnasium Wittlich Permutationen. Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen?

Kombinatorik. Cusanus-Gymnasium Wittlich Permutationen. Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen? Permutationen Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen? 1. Sitz : 10 Möglichkeiten 2. Sitz : 9 Möglichkeiten 3. Sitz : 8 Möglichkeiten. 9. Sitz : 2 Möglichkeiten

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

Beispiel 2 ([1], Ex ) Sei jxj = m, jy j = n. Wieviele Funktionen f : X! Y

Beispiel 2 ([1], Ex ) Sei jxj = m, jy j = n. Wieviele Funktionen f : X! Y Kombinatorik Nach [1], Chap.4 (Counting Methods and the Pigeonhole Principle). Multiplikationsprinzip Beispiel 1 Wieviele Wörter der Länge 4 kann man aus den Buchstaben A,B,C,D,E bilden,... 1. wenn Wiederholungen

Mehr

Würfel-Aufgabe Bayern LK 2006

Würfel-Aufgabe Bayern LK 2006 Würfel-Aufgabe Bayern LK 2006 Die Firma VEGAS hat ein neues Gesellschaftsspiel entwickelt, bei dem neben Laplace-Würfeln auch spezielle Vegas-Würfel verwendet werden, die sich äußerlich von den Laplace-Würfeln

Mehr

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben Einleitung Dieses sind die kompletten Präsenzaufgaben, die bei der Übung zur Vorlesung Einführung in die Stochastik im Sommersemester 2007 gerechnet wurden. Bei Rückfragen und Anmerkungen bitte an brune(at)upb.de

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 21.02.2014 Holger Wuschke B.Sc. Glücksspiel auf der Buchmesse Leipzig, 2013 Organisatorisches 1. Begriffe in der Stochastik (1)

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Würfelspiele und Zufall

Würfelspiele und Zufall Würfelspiele und Zufall Patrik L. Ferrari 29. August 2010 1 Random horse die Irrfahrt des Pferdchens Betrachte ein Schachbrett mit einem Pferd (Springer), welches sich nach den üblichen Springer-Regeln

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0) 09.0.0. Kommissar K hat 3 Tatverdächtige P, Q und R. Er weiß: (a) Wenn sich Q oder R als Täter herausstellen, dann ist P unschuldig.

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Einführung in die Stochastik Josef G. Steinebach Köln, WS 2009/10 I Wahrscheinlichkeitsrechnung 1 Wahrscheinlichkeitsräume, Urnenmodelle Stochastik : Lehre von den Gesetzmäßigkeiten des Zufalls, Analyse

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

AUFGABEN ZUR KOMBINATORIK (1)

AUFGABEN ZUR KOMBINATORIK (1) --- --- AUFGABEN ZUR KOMBINATORIK (). Zum Würfeln wird ein Tetraeder benutzt, das auf seinen vier Seiten mit,, und beschriftet ist. Als Ergebnis zählt diejenige Augenzahl, die auf der Grundfläche steht.

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

10 Bedingte Wahrscheinlichkeit

10 Bedingte Wahrscheinlichkeit 10 Bedingte Wahrscheinlichkeit Vor allem dann, wenn man es mit mehrstufigen Zufallsexperimenten zu tun hat, kommt dem Begriff der bedingten Wahrscheinlichkeit eine bedeutende Rolle zu. Wir klären dazu

Mehr

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit Übungsmaterial 7 Unabhängigkeit von reignissen; bedingte Wahrscheinlichkeit 7. Unabhängigkeit von reignissen Wir betrachten folgendes Beispiel: Zwei unterscheidbare Münzen werden geworfen. Man betrachtet

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Aufgaben und Lösungen

Aufgaben und Lösungen Aufgaben und Lösungen Aufgabe Aus einer Schulklasse von 3 Schülern soll eine Abordnung von Schülern zum Direktor geschickt werden. Auf wie viele Arten kann diese Abordnung gebildet werden? ( ) 3 = 33.649

Mehr

Diskrete Strukturen. Ulrik Brandes. Sommersemester 2003 (Version vom 22. Oktober 2004) Skript zur Vorlesung

Diskrete Strukturen. Ulrik Brandes. Sommersemester 2003 (Version vom 22. Oktober 2004) Skript zur Vorlesung Diskrete Strukturen Skript zur Vorlesung Ulrik Brandes Sommersemester 2003 (Version vom 22. Oktober 2004) Prolog Übungsbetrieb (Termine, Gruppen, Einteilung, Punkte) Di., 8.4. (V1) Schein (Klausur, Zulassung,

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n.

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. Die Fakultät Definition: Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. n! = 1 2 3... (n 2) (n 1) n Zusätzlich wird definiert 0! = 1 Wie aus der Definition

Mehr

Das Gummibärchen-Orakel [1]

Das Gummibärchen-Orakel [1] Das Gummibärchen-Orakel [1] 1. Allgemeines Lehrplanbezug: Klasse 10 bzw. 11, z.b. beim Wiederholen der kombinatorischen Formeln Zeitbedarf: 1 bis 4 Schulstunden je nach Vertiefungsgrad 2. Einstieg und

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit x f(x) = (x + 5) e. Aufgabe : ( VP) Gegeben ist die Funktion

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Kombinatorik. smo osm. Thomas Huber, Viviane Kehl. Inhaltsverzeichnis. Aktualisiert: 1. Dezember 2015 vers Divide and Conquer 2

Kombinatorik. smo osm. Thomas Huber, Viviane Kehl. Inhaltsverzeichnis. Aktualisiert: 1. Dezember 2015 vers Divide and Conquer 2 Schweizer Mathematik-Olympiade smo osm Kombinatorik Thomas Huber, Viviane Kehl Aktualisiert: 1. Dezember 2015 vers. 1.0.0 Inhaltsverzeichnis 1 Divide and Conquer 2 2 Die vier fundamentalen Auswahlprozesse

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen)

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen) Maristengymnasium Fürstenzell zuletzt geändert am 0.0.00 Aufgaben zur Kombinatorik (mit Lösungen) 0.. Wieviele Möglichkeiten gibt es für Kinder, sich auf einen Schlitten zu setzen, wenn ihn nur davon steuern

Mehr

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Analysis Seite 1. 1 f' = g f (x) g'(f(x)) f '(x) f (y) = mit y = f(x) bzw. f (x) = k f(x)dx = k f(x) + c. (f(x) ± g(x))dx = f(x)dx ± g(x)dx

Analysis Seite 1. 1 f' = g f (x) g'(f(x)) f '(x) f (y) = mit y = f(x) bzw. f (x) = k f(x)dx = k f(x) + c. (f(x) ± g(x))dx = f(x)dx ± g(x)dx Analysis Seite Ableitungsregeln: (f±g) = f ± g (f g) = f g + fg ' f f'g fg' = 2 g g ' f' = 2 f f ' ( ) = g f () g'(f()) f '() ' ' f (y) = mit y = f() bzw. f () = f'() f' f( ) Integrationsregeln: b a c

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Kapitel 4 Wahrscheinlichkeitsrechnung 4.1 Zufallsvorgänge und Ereignisse Der Ausgang der meisten Vorgänge ist unbestimmt. So sind die Brötchen beim morgendlichen Besuch des Bäckerladens manchmal knusperig,

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Wahrscheinlichkeit und Zufall

Wahrscheinlichkeit und Zufall Wahrscheinlichkeit und Zufall Klassische Probleme der Wahrscheinlichkeitsrechnung 23. Juni 2009 Dr. Katja Krüger Universität Paderborn Inhalt Die Wetten des Chevalier de Méréé Warten auf die erste Sechs

Mehr

Automaten, Spiele und Logik

Automaten, Spiele und Logik Automaten, Spiele und Logik Woche 13 11. Juli 2014 Inhalt der heutigen Vorlesung Linearzeit Temporale Logik (LTL) Alternierende Büchi Automaten Nicht-Determinisierung (Miyano-Ayashi) Beschriftete Transitionssysteme

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

1 Axiomatische Definition von Wahrscheinlichkeit

1 Axiomatische Definition von Wahrscheinlichkeit Schülerbuchseite 174 176 Lösungen vorläufig und Unabhängigkeit 1 Axiomatische Definition von Wahrscheinlichkeit S. 174 1 Ein Schätzwert für die Wahrscheinlichkeit von Sau kann nur mithilfe der relativen

Mehr

Aufgaben zu Kapitel 38

Aufgaben zu Kapitel 38 Aufgaben zu Kapitel 38 Aufgaben zu Kapitel 38 Verständnisfragen Aufgabe 38. Welche der folgenden vier Aussagen sind richtig:. Kennt man die Verteilung von X und die Verteilung von Y, dann kann man daraus

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013 Übung zu Grundbegriffe der Informatik Simon Wacker 15. November 2013 Vollständige Induktion über die Wortlänge Es sei B ein Alphabet. Dann ist B = n N 0 B n. Für jedes Wort w B sei A w eine Aussage, die

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

5 Kombinatorik. 5.1 Das Mengenprodukt oder Bilden von Wörtern aus Buchstaben

5 Kombinatorik. 5.1 Das Mengenprodukt oder Bilden von Wörtern aus Buchstaben 69 5 Kombinatorik Kombinatorik ist die Theorie vom Abzählen der Elemente einer Menge. Dabei geht es darum, dieses Abzählen möglichst effektiv durchzuführen und vor allem allgemeine Aussagen zu treffen.

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Wirtschaftsstatistik I [E1]

Wirtschaftsstatistik I [E1] 040571-1 WMS: Wirtschaftsstatistik 1 :: WiSe07/08 Wirtschaftsstatistik I [E1] Schwab, Harald 1 harald.schwab@univie.ac.at http://homepage.univie.ac.at/harald.schwab October 7, 2007 1 Sprechstunde: MO 17-18h

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung Aufgabe : Wahrscheinlichkeitsrechnung Löse die Aufgabe auf diesem Aufgabenblatt. Trage die Lösung in die Tabelle ein. Ein Rechenweg ist hier nicht erforderlich. Hinweis: Das Casinospiel besteht aus dem

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe.

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe. Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit berufliche Gymnasien Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 2015 1 Aufgabe 1: Eine Urne enthält

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Zusammengewürfelte Übungen (2) Zufallsexperiment, Ergebnis, Ereignis, Zählprinzip, Urnenmodell

Zusammengewürfelte Übungen (2) Zufallsexperiment, Ergebnis, Ereignis, Zählprinzip, Urnenmodell MK 19.1.2008 Zusammen_Ueb2.mcd Zusammengewürfelte Übungen (2) Zufallsexperiment, Ergebnis, Ereignis, Zählprinzip, Urnenmodell (1) Was bedeuten A \ B, B \ A, A B = { } und A B für die Ereignisse A und B?

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 2. Mai 2010

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  2. Mai 2010 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 2. Mai 200 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW: Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1)

Mehr

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

Stochastik Kombinatorik

Stochastik Kombinatorik Stochastik Kombinatorik In der Kombinatorik werden Techniken behandelt, mit deren Hilfe ohne direktes Abzählen die Anzahl möglicher Ausgänge bei einem Experiment bestimmt werden können. Wie viele Einstellungen

Mehr

Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler

Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler Problemstellung Als Sammelbilderproblem bezeichnet man die Frage, wie viele Produkte bzw. Bilder

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Rainer Hauser Dezember 2012 1 Einleitung 1.1 Zufallsexperimente Im Folgenden wird das Resultat eines Experiments als Ereignis bezeichnet. Lässt man eine Metallkugel aus einer

Mehr