Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung

Größe: px
Ab Seite anzeigen:

Download "Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung"

Transkript

1 TU München Lehrstuhl Mathematische Optimierung Prof. Dr. Michael Ulbrich Dipl.-Math. Florian Lindemann Wintersemester 008/09 Blatt 1 Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung Für die Bearbeitung des Aufgabenzettels benötigen wir MATLAB. Dieses können Sie im Terminal durch den Aufruf starten. /usr/local/applic/bin/matlab & P1. Berechnung eines 60-eckigen Polyeders (C 60 -Molekül) Die 60 Ecken v i = (v 1 i,v i,v3 i ) R3 eines Polyeders sollen so bestimmt werden, dass seine Oberfläche aus 1 regelmäßigen Fünf- und 0 regelmäßigen Sechsecken der Seitenlänge 1 besteht (C 60 -Molekül). Für je zwei benachbarte Ecken v i,v j muss daher gelten v i v j 1 = 0. Weiter gelten in jedem Fünfeck (v i1,v i,v i3,v i4,v i5,v i1 ) die Gleichungen v ij v ij+ 4sin (3π/10) = 0, j = 1,...,5, wobei i 6 = i 1, i 7 = i. Ebenso gilt für jedes Sechseck (v i1,v i,v i3,v i4,v i5,v i6,v i1 ) v ij v ij+ 4sin (π/3) = 0, j = 1,...,6, wobei i 7 = i 1, i 8 = i. Schließlich fordern wir noch, um das Polyeder zu fixieren, v 1 = 0, v 1 = v = 0, v 1 3 = 0. All diese = 76 Gleichungen schreiben wir in der Form F(x) = 0 mit F : R 180 R 76 und x = (v 1,...,v 60 ) T. Zur numerischen Behandlung überführen wir das obige Gleichungssystem in ein nichtlineares Optimierungsproblem: min f(x), f(x) = 1 x R 180 F(x). (1) Anhand dieses hochdimensionalen Problems lassen sich die Eigenschaften von Optimierungsverfahren sehr gut visualisieren. 1

2 Mit Hilfe von MATLAB wurden ein Gradienten- und ein Gauß-Newton-Verfahren zur Lösung dieses Problems implementiert. Die entsprechenden Prozeduren heißen gradverf und GaussNewton. Außerdem stehen unter den Namen xinit1, xinit, usw., mehrere Startpolyeder zur Verfügung. Gradientenverfahren mit Armijo-Schrittweitenwahl: x k+1 = x k + σ k s k, s k = f(x k ) = F (x k ) T F(x k ), σ k { k k = 0,1...} maximal mit f(x k +σ k s k ) f(x k ) σ k γ f(x k ) T s k. Gauß-Newton-Verfahren mit Armijo-Schrittweitenwahl: x k+1 = x k + σ k s k, F (x k ) T F (x k )s k = F (x k ) T F(x k ) (= f(x k )), σ k wie oben. a) Laden Sie sich über die Website des Rechnerpraktikums die Datei P1.tar herunter und entpacken Sie diese in Ihrem Arbeitsverzeichnis mit dem Befehl tar -xf P1.tar. Starten Sie MATLAB und wechseln Sie in dieses Arbeitsverzeichnis. b) Durch die Eingabe x1 = load( xinit1 ); gradverf(x1, ffct ); wird das Gradientenverfahren auf das Problem (1) angewendet, wobei im Punkt xinit1 gestartet wird. Nach jeder Iteration wird das zur aktuellen Iterierten gehörende Polyeder graphisch dargestellt. Außerdem werden k, f(x k ), f(x k ) und σ k ausgegeben. Durch Drücken der Entertaste kann die nächste Iteration gestartet werden. Ebenso wird durch x = load( xinit ); GaussNewton(x, Ffct, ffct ); das Gauß-Newton-Verfahren gestartet, wobei xinit der Startpunkt ist. Führen Sie für mehrere Startpolyeder xinit1, xinit,... das Gradientenund das Gauß-Newton-Verfahren durch und bewerten Sie die Leistungsfähigkeit der beiden Algorithmen. c) Wir wollen nochmal den Startpunkt xinit6 mit dem Gauß-Newton-Verfahren betrachten und mehr Iterationen zulassen. Öffnen Sie dafür die Datei GaussNewton.m und setzen Sie die maximale Iterationszahl itmax auf den Wert 100. Starten Sie das Verfahren erneut und beurteilen Sie das Ergebnis. Wie ist die Lösung zu interpretieren und warum? d) Beim letzten Startpunkt konvergiert das Verfahren lokal deutlich langsamer als bei den anderen Startpunkten. Haben Sie dafür eine theoretisch basierte Vermutung? Vergleichen Sie dazu die Iterationsvorschrift des Newtonverfahrens mit dem des Gauß-Newton-Verfahrens.

3 P. Gradienten-, Newton-, inverses BFGS-Verfahren a) Laden Sie sich über die Website des Rechnerpraktikums die Datei P.tar herunter und entpacken Sie diese in Ihrem Arbeitsverzeichnis. b) Untersuchen Sie mit MATLAB das Konvergenzverhalten des Gradienten-, Newton- und des inversen BFGS-Verfahrens für folgende Funktionen und Startpunkte: Dateiname Zielfunktion f Startpunkte 1) ExA.m (x 1 x ) + (x 1 4) (0,0), (10,10) ) ExBk.m x 1 + kx, (10,1), (1,100) k = 1,10,100 3) Rosenbrock.m 100(x x 1 ) + (1 x 1 ) (0,0), (-1.,1) 4) Brown.m (Browns (x ) (x 10 6 ) (1,1), (10,10) schlecht skalierte Fkt.) +(x 1 x ) Orientieren Sie sich dabei an folgender Syntax: Gradientenverfahren: Newtonverfahren: inverses BFGS-Verfahren: gradverf([0;0], ExA ); newton([0;0], ExA ); bfgs([0;0], ExA, gexa ); In allen Fällen wird das jeweilige Optimierungsverfahren mit dem Startpunkt (0,0) auf die Funktion ExA angewendet. Beim BFGS-Verfahren ist eine gesonderte Eingabe der Funktion zur Auswertung des Gradienten (in diesem Fall gexa) vorgesehen. Entsprechende Funktionen gexb1, gbrown, usw. sind ebenfalls vorhanden. Um mehr Iterationen beim Gradientenverfahren zuzulassen, öffnen Sie die Datei gradverf.m und setzen Sie die maximale Iterationszahl itmax auf den Wert c) Schreiben Sie eine eigene Testfunktion mit entsprechenden Dateien Test.m und gtest.m, von dem Sie das Minimum kennen. Testen Sie die Verfahren an Ihrem Beispiel. P3. Alternative Schrittweitenberechnung Bei der Armijo-Regel wird die Schrittweite zu einem Punkt x und einer Abstiegsrichtung s durch folgenden Algorithmus bestimmt: Bestimme die größte Zahl σ {1,β,β,...}, für die gilt: f(x + σs) f(x) σγ f(x) T s 3

4 wobei β, γ (0, 1). Dabei wird σ so lange mit dem Faktor β verkleinert, bis die Armijo-Bedingung erfüllt ist. Anstelle dieses Backtracking-Ansatzes kann man die Funktion φ(σ) = f(x + σs) interpolieren, um eine geeignete Schrittweite zu finden. Die Armijo-Bedingung kann mit φ auf folgende Form gebracht werden: φ(σ) φ(0) σγφ (0) () Gesucht ist ein σ welches () erfüllt. Sei eine Startschätzung σ 0 (z.b. σ 0 = 1) gegeben. Falls σ 0 () nicht erfüllt, so approximieren wir φ(σ) mit Hilfe eines quadratischen Modells φ Q (σ): ( φ(σ0 ) φ(0) σ 0 φ ) (0) φ Q (σ) = σ + φ (0)σ + φ(0) σ 0 welches die Interpolationsbedingungen φ Q (0) = φ(0),φ Q (σ 0 ) = φ(σ 0 ) und φ Q (0) = φ (0) erfüllt. Die neue Schrittweite ist das Minimum von φ Q, also φ (0)σ0 σ 1 = (φ(σ 0 ) φ(0) φ (0)σ 0 ) Falls σ 1 die Armijo-Bedingung () erfüllt, so ist die Suche beendet. Andernfalls kann man ein kubisches Modell φ K (σ) erstellen, welches den Interpolationsbedingungen an φ(0),φ (0),φ(σ 0 ) und φ(σ 1 ) genügt: φ K (σ) = aσ 3 + bσ + σφ (0) + φ(0) wobei ( a b ) = 1 ( σ 0 σ1 σ0 σ 1 (σ 1 σ 0 ) σ0 3 σ1 3 )( φ(σ1 ) φ(0) φ (0)σ 1 φ(σ 0 ) φ(0) φ (0)σ 0 ) Über die erste Ableitung von φ K kann man erkennen, dass das Minimum σ von φ K im Intervall [0,σ 1 ] liegt und gegeben ist durch σ = b + b 3aφ (0) 3a Falls σ die Armijo-Bedingung () erfüllt, so ist eine passende Schrittweite gefunden. Falls nicht, kann der Prozess der kubischen Interpolation fortgesetzt werden, bis eine Lösung gefunden wird, wobei die Werte φ(0),φ (0) und die letzten beiden Werte von φ benutzt werden. Um zu vermeiden, dass ein σ k entweder zu nahe an σ k 1 oder zu viel kleiner als σ k 1 ist, wird zudem folgende Regel eingeführt: Falls σ k / [β min σ k 1,β max σ k 1 ] setzen wir: σ k = σ k 1 4

5 Dabei sind β min,β max (0,1) mit β min < β max zwei von k und auch von einer äußeren Iteration unabhängige Konstanten. Dies garantiert, dass in endlich vielen Schritten eine Schrittweite gefunden wird und das Gradientenverfahren mit dieser Schrittweitenregel global konvergiert. a) Laden Sie sich über die Website des Rechnerpraktikums die Datei P3.tar herunter und entpacken Sie diese in Ihrem Arbeitsverzeichnis. Starten Sie MATLAB und wechseln Sie in dieses Arbeitsverzeichnis. b) Die Armijo-Regel mit Interpolation ist in der Datei InterpArmijo.m implementiert. Vergleichen Sie den Quelltext mit der Beschreibung der Schrittweitenregel. c) Ein Gradientenverfahren, welches mit der interpolierten Armijo-Regel arbeitet ist IPAgradverf. Testen Sie die neue Schrittweitenregel anhand des Problems ExB100 aus der Aufgabe P mit dem Startpunkt (1,10): IPAgradverf([1;10], ExB100 ); und vergleichen Sie das Ergebnis und die Iterationszahlen mit dem Gradientenverfahren mit normaler Armijo-Regel. Testen Sie auch andere Startpunkte. d) Vergleichen Sie die beiden Verfahren anhand einiger Probleme aus der Aufgabe P. Testen Sie auch Ihr eigenes Beispiel. P4.* Zusatzaufgabe: Programmieren und Make a) Laden Sie sich von der Website die Datei P4.tar herunter und entpacken Sie diese. Schauen Sie sich die Dateien plot.cpp, figuren.cpp und figuren.hpp an. Kompilieren Sie die Datei figuren.cpp mit dem g++ Kompiler und der Option -c, also g++ -c figuren.cpp (nutzen Sie nicht das Makefile!). Entstehen neue Dateien? Kompilieren Sie dann ebenso plot.cpp. Erstellen Sie schließlich ein Programm prog indem Sie die beiden erzeugten Objektdateien linken: g++ -o prog figuren.o plot.o. b) Starten Sie das Programm und testen Sie, was es leistet. c) Schauen Sie sich dann das Makefile genauer an. Geben Sie im Terminal make clean ein, um die kompilierten Dateien zu löschen und danach make. Welche Dateien werden kompiliert? d) Verändern Sie die Datei figuren.cpp so, dass statt Sternen ein beliebiges anderes Zeichen ausgegeben wird. Geben Sie danach make ein. Welche Dateien werden neu kompiliert und warum? 5

6 e) Fügen Sie eine weitere Zeichenmethode in figuren.cpp und figuren.hpp ein, die Sie beliebig gestalten können. Fügen Sie in plot.cpp eine weitere Zeichenoption dazu und kompilieren Sie alles mit make. Testen Sie Ihr Programm. 6

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Das Gradientenverfahren

Das Gradientenverfahren Das Gradientenverfahren - Proseminar: Algorithmen der Nichtlinearen Optimierung - David Beisel December 10, 2012 David Beisel Das Gradientenverfahren December 10, 2012 1 / 28 Gliederung 0 Einführung 1

Mehr

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung 18.3.14-20.3.14 Dr. Florian Lindemann Moritz Keuthen, M.Sc. Technische Universität München Garching, 19.3.2014 Kursplan Dienstag, 18.3.2014

Mehr

Rechnerpraktikum zur Optimierung III

Rechnerpraktikum zur Optimierung III TU München Lehrstuhl Mathematische Optimierung Prof. Dr. M. Ulbrich Dipl.-Math. Florian Lindemann Sommersemester 2007 Teil I Rechnerpraktikum zur Optimierung III P1. Durchhängenes Seil Die senkrechten

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

NICHTRESTRINGIERTE OPTIMIERUNG

NICHTRESTRINGIERTE OPTIMIERUNG 3 NICHTRESTRINGIERTE OPTIMIERUNG Die Aufgabe, mit der wir uns im Folgen beschäftigen werden, ist die Lösung von Minimierungsproblemen der Form minimiere f(x) in R n, (3.1) wobei f : R n R eine gegebene

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Aufgabe 5 Bestimmen

Mehr

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest

Mehr

18.4 Das Newton-Verfahren

18.4 Das Newton-Verfahren 18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift

Mehr

Die MATLAB-Funktionen (Beschreibung : Siehe MATLAB-Hilfen)

Die MATLAB-Funktionen (Beschreibung : Siehe MATLAB-Hilfen) Fachbereich Grundlagenwissenschaften Prof. Dr. H. Dathe Numerische Mathematik/Optimierung Eine Einführung in Theorie und Verfahren Die MATLAB-Funktionen (Beschreibung : Siehe MATLAB-Hilfen) linprog Lineare

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren

Mehr

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung TU München Lehrstuhl Mathematische Optimierung Prof. Dr. Michael Ulbrich Dipl.-Math. Florian Lindemann Wintersemester 2008/09 Blatt 3 Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung P9. Installation

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Übungen zu Splines Lösungen zu Übung 20

Übungen zu Splines Lösungen zu Übung 20 Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

8.3 Lösen von Gleichungen mit dem Newton-Verfahren

8.3 Lösen von Gleichungen mit dem Newton-Verfahren 09.2.202 8.3 Lösen von Gleichungen mit dem Newton-Verfahren Beispiel: + 2 e Diese Gleichung kann nicht nach aufgelöst werden, da die beiden nicht zusammengefasst werden können. e - - 2 0 Die gesuchten

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Nullstellen von algebraischen Gleichungen

Nullstellen von algebraischen Gleichungen Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Freie Nichtlineare Optimierung Orakel, lineares/quadratisches Modell Optimalitätsbedingungen Das Newton-Verfahren Line-Search-Verfahren Inhaltsübersicht für heute: Freie Nichtlineare

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Newton-Verfahren für ein Skalarfunktion

Newton-Verfahren für ein Skalarfunktion Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

6.8 Newton Verfahren und Varianten

6.8 Newton Verfahren und Varianten 6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)

Mehr

Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren

Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren Kapitel 2 Newtonverfahren Ziel: Bestimmung von Nullstellen von f (=stationärer Punkt). Dies geschieht mit dem Newtonverfahren. x k+1 = x k ( 2 f (x k )) 1 f (x k ) (2.1) Bemerkung 2.1: Das Newtonverahren

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Klausur zur Vorlesung Ausgewählte Kapitel der Ingenieurmathematik

Klausur zur Vorlesung Ausgewählte Kapitel der Ingenieurmathematik Name: der Ingenieurmathematik Master-Studiengang Maschinenbau und Mechatronik 1. Februar 2008, 8.30-10.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 90 min, 1.5 Zeitstunden Computer,

Mehr

NUMERISCHE MATHEMATIK I

NUMERISCHE MATHEMATIK I D-MATH ETH Zürich, 22. August 2011 Prof. Ch. Schwab NUMERISCHE MATHEMATIK I 1. Interpolation und Quadratur (25 P.) a) Sei [a, b] R 1 mit a < b ein beschränktes Intervall, und f C 2 ([a, b]). Zeigen Sie,

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 =

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 = Lösungsskizzen zu den Klausuraufgaben zum Kurs 4 Algorithmische Mathematik 4KSL3 6 Punkte Aufgabe. Die Folge (a n ) n N natürlicher Zahlen a n sei rekursiv definiert durch a 0 = 0, a n = a n + n falls

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

6. Iterationsverfahren. Fixpunktiteration. 6.Iterationsverfahren: Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16

6. Iterationsverfahren. Fixpunktiteration. 6.Iterationsverfahren: Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16 6. Iterationsverfahren Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16 Beispiel: Ausbreitung eines Grippevirus in einem Kindergarten Zeitpunkt t 0 t 1 t 2 t 3 t 4 t 5 Anteil kranker

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

Numerik für Ingenieure I Wintersemester 2008

Numerik für Ingenieure I Wintersemester 2008 1 / 33 Numerik für Ingenieure I Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 16.1.2009 2 / 33 Wiederholung Polynom Interpolation Vandermonde Ansatz Newton Interpolation: Beispiel

Mehr

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x)

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x) 9 Ausgleichsrechnung 9.1 Problemstelllung Eine Reihe von Experimenten soll durchgeführt werden unter bekannten Versuchsbedingungen z Ê m. Es sollen Größen x Ê n bestimmt werden, für die ein Gesetz gelten

Mehr

Optimierung mit Matlab

Optimierung mit Matlab Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Optimierung mit Matlab 1 Optimierungsaufgaben Die allgemeine Aufgabenstellung der Optimierung besteht darin,

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

KAPITEL 3. Konvexe Funktionen

KAPITEL 3. Konvexe Funktionen KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn

Mehr

Hochschule RheinMain WS 2016/17 Prof. Dr. D. Lehmann. 7. Übungsblatt zur Vorlesung Komplexe Funktionen

Hochschule RheinMain WS 2016/17 Prof. Dr. D. Lehmann. 7. Übungsblatt zur Vorlesung Komplexe Funktionen Hochschule RheinMain WS 2016/17 Prof. Dr. D. Lehmann 7. Übungsblatt zur Vorlesung Komplexe Funktionen (Schauen Sie sich dieses Übungsblatt als pdf-file auf dem Computer an, um alle Abbildungen in Farbe

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Numerische Methoden 6. Übungsblatt

Numerische Methoden 6. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 202 Institut für Analysis Prof. Dr. Michael Plu Dipl.-Math.techn. Rainer Mandel Nuerische Methoden 6. Übungsblatt Aufgabe 3: Newton-Verfahren I Ziel dieser

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Nelder-Mead Kriging-Verfahren NEWUOA

Nelder-Mead Kriging-Verfahren NEWUOA 9 Ableitungsfreie Optimierung/Direkte Suchverfahren umfasst Verfahren zu min x R n f (x), die nur ein Orakel 0. Ordnung (nur Funktionswerte) benötigen. Sie werden in der Praxis oft eingesetzt, weil Funktionen

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

ETHZ, D-MATH. Numerische Methoden D-PHYS, WS 2015/16 Dr. V. Gradinaru

ETHZ, D-MATH. Numerische Methoden D-PHYS, WS 2015/16 Dr. V. Gradinaru ETHZ, D-MATH Prüfung Numerische Methoden D-PHYS, WS 5/6 Dr. V. Gradinaru..6 Prüfungsdauer: 8 Minuten Maximal erreichbare Punktzahl: 6. Der van-der-pol Oszillator ( Punkte) Der van-der-pol Oszillator kann

Mehr

HTL Kapfenberg SPLINE Interpolation Seite 1 von 7.

HTL Kapfenberg SPLINE Interpolation Seite 1 von 7. HTL Kapfenberg SPLINE Interpolation Seite von 7 Roland Pichler roland.pichler@htl-kapfenberg.ac.at SPLINE Interpolation Mathematische / Fachliche Inhalte in Stichworten: Polynome, Gleichungssysteme, Differenzialrechnung

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Optimierung in R. Michael Scholz

Optimierung in R. Michael Scholz N Optimierung in R Fortgeschrittene Mathematik: Optimierung (WiSe 09/10) Michael Scholz Institut für Statistik und Ökonometrie Georg-August-Universität Göttingen Fortgeschrittene Mathematik: Optimierung

Mehr

Übungen zu Numerische Mathematik (V2E2) Sommersemester 2008

Übungen zu Numerische Mathematik (V2E2) Sommersemester 2008 Übungen zu Numerische Mathemati (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Übungsblatt 1 Abgabe: 24. April 2008 Aufgabe 1 Zur Berechnung der Quadratwurzel

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange.

Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Angewandte Mathematik Ing.-Wiss., HTWdS Dipl.-Math. Dm. Ovrutskiy Musterlösung zum Übungsblatt Interpolation nach Newton, Nevill, Lagrange. Aufgabe 1 Approximieren Sie cos(x) auf [ /, /] an drei Stützstellen

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Fixpunkt-Iterationen

Fixpunkt-Iterationen Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. Februar 2014 Gliederung Wiederholung: Gleichungstypen, Lösungsverfahren Grundprinzip

Mehr

Substitutionsverfahren vs. Lagrange-Methode

Substitutionsverfahren vs. Lagrange-Methode Substitutionsverfahren vs. Lagrange-Methode 1 Motivation Substitutionsverfahren und Lagrange-Methode sind Verfahren, die es ermöglichen, Optimierungen unter Nebenbedingungen durchzuführen. Die folgende

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Nichtlineare Gleichungen

Nichtlineare Gleichungen Nichtlineare Gleichungen Ein wichtiges Problem in der Praxis ist die Bestimmung einer Lösung ξ der Gleichung f(x) =, () d.h. das Aufsuchen einer Nullstelle ξ einer (nicht notwendig linearen) Funktion f.

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Numerische Integration und Differentiation

Numerische Integration und Differentiation Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

5 Numerische Iterationsverfahren

5 Numerische Iterationsverfahren In diesem Kapitel besprechen wir numerische Iterationsverfahren (insbesondere Fixpunktverfahren) als eine weitere Lösungsmethode zur Lösung von linearen Gleichungssystemen (Kapitel 4) sowie zur Lösung

Mehr

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN IRYNA FEUERSTEIN Es wir ein Verfahren zur Konstruktion einer quasiinterpolierenden Funktion auf gleichmäßig verteilten Konten vorgestellt.

Mehr

TU Kaiserslautern. Übungsblatt 2: Software-Entwicklung 1 (WS 2017/18) Hinweise zu Einreichaufgaben. Hinweise zu den Übungen

TU Kaiserslautern. Übungsblatt 2: Software-Entwicklung 1 (WS 2017/18) Hinweise zu Einreichaufgaben. Hinweise zu den Übungen Dr. Annette Bieniusa Mathias Weber, M. Sc. Peter Zeller, M. Sc. TU Kaiserslautern Fachbereich Informatik AG Softwaretechnik Übungsblatt 2: Software-Entwicklung 1 (WS 2017/18) Hinweise zu Einreichaufgaben

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 08.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren 1 / 68 Übersicht

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Optimierung mit Matlab

Optimierung mit Matlab Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Computerbasierte Mathematische Modellierung für Mathematiker, Wirtschaftsmathematiker, Informatiker im Wintersemester

Mehr

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4) 33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

KAPITEL 8. Interpolation

KAPITEL 8. Interpolation KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

Polynominterpolation

Polynominterpolation Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses

Mehr

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

Diplom VP Numerik 21. März 2005

Diplom VP Numerik 21. März 2005 Diplom VP Numerik. März 5 Aufgabe Gegeben sei das lineare Gleichungssystem Ax = b mit A = 3 3 4 8 und b = 4 5.5 6. ( Punkte) a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung. Geben Sie

Mehr

Nichtlineare Gleichungen, mehrere Unbekannte

Nichtlineare Gleichungen, mehrere Unbekannte Dritte Vorlesung, 6. März 2008, Inhalt Aufarbeiten von Themen der letzten Vorlesung, und Nichtlineare Gleichungen, mehrere Unbekannte Systeme nichtlinearer Gleichungen Vektor- und Matrixnormen Fixpunkt-Iteration,

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München Fakultät

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

BACHELORARBEIT. Moderne Gradientenverfahren für den Einsatz in technischen Aufgabenstellungen und deren Anwendung auf ein- und multikriterielle

BACHELORARBEIT. Moderne Gradientenverfahren für den Einsatz in technischen Aufgabenstellungen und deren Anwendung auf ein- und multikriterielle BACHELORARBEIT Herr Jens Reißner Moderne Gradientenverfahren für den Einsatz in technischen Aufgabenstellungen und deren Anwendung auf ein- und multikriterielle Optimierungsaufgaben 2013 Fakultät Mathematik

Mehr