Schulinterner Lehrplan Physik Sekundarstufe II

Größe: px
Ab Seite anzeigen:

Download "Schulinterner Lehrplan Physik Sekundarstufe II"

Transkript

1 Schulinterner Lehrplan Physik Sekundarstufe II 1 Die Fachgruppe Physik am SGE Das SGE ist das einzige Gymnasium der ländlichen Kleinstadt Erwitte. Das SGE ist in der Sekundarstufe I drei- bis vierzügig und wird als Ganztagsgymnasium geführt. Es besteht eine Kooperation mit dem Gymnasium Antonianum in Geseke in der Oberstufe, welche intensiv genutzt wird und Schülern in der Regel die Teilnahme an Grund- und Leistungskursen ermöglicht. In die Einführungsphase der Sekundarstufe II wurden in den letzten Jahren regelmäßig etwa 5-10 Schülern neu aufgenommen, überwiegend aus einer Realschule/Sekundarschule der Nachbargemeinde. Den im Schulprogramm ausgewiesenen Zielen, Schülern ihren Begabungen und Neigungen entsprechend individuell zu fördern und ihnen Orientierung für ihren weiteren Lebensweg zu bieten, fühlt sich auch die Fachgruppe Physik verpflichtet. Schüler aller Klassen- und Jahrgangsstufen werden zur Teilnahme an verschiedenen Wettbewerben im Fach Physik angehalten und, wo erforderlich, begleitet. Für den Fachunterricht aller Stufen besteht Konsens darüber, dass wo möglich und sinnvoll physikalische Fachinhalte mit Lebensweltbezug vermittelt werden. In der Sekundarstufe I wird ein wissenschaftlicher Taschenrechner ab Klasse 7 verwendet, dynamische Geometrie-Software und Tabellenkalkulation werden an geeigneten Stellen im Unterricht genutzt, der Umgang mit ihnen eingeübt. Dazu stehen in der Schule zwei PC-Unterrichtsräume zur Verfügung. In der Sekundarstufe II kann deshalb davon ausgegangen werden, dass die Schüler mit den grundlegenden Möglichkeiten dieser digitalen Werkzeuge vertraut sind. Der grafikfähige Taschenrechner wird in der Einführungsphase eingeführt.

2 2 Entscheidungen zum Unterricht 2.1 Unterrichtsvorhaben Die Darstellung der Unterrichtsvorhaben im schulinternen Lehrplan besitzt den Anspruch, sämtliche im Kernlehrplan angeführten abzudecken. Dies entspricht der Verpflichtung jeder Lehrkraft, Schülerinnen und Schülern Lerngelegenheiten zu ermöglichen, so dass alle Kompetenzerwartungen des Kernlehrplans von ihnen erfüllt werden können. Die entsprechende Umsetzung erfolgt auf zwei Ebenen: der Übersichts- und der Konkretisierungsebene. Im Übersichtsraster Unterrichtsvorhaben (Kapitel 2.1.1) wird die Verteilung der Unterrichtsvorhaben dargestellt. Sie ist laut Beschluss der Fachkonferenz verbindlich für die Unterrichtsvorhaben I, II und III der Einführungsphase und für die Unterrichtsphasen der Qualifikationsphase. Die zeitliche Abfolge der Unterrichtsvorhaben IV bis VIII der Einführungsphase ist jeweils auf die Vorgaben zur Vergleichsklausur abzustimmen. Das Übersichtsraster dient dazu, den Kolleginnen und Kollegen einen schnellen Überblick über die Zuordnung der Unterrichtsvorhaben zu den einzelnen Jahrgangsstufen sowie den im Kernlehrplan genannten, Inhaltsfeldern und inhaltlichen Schwerpunkten zu verschaffen. Um Klarheit für die Lehrkräfte herzustellen und die Übersichtlichkeit zu gewährleisten, werden in der Kategorie an dieser Stelle nur die übergeordneten Kompetenzerwartungen ausgewiesen, während die konkretisierten Kompetenzerwartungen erst auf der Ebene konkretisierter Unterrichtsvorhaben Berücksichtigung finden. Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Deshalb sind alle folgenden Zeitangaben als Zirka-Angaben anzusehen. Um Spielraum für Vertiefungen, individuelle Förderung, besondere Schülerinteressen oder aktuelle Themen zu erhalten, wurden im Rahmen dieses schulinternen Lehrplans ca. 85 Prozent der Bruttounterrichtszeit verplant. Während der Fachkonferenzbeschluss zum Übersichtsraster Unterrichtsvorhaben zur Gewährleistung vergleichbarer Standards sowie zur Absicherung von Kurswechslern und Lehrkraftwechseln für alle Mitglieder der Fachkonferenz Bindekraft entfalten soll, besitzt die Ausweisung konkretisierter Unterrichtsvorhaben (Kapitel 2.1.2) empfehlenden Charakter. Referendarinnen und Referendaren sowie neuen Kolleginnen und Kollegen dienen diese vor allem zur standardbezogenen Orientierung in der neuen Schule, aber auch zur Verdeutlichung von unterrichtsbezogenen fachgruppeninternen Absprachen zu didaktisch-methodischen Zugängen, fächerübergreifenden Kooperationen, Lernmitteln und -orten sowie vorgesehenen Leistungsüberprüfungen, die im Einzelnen auch den Kapiteln 2.2 bis 2.4 zu entnehmen sind. Begründete Abweichungen von den vorgeschlagenen Vorgehensweisen bezüglich der konkretisierten Unterrichtsvorhaben sind im Rahmen der pädagogischen Freiheit der Lehrkräfte jederzeit möglich. Sicherzustellen bleibt allerdings auch

3 hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle prozess- und inhaltsbezogenen des Kernlehrplans Berücksichtigung finden. Dies ist durch entsprechende Kommunikation innerhalb der Fachkonferenz zu gewährleisten Übersichtsraster Unterrichtsvorhaben Erläuterungen In der Spalte sind nur die zum obligatorischen Teil gehörenden aufgeführt. Damit werden alle im Kernlehrplan für die Sekundarstufe II geforderten abgedeckt. Ergänzende Inhalte und Experimente sind in blauer kursiver Schrift aufgeführt. Beim Zeitbedarf sind auch Übungsphasen berücksichtigt, nicht jedoch ergänzende Inhalte. Einführungsphase Übersichtsraster Unterrichtsvorhaben Einführungsphase Kontext, Inhaltsfeld, Zeitbedarf Inhaltliche Schwerpunkte Kompetenzschwerpunkte Unterrichtsvorhaben I Kontext: Bewegungen und Kräfte im Straßenverkehr Inhaltsfeld: Mechanik Zeitbedarf: etwa 20 Ustd. à 45 Minuten Kräfte und Bewegungen K1 Dokumentation E5 Auswertung K3 Präsentation UF2 Auswahl Unterrichtsvorhaben II Kontext: Erhaltungssätze im Straßenverkehr Inhaltsfeld: Mechanik Zeitbedarf: etwa15 Ustd. à 45 Minuten Unterrichtsvorhaben III Kontext: Fall- und Wurfbewegungen im Sport Inhaltsfeld: Mechanik Zeitbedarf: etwa15 Ustd. à 45 Minuten Unterrichtsvorhaben IV Kontext: Unser Planetensystem Inhaltsfeld: Mechanik Energie und Impuls Kräfte und Bewegungen Kräfte und Bewegungen Energie Gravitation UF2 Auswahl E3 Hypothesen E6 Modelle E1 Probleme und Fragestellungen K4 Argumentation E6 Modelle E6 Modelle E7 Arbeits- und Denkweisen E1 Probleme und Fragestellungen

4 Zeitbedarf: etwa15 Ustd. à 45 Minuten Unterrichtsvorhaben V Kontext: Schwingungen und Wellen bei Musikinstrumenten Inhaltsfeld: Mechanik Zeitbedarf: etwa15 Ustd. à 45 Minuten Summe Einführungsphase 80 Stunden Schwingungen und Wellen Kräfte und Bewegungen Energie UF1 Wiedergabe UF1 Wiedergabe UF4 Vernetzung E2 Wahrnehmung und Messung E6 Modelle

5 Konkretisierte Unterrichtsvorhaben Die nachfolgend angegeben Seitenangaben beziehen sich auf das eingeführte Schulbuch: Dorn-Bader Physik Einführungsphase, Gymnasium Nordrhein- Westfalen, ISBN Anzahl der Wochenstunden: 3 Anzahl der Klausuren: 1 Klausur im ersten Halbjahr. 2 Klausuren im zweiten Halbjahr Dauer der Klausuren: 2 Unterrichtsstunden je Klausur Unterrichtsvorhaben I Kontext: Kräfte und Bewegungen im Straßenverkehr Siehe auch StuBo-Curriculum Buchseiten: 6 35 Zeitbedarf: etwa 20 Ustd. à 45 Minuten Inhaltliche Schwerpunkte: Bewegungen und Kräfte Kompetenzschwerpunkte: Schüler können in Zusammenhängen mit eingegrenzter Komplexität (K1) Fragestellungen, Untersuchungen, Experimente und Daten nach gegebenen Strukturen dokumentieren und stimmig rekonstruieren, auch mit Unterstützung digitaler Werkzeuge. (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern. (K3) physikalische Sachverhalte, Arbeitsergebnisse und Erkenntnisse adressatengerecht sowie formal, sprachlich und fachlich korrekt in Kurzvorträgen oder kurzen Fachtexten darstellen. (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen. Inhalt Gleichförmige Bewegung (3 Ustd.) Buchseiten Die Schüler 9-11 erläutern die Größen Position, Strecke und Geschwindigkeit und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4). stellen Daten in Tabellen und sinnvoll skalierten Diagrammen Experimente und Materialien Experiment: Untersuchung einfacher Bewegungen Experiment: Videoanalyse einer Bewegung Kommentar Zeit-Ort-Diagramm, Zeit- Geschwindigkeit-Diagramm, negative Geschwindigkeitswerte Mögliche Ergänzung: Videoanalyse einer Bewegung

6 Die Momentangeschwindigkeit (2 Ustd.) (t-s-diagramme, t-v-diagramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3) erläutern die Größen Position, Strecke und Geschwindigkeit und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4). stellen Daten in Tabellen und sinnvoll skalierten Diagrammen (t-s-diagramme, t-v-diagramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3). Experiment: Näherungsweise Messung der Momentangeschwindigkeit als mittlere Geschwindigkeit in einem sinnvoll kleinen Zeitintervall Momentangeschwindigkeit Mögliche Ergänzung: Geschwindigkeitsmessung im Auto Mögliche Ergänzung: Sensoren für s und v (Lochrad und Lichtschranke, Nabendynamo) Mögliche Ergänzung: Aufzeichnung und Auswertung einer Fahrradfahrt mit einem Datenlogger Überholvorgang unter der Lupe (1 Ustd.) Beschleunigte Bewegungen (5 Ustd.) stellen Daten in Tabellen und sinnvoll skalierten Diagrammen (t-s-diagramme, t-v-diagramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3) erläutern die Größen Position, Strecke, Geschwindigkeit und Beschleunigung und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4). planen selbstständig Experimente zur quantitativen und qualitativen Untersuchung einfacher Zusammenhänge (zur Analyse von Bewegungen), führen sie durch, werten sie aus und bewerten Ergebnisse und Arbeitsprozesse (E2, E5, B1). Tabellenkalkulation (Siehe auch Medienkonzept) Experiment: Aufzeichnung einer gleichmäßig beschleunigten Bewegung auf der Luftkissenfahrbahn, Messung des Zusammenhangs zwischen Kraft und Beschleunigung Experiment: Messung des Zusammenhangs zwischen Masse und Beschleunigung Reale Bewegungen: t-s- Diagramm ohne Knicke, t-v- Diagramm ohne Sprünge Mögliche Ergänzung: Überholvorgänge im t-s- Diagramm, Formel für den Überholweg Bewegungen mit konstanter beschleunigender Kraft, Beschleunigung, gleichmäßig beschleunigte Bewegung, Grundgleichung der Mechanik

7 Sonderfall Bewegung aus der Ruhe (2 Ustd.) reflektieren Regeln des Experimentierens in der Planung uns Auswertung von Versuchen (u.a. Zielorientierung, Sicherheit, Variablenkontrolle, Kontrolle von Störungen und Fehlerquellen) (E2, E4). stellen Daten in Tabellen und sinnvoll skalierten Diagrammen (t-s-diagramme, t-v-diagramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3). unterscheiden gleichförmige und gleichmäßig beschleunigte Bewegungen und erklären zugrunde liegende Ursachen (UF2). erschließen und überprüfen mit Messdaten und Diagrammen funktionale Beziehungen zwischen mechanischen Größen (E5). berechnen mithilfe des newtonschen Kraftgesetzes Wirkungen einzelner Kräfte auf Bewegungszustände und sagen sie unter dem Aspekt der Kausalität vorher (E6) erläutern die Größen Position, Strecke, Geschwindigkeit und Beschleunigung und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4). Experiment: Bewegung eines Schlittens auf der leicht schräg gestellten Luftkissenfahrbahn Zeit-Geschwindigkeit- und Zeit- Ort-Gesetz der gleichmäßig beschleunigten Bewegung aus der Ruhe Mögliche Ergänzung: Auswertung der Messung der Bewegung eines Schlittens auf der leicht schräg gestellten

8 Kräfte zusammensetzen und zerlegen (2 Ustd.) actio und reactio im Straßenverkehr (2 Ustd.) vereinfachen komplexe Bewegungs- und Gleichgewichtszustände durch Komponentenzerlegung bzw. Vektoraddition (E1). stellen Daten in sinnvoll skalierten Diagrammen (Vektordiagramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3) analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ aus einer Wechselwirkungsperspektive (E1, UF1). Experiment: Messung der Hangabtriebskraft Vektoraddition und Vektorzerlegung, z.b. mit GeoGebra Experiment: Messung der Wechselwirkungskräfte bei zwei auf Skateboards stehenden Personen, die gegenseitig über ein Seil Kräfte auseinander ausüben Experiment: Demonstration der Wechselwirkungskräfte mit einer auf Rollen anfahrenden Lok Experiment: Messung der Haft-, Gleit- und Rollreibungskraft mit einem Klotz, der an einem Kraftmesser über einen Tisch gezogen wird Excel-Datei: Bremswegmodellierung mit den physikalischen Gesetzen und den Fahrschul-Faustformeln Luftkissenfahrbahn mit dem GTR Kräfteaddition, Kräftezerlegung schiefe Ebene (Hangabtriebskraft, Normalkraft) Wechselwirkungskräfte: Kraft und Gegenkraft Unterscheidung von actio = reactio und Kräftegleichgewicht Haftreibung, Gleitreibung, Rollreibung Mögliche Ergänzung: Bremsvorgänge (Beschleunigung, Kräfte, Brems- und Anhalteweg, Fahrschul-Faustformeln) Mögliche Ergänzung: Kraft- und Beschleunigungssensoren Modellbildung (3 Ustd.) berechnen mithilfe des newtonschen Kraftgesetzes Wirkungen einzelner Kräfte auf Bewegungszustände und sagen sie unter dem Aspekt der Kausalität vorher (E6). bestimmen mechanische Größen Video: senkrechter Wurf Excel-Datei: Modellierung des senkrechten Wurfs ohne Luftwiderstand Excel-Datei: Modellbildung für nicht konstante Masse (Raketenwagen) Modellierung von Bewegungen, bei denen die beschleunigende Kraft oder die Masse nicht konstant sind, mit einer Tabellenkalkulation Mögliche Ergänzung: Modellbildung für nicht

9 Projekt: Newtonsche Grundgleichung am Fahrrad mit mathematischen Verfahren und mithilfe digitaler Werkzeuge (Tabellenkalkulation) (E6). 35 Experiment: Anwendung der newtonschen Grundgleichung in verschiedenen Versuchen am Fahrrad konstante Masse (Raketenwagen) Anwendung der newtonschen Grundgleichung in verschiedenen Versuchen am Fahrrad

10 Unterrichtsvorhaben II Kontext: Erhaltungssätze im Straßenverkehr Buchseiten: Zeitbedarf: etwa 15 Ustd. à 45 Minuten Inhaltliche Schwerpunkte: Energie und Impuls Kompetenzschwerpunkte: Schüler können in Zusammenhängen mit eingegrenzter Komplexität (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen. (E3) mit Bezug auf Theorien, Modelle und Gesetzmäßigkeiten auf deduktive weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten. (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären und vorhersagen. Inhalt Höhenenergie und Arbeit (2 Ustd.) Bewegungsenergie und Spannenergie (3 Ustd.) Erhaltungssatz der Mechanik (2 Ustd.) Buchseiten Die Schüler 39 erläutern die Größen Strecke, Kraft, Arbeit und Energie und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4) verwenden Erhaltungssätze (Energiebilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6) verwenden Erhaltungssätze (Energiebilanzen), um Bewegungszustände zu erklären und Bewegungsgrößen zu berechnen (E3, E6). geben Kriterien an, um die Experimente und Materialien Experiment: zwischen zwei Federn gespannter Wagen auf einer horizontalen Fahrbahn Experimente: Experimentelle Bestätigung des Energieerhaltungssatzes beim Fadenpendel und Federpendel Kommentar Wiederholung aus der Mittelstufe: Verschiedene Energieformen (Höhenenergie, Bewegungsenergie, Spannenergie, chemische Energie, innere Energie) und Übertragungsformen (Arbeit, Wärme, elektrische Energie, Strahlung) Berechnung von Arbeit und Höhenenergie Herleitung und Anwendung von Formeln für die Bewegungs- und Spannenergie Mögliche Ergänzung: Die kausale Strategie in der Physik Energieerhaltungssatz der Mechanik Mögliche Ergänzung: Bestätigung des Energieerhaltungssatzes im Experiment (Fadenpendel, Federpendel)

11 Ein Kraftstoß ändert den Impuls (2 Ustd.) Unelastischer Stoß zweier Körper (3 Ustd.) Elastische Stöße zweier Körper (3 Ustd.) Zuverlässigkeit von Messergebnissen und physikalischen Aussagen zu beurteilen und nutzen diese bei der Bewertung von eigenen und fremden Untersuchungen (B1) erläutern die Größen Kraft, Masse, Impuls und Geschwindigkeit und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4) beschreiben eindimensionale Stoßvorgänge mit Wechselwirkungen und Impulsänderungen (UF1). verwenden Erhaltungssätze (Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6) beschreiben eindimensionale Stoßvorgänge mit Wechselwirkungen und Impulsänderungen (UF1). verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6). bestimmen mechanische Größen mit mathematischen Verfahren und mithilfe digitaler Werkzeuge (E6). bewerten begründet die Darstellung bekannter mechanischer und anderer Experimente: Stoßversuche auf der Luftkissenfahrbahn GeoGebra-Datei: Simulation des unelastischen Stoßes zweier Kugeln CASSY-Datei: Fahrbahnexperiment mit zwei Schlitten unterschiedlicher Masse Experiment : Stoßversuch auf der Luftkissenfahrbahn GeoGebra-Datei: Simulation des elastischen Stoßes zweier Kugeln Experiment: Videoanalyse eines unelastischen Stoßes Kraftstoß, Impuls Vorteil der Schreibweise NEWTONs Impulserhaltungssatz Unelastischer Stoß, zunächst symmetrischer Fall, dann beliebige Bedingungen Bewegung des Schwerpunktes Impuls- und Energieerhaltung bei geraden elastischen Stößen, Berechnung der Geschwindigkeiten nach dem Stoß Bewegung des Schwerpunktes Bewertung eines Textes aus einem Internetforum (S. 52, 3. Station) Mögliche Ergänzung: Lösung des Gleichungssystems für den elastischen Stoß mittels Schwerpunkgeschwindigkeit und mittels Schulmathematik Mögliche Ergänzung: Vertiefung des Unterschiedes zwischen Bewegungsenergie und Impuls Mögliche Ergänzung: Schiefe

12 Unfälle im Straßenverkehr Projekt: Impuls und Bewegungsenergie Bilanzgrößen, die man unterschieden muss physikalischer Phänomene in verschiedenen Medien (Printmedien, Filme, Internet) bezüglich ihrer Relevanz und Richtigkeit (K2, K4) Experiment: Messung beim Aufprall eines Laborwagens mit und ohne Knautschzone 59 Experiment: zeitliche Umkehrung eines unelastischen Zusammenpralls Stöße Bilanz- und Kausalstrategie bei Zusammenstößen, Bremsweg und Anhalteweg, Messkurven bei Crashtests, Aufprall mit und ohne Airbag Vertiefung des Unterschiedes zwischen den Bilanzgrößen Impuls und Bewegungsenergie

13 Unterrichtsvorhaben III Kontext: Fall- und Wurfbewegungen im Sport Buchseiten: Zeitbedarf: etwa 15 Ustd. à 45 Minuten Inhaltliche Schwerpunkte: Kräfte und Bewegungen Kompetenzschwerpunkte: Schülerinnen und Schüler können in Zusammenhängen mit eingegrenzter Komplexität (E1) in unterschiedlichen Kontexten physikalische Probleme identifizieren, analysieren und in Form physikalischer Fragestellungen präzisieren. (K4) physikalische Aussagen und Behauptungen mit sachlich fundierten und überzeugenden Argumenten begründen bzw. kritisieren. (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären und vorhersagen. Inhalt Fallbewegungen (5 Ustd.) Buchseiten Die Schüler berechnen mithilfe des newtonschen Kraftgesetzes Wirkungen einzelner Kräfte auf Bewegungszustände und sagen sie unter dem Aspekt der Kausalität vorher (E6). planen selbstständig Experimente zur quantitativen und qualitativen Untersuchung einfacher Zusammenhänge (zur Analyse von Bewegungen), führen sie durch, werten sie aus und bewerten Ergebnisse und Arbeitsprozesse (E2, E5, B1) stellen Daten in Tabellen und sinnvoll skalierten Diagrammen (ts-diagramme, t-v-diagramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3). begründen argumentativ Sachaussagen, Behauptungen und Experimente und Materialien Experiment: Vergleich der Fallbewegungen einer Stahlkugel und eines Blatt Papiers Experiment: Fallröhre Experiment: Fall mit dem Kugelfallgerät Experiment : Videoanalyse der Fallbewegungen einer Stahlkugel und eines Papiertrichters Stationenlernen: Experimente zu Fallbewegungen Kommentar Freier Fall (beschleunigende Kraft, Zeit-Ort-Gesetz, Zeit- Geschwindigkeit-Gesetz) Fallbeschleunigung Fallbewegung mit Luftwiderstand Mögliche Ergänzung: schwere und träge Masse beim freien Fall Mögliche Ergänzung: Energiebilanz beim freien Fall Mögliche Ergänzung: Stationenlernen zu Fallbewegungen

14 Fallschirmsprung im Rechenmodell (3 Ustd.) Vermutungen zu mechanischen Vorgängen und ziehen dabei erarbeitetes Wissen sowie Messergebnisse oder andere objektive Daten heran (K4) analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ aus einer Wechselwirkungsperspektive (E1, UF1). berechnen mithilfe des newtonschen Kraftgesetzes Wirkungen einzelner oder mehrerer Kräfte auf Bewegungszustände und sagen sie unter dem Aspekt der Kausalität vorher (E6). bestimmen mechanische Größen mit mathematischen Verfahren und mithilfe digitaler Werkzeuge (Tabellenkalkulation) (E6). Excel-Datei oder GeoGebra: Modellierung des Fallschirmsprungs Experiment: Experimentelle Bestätigung des Kraftgesetzes für den Luftwiderstand durch Videoanalyse des Falls von Papiertrichtern GeoGebra-Datei: Modellierung des Falls von Hagelkörnern GeoGebra-Datei: Modelleirung eines 100-m-Laufs Kraftgesetz für den Luftwiderstand Modellierung des Fallschirmsprungs mit einer Tabellenkalkulation, Bestimmung der Endgeschwindigkeit Mögliche Ergänzung: Prüfen eines Werbetextes zum Fallschirmspringen Mögliche Ergänzung: Vertiefung des Bewegungen mit Luftwiderstand (Bestätigung des Kraftgesetzes für den Luftwiderstand durch Messungen, Fallbewegung von Hagelkörnern und Regentropfen, Kräfte beim 100-m-Lauf) Auf der schiefen Ebene (1 Ustd.) Waagerechter Wurf (3 Ustd.) vereinfachen komplexe Bewegungszustände durch Komponentenzerlegung (E1) vereinfachen komplexe Bewegungszustände durch Komponentenzerlegung und Vektoraddition (E1). planen selbstständig Experimente zur quantitativen und qualitativen GeoGebra-Datei: Lageplan und Kräfteplan bei der schiefen Ebene GeoGebra-Datei: Modellierung des waagerechten Wurfs Experiment: Videoanalyse eines waagerechten Wurf Reibungslose Bewegung auf der schiefen Ebene als Beispiel für eine gleichmäßig beschleunigte Bewegung, Berechnung der Beschleunigung aus dem Neigungswinkel Mögliche Ergänzung: Freier Fall und schiefe Ebene bei GALILEI Freier Fall im ICE aus der Sicht eines mitbewegten und eines neben den Schienen stehenden, ruhenden Beobachters Bewegungsgleichungen des waagerechten Wurfs, Gleichung

15 Schiefer Wurf (3 Ustd.) Projekt: Auf Physik kann man sich verlassen Untersuchung einfacher Zusammenhänge (zur Analyse von Bewegungen), führen sie durch, werten sie aus und bewerten Ergebnisse und Arbeitsprozesse (E2, E5, B1) vereinfachen komplexe Bewegungszustände durch Komponentenzerlegung und Vektoraddition (E1). entscheiden begründet, welche Größen bei der Analyse von Bewegungen zu berücksichtigen oder zu vernachlässigen sind (E1, E4). stellen Daten in sinnvoll skalierten Diagrammen von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3). entnehmen Kernaussagen zu naturwissenschaftlichen Positionen zu Beginn der Neuzeit aus einfachen historischen Texten (K2, K4). stellen Änderungen in den Vorstellungen zu Bewegungen beim Übergang vom Mittelalter Experiment : Wasserwurfgerät GeoGebra-Datei: Modellierung des schiefen Wurfs Material: Textauszug aus GALILEIs Discorsi GeoGebra-Datei: Modellierung des schiefen Wurfs GeoGebra-Datei: Modellierung des schiefen Wurfs mit Luftwiderstand zur Neuzeit dar (UF3, E7). 85 Experiment: Treffen einer fallenden Dose mit eines aus einem Blasrohr abgeschossenen Kügelchens der Bahnkurve Mögliche Ergänzung: Beobachtungen in gleichförmig bewegten und beschleunigten Systemen Freier Fall in einer Bergbahn aus der Sicht eines mitbewegten und eines außen stehenden, ruhenden Beobachters Bewegungsgleichungen des schiefen Wurfs Einfluss von Stoßwinkel und Abwurfgeschwindigkeit auf die Wurfweite beim Kugelstoßen Wurfbewegungen bei ARISTOTELES und GALILEI Modellierung des schiefen Wurfs mit GeoGebra. Mögliche Ergänzung: Energie und Impuls bei Wurfbewegungen Mögliche Ergänzung: Modelleirung des schiefen Wurfs mit Luftwiderstand Treffen einer fallenden Dose mit eines aus einem Blasrohr abgeschossenen Kügelchens

16 Unterrichtsvorhaben IV Kontext: Unser Planetensystem Buchseiten: Zeitbedarf: etwa 15 Ustd. à 45 Minuten Inhaltliche Schwerpunkte: Kräfte und Bewegungen, Energie, Gravitation Kompetenzschwerpunkte: Schülerinnen und Schüler können in Zusammenhängen mit eingegrenzter Komplexität (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären und vorhersagen. (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen. (E1) in unterschiedlichen Kontexten physikalische Probleme identifizieren, analysieren und in Form physikalischer Fragestellungen präzisieren. (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien/Gesetzen und Basiskonzepten beschreiben und erläutern. Inhalt Kreisbewegung und Zentripetalkraft (1 Ustd.) Eine Formel für die Zentripetalkraft (2 Ustd.) Kreisbewegungen auch auf der Kirmes (1 Ustd.) Buchseiten Die Schülerinnen und Schüler 89 analysieren auftretende Kräfte bei Kreisbewegungen (E6) entscheiden begründet, welche Größen bei der Analyse von Bewegungen zu berücksichtigen oder zu vernachlässigen sind (E1, E4). analysieren und berechnen auftretende Kräfte bei Kreisbewegungen (E6) analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ aus einer Experimente und Materialien Experiment: Messung der Zentripetalkraft mit dem Zentralkraftgerät Experiment: Bestätigung, dass die Bahngeschwindigkeit tangential zur Kreisbahn gerichtet ist. Experiment: Messung der Zentripetalkraft mit dem Zentralkraftgerät und Vergleich mit dem mit der Formel berechneten Wert GeoGebra-Datei: Grafische Darstellung der Zentripetalkraft und -beschleunigung bei verschiedenen Radien, Massen und Bahngeschwindigkeiten GeoGebra-Datei: Die Zentripetalkraft bei der Autobahnausfahrt Kommentar Bahngeschwindigkeit, gleichförmige Kreisbewegung, Notwendigkeit einer zum Kreismittelpunkt gerichteten Kraft (Zentripetalkraft) Plausibelmachen der Formeln für die Zentripetalkraft und Zentripetalbeschleunigung Mögliche Ergänzung: Unterscheidung von Zentripetalund Zentrifugalkraft Analyse der Kräfte beim Kettenkarussell und beim Rotor Mögliche Ergänzung: Klothoide bei

17 In drei Schritten zum Gravitationsgesetz (3 Ustd.) Die KEPLER-Gesetze (2 Ustd.) Energie im Gravitationsfeld (3 Ustd.) Wechselwirkungsperspektive (E1, UF1). vereinfachen komplexe Bewegungs- und Gleichgewichtszustände durch Vektoraddition (E1) analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ aus einer Wechselwirkungsperspektive (E1, UF1). ermitteln mithilfe des Gravitationsgesetzes astronomische Größen (E6) bestimmen mechanische Größen mit mathematischen Verfahren und mithilfe digitaler Werkzeuge (E6). ermitteln mithilfe der KEPLER- Gesetze und des Gravitationsgesetzes astronomische Größen (E6) beschreiben Wechselwirkungen im Gravitationsfeld und verdeutlichen den Unterschied zwischen Feldkonzept und Kraftkonzept (UF2, E6). analysieren in verschiedenen Experiment: Versuch mit der Gravitationsdrehwaage oder Video: Versuch mit der Gravitationsdrehwaage GeoGebra-Datei: Simulation einer Satellitenbahn Autobahnausfahrten und beim Looping Herleitung des Gravitationsgesetzes anhand NEWTONs Mondrechnung Gravitationsgesetz und Gravitationskonstante Bestimmung der Masse und mittleren Dichte der Erde Mögliche Ergänzung: Historische Bestimmung von Erdradius und Abstand Erde - Mond Mögliche Ergänzung: Aufbau des Planetensystems Mögliche Ergänzung: Versuch von CAVENDISH zur Bestimmung der Gravitationskonstanten (Demonstrationsexperiment oder Auswertung eines Videos) Entdeckung der KEPLER-Gesetze mithilfe einer Geometriesoftware Mögliche Ergänzung: eigenständige Programmierung der auf Seite 98 benutzen Simulation Gravitationsfeld in Analogie zum magnetischen Feld, Definition der Feldstärke Berechnung der zuzuführenden Arbeit beim Hochheben im Gravitationsfeld, Berechnung der

18 Von ARISTOTELES bis NEWTON (2 Ustd.) Internationale Raumstation ISS (1 Ustd.) Projekt: Planetenbeobachtung Kontexten Bewegungen qualitativ und quantitativ sowohl aus einer Wechselwirkungsperspektive als auch aus einer energetischen Sicht (E1, UF1). verwenden Energiebilanzen, um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6) stellen Änderungen in den Vorstellungen zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7). beschreiben an Beispielen Veränderungen im Weltbild und in der Arbeitsweise der Naturwissenschaften, die durch die Arbeiten von KOPERNIKUS, KEPLER, GALILEI und NEWTON initiiert wurden (E7, B3). 111 erläutern unterschiedliche Positionen zum Sinn aktueller Forschungsprogramme und Verdeutlichung des geo- bzw. heliozentrischen Weltbilds im Modell (siehe auch Medienkonzept) beziehen Stellung dazu (B2, B3). 111 Material: drehbare Sternenkarte (Internet) potentiellen Energie, Festlegung des Nullniveau Fluchtgeschwindigkeit Mögliche Ergänzung: Herleitung der Formel für die Energieberechnung im Gravitationsfeld Mögliche Ergänzung: Herleitung der Formel für die potentielle Energie Mögliche Ergänzung: Schwerelosigkeit in verschiedenen Situationen (Raumfahrt, Sprung, Parabelflug, Fallturm) Hier ist die Erarbeitung des Themas in Referaten denkbar. A 17 Aufgabe zur ISS Beobachtung des Sternenhimmels und der Planeten mithilfe einer Sternenkarte

19 Unterrichtsvorhaben V Kontext: Schwingungen und Wellen bei Musikinstrumenten Buchseiten: Zeitbedarf: etwa 15 Ustd. à 45 Minuten Inhaltliche Schwerpunkte: Schwingungen und Wellen, Kräfte und Bewegungen, Energie Kompetenzschwerpunkte: Schülerinnen und Schüler können in Zusammenhängen mit eingegrenzter Komplexität (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien/Gesetzen und Basiskonzepten beschreiben und erläutern. (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen. (E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden. (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären und vorhersagen. Inhalt Mechanische Schwingungen (1 Ustd.) Ursache und Beschreibung von Schwingungen (2 Ustd.) Buchseiten Die Schülerinnen und Schüler 115 beschreiben Schwingungen als Störungen eines Gleichgewichts (UF1, UF4) analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ aus einer Wechselwirkungsperspektive (E1, UF1). beschreiben Schwingungen als Störungen eines Gleichgewichts und identifizieren die dabei auftretenden Kräfte (UF1, UF4). Experimente und Materialien Experiment: Schwingung einer Stimmgabel Experiment: Schwingung einer Lautsprechermembran Experiment: Federpendel Experiment: Vergleich der Bewegung einer Pendelkugel mit der Projektion einer Kreisbewegung GeoGebra-Datei: Zeigerdarstellung einer harmonischen Schwingung Excel-Datei: Modellierung einer Federschwingung Kommentar Abgrenzung der Schwingung von bereits bekannten Bewegungen Periodizität, Gleichgewichtslage, Umkehrpunkte Freie und erzwungene Schwingungen Beschreibung von Schwingungen: Auslenkung, Elongation, Amplitude, Periodendauer, Frequenz Ursache von Schwingungen: Rückstellkraft Harmonische Schwingung: Beschreibung durch Zeiger, Zeit- Elongation-Gesetz Mögliche Ergänzung: lineares Kraftgesetz Mögliche Ergänzung: Modellierung einer

20 Energie einer Schwingung (3 Ustd.) Schwingungen und Eigenschwingungen Fortschreitende Welle (3 Ustd.) Die Schallgeschwindigkeit in Luft (2 Ustd.) analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ sowohl aus einer Wechselwirkungsperspektive als auch aus einer energetischen Sicht (E1, UF1). erläutern das Auftreten von Resonanz mithilfe von Wechselwirkung und Energie (UF1). Experiment: horizontaler Federschwinger Experiment: Schwingung einer Stimmgabel Experiment: horizontaler Federschwinger mit Schwingungserreger GoldWave-Datei (zu A2): abklingender Ton Stationenlernen: Experimente zu Schwingungen und Wellen GeoGebra-Datei: Modellierung der Schwebung mit dem Zeigermodell beschreiben Schwingungen und Wellen als Störungen eines Gleichgewichts (UF1, UF4). erklären qualitativ die Ausbreitung mechanischer Wellen (Transversal- oder Longitudinalwelle) mit den Eigenschaften des Ausbreitungsmediums (E6) erklären qualitativ die Ausbreitung mechanischer Wellen (Longitudinalwelle) mit den Eigenschaften des Ausbreitungsmediums (E6). planen selbstständig Experimente zur quantitativen und qualitativen Untersuchung einfacher Zusammenhänge (zur Analyse von Bewegungen), führen sie durch, Experiment: Ausbreitung einer transversalen Störung bei einer langen Feder Experiment: Ausbreitung einer longitudinalen Störung bei einer langen Feder GeoGebra-Datei: fortschreitende Welle im Zeigermodell Experiment: Messung der Schallgeschwindigkeit aus Weg und Zeit Experiment: Messung der Schallgeschwindigkeit aus der Phasengeschwindigkeit Federschwingung mit einer Tabellenkalkulation Energie der Schwingung eines ungedämpften vertikalen Federpendels Gedämpfte Schwingungen, Entdämpfung Eigenfrequenz, Resonanz Stationenlernen zu Schwingungen und Wellen Transversalwelle, Longitudinalwelle, Wellengeschwindigkeit, Phasengeschwindigkeit, Wellenlänge Darstellung von Wellen im Zeigermodell Zusammenhang zwischen Wellengeschwindigkeit, Wellenlänge und Periodendauer Schall als Welle Messung der Schallgeschwindigkeit aus Weg und Zeit sowie aus der Phasengeschwindigkeit Mögliche Ergänzung: Einfache Messungen zur Abschätzung der Schallgeschwindigkeit Mögliche Ergänzung:

21 Töne und Klänge (2 Ustd.) Stehende Wellen (2 Ustd.) Projekt: Eigenschwingung beim HELMHOLTZ-Resonator werten sie aus und bewerten Ergebnisse und Arbeitsprozesse (E2, E5, B1) planen selbstständig Experimente zur quantitativen und qualitativen Untersuchung einfacher Zusammenhänge (Frequenzanalyse), führen sie durch, werten sie aus und bewerten Ergebnisse und Arbeitsprozesse (E2, E5, B1) bestimmen mechanische Größen mithilfe digitaler Werkzeuge (E6). Experiment: Frequenzanalyse eines Flöttons mit GoldWave Experiment (V2, V3, V4): Frequenzanalyse einer Stimmgabelschwingung, der Schwingung eines Monochords und der Schwingung eines überblasenen Reagenzglases mit einem Messwerterfassungssystem CASSY-Datei: Fourieranalyse eines Monochord-Klanges Experiment (V5): Eigenschwingungen eines beidseitig eingespannten Gummibandes Experiment (V6): Eigenschwingungen der Luftsäule in einem Glasrohr GeoGebra-Datei oder Java-App: Zeigermodellierung der stehenden Welle 133 Experiment: Messung der Eigenfrequenzen eines Helmholtz- Resonators Präzisionsmessung der Schallgeschwindigkeit mit Ultraschallsender, -empfänger und Oszilloskop Frequenzanalyse (z.b. Flötton, Stimmgabel, Monochord, überblasenes Reagenzglas, Musikinstrumente) Klang, Grundschwingung, Oberschwingung Grundton und Obertöne bei zwei freien Enden, zwei festen Enden und einem freien und einem festen Ende Zeigermodellierung der Überlagerung von Welle und reflektierter Welle mit GeoGebra Wellenknoten, Wellenbauch Freies Ende, festes Ende Wellen bei beidseitiger Begrenzung Mögliche Ergänzung: Vertiefung der Reflexion am freien und festen Ende Eigenschwingung beim HELMHOLTZ- Resonator, Vergleich von Theorie und Experiment

22

23 Qualifikationsphase Grundkurs Die nachfolgend angegeben Kapitelangaben beziehen sich auf das eingeführte Schulbuch: Fokus Physik Sekundarstufe II Qualifikationsphase, Gymnasium Nordrhein-Westfalen, ISBN Anzahl der Wochenstunden: 3 Anzahl der Klausuren: 2 Klausuren im zweiten Halbjahr

24 Unterrichtsvorhaben der Qualifikationsphase (Q1) Grundkurs Experimente Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Fokus Physik SII Oszilloskop: 5.15 Leiterschleife: 7.1 Thomson scher Ringversuch: 7.1; 7.7 Leiterschaukel: 7.2 Generator: 7.4 Transformator: 7.5 Fernleitung: 7.5 Energieversorgung und Transport mit Generatoren und Transformatoren Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden? Zeitbedarf: 18 Ustd. Elektrodynamik Spannung und elektrische Energie Induktion Spannungswandlung UF2 Auswahl UF4 Vernetzung E2 Wahrnehmung und Messung E5 Auswertung E6 Modelle K3 Präsentation B1 Kriterien Kap. 5: Elektrische Ladung und elektrisches Feld Kap. 6: Magnetisches Feld Kap. 7: Elektromagnetische Induktion Wirbelströme im Alltag Wie kann man Wirbelströme technisch nutzen? Zeitbedarf: 4 Ustd. Elektrodynamik Induktion UF4 Vernetzung E5 Auswertung B1 Kriterien Kap. 7: Elektromagnetische Induktion Fotoeffekt: 13.2 Wellenwanne: 9.3; 9.5; 9.6 Doppelspalt: 10.4 Gitterbeugung: 10.5 Erforschung des Photons Wie kann das Verhalten von Licht beschrieben und erklärt werden? Zeitbedarf: 14 Ustd. Quantenobjekte Photon (Wellenaspekt) E2 Wahrnehmung und Messung E5 Auswertung K3 Präsentation Kap. 9: Wellen Kap. 10: Welleneigenschaften des Lichts Kap. 13: Quanten Millikanversuch: 5.13 Fadenstrahlrohr: 6.6 Erforschung des Elektrons Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden? Zeitbedarf: 15 Ustd. Quantenobjekte Elektron (Teilchenaspekt) UF1 Wiedergabe UF3 Systematisierung E5 Auswertung E6 Modelle Kap. 13: Quanten

25 Experimente Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Fokus Physik SII Elektronenbeugung: 13.6 Photonen und Elektronen als Quantenobjekte Ist die Masse bewegter Teilchen konstant? Zeitbedarf: 8 Ustd. Quantenobjekte Elektron und Photon (Teilchenaspekt, Wellenaspekt) Quantenobjekte und ihre Eigenschaften E6 Modelle E7 Arbeits- und Denkweisen K4 Argumentation B4 Möglichkeiten und Grenzen Kap. 13: Quanten Summe Qualifikationsphase (Q1) Grundkurs: 56 Stunden Unterrichtsvorhaben der Qualifikationsphase (Q2) Grundkurs Linienspektren: 13.8 Resonanzabsorption: Fraunhofer-Linien: 13.12; 20.4 Franck-Hertz-Versuch: Röntgenspektren: 13.4; 14.7 Erforschung des Mikround Makrokosmos Wie gewinnt man Informationen zum Aufbau der Materie? Zeitbedarf: 13 Ustd. Strahlung und Materie Energiequantelung der Atomhülle Spektrum der elektromagnetischen Strahlung UF1 Wiedergabe E5 Auswertung E2 Wahrnehmung und Messung Kap. 10: Welleneigenschaften des Lichts Kap. 13: Quanten Kap. 14: Quantenphysikalisches Atommodell Geiger-Müller-Zählrohr: 16.2; 16.6 Absorption: 16.6; Mensch und Strahlung Wie wirkt Strahlung auf den Menschen? Strahlung und Materie Kernumwandlungen Ionisierende Strahlung UF1 Wiedergabe B3 Werte und Normen B4 Möglichkeiten und Kap. 16: Atomkerne Kap. 18: Radioaktivität und Kerntechnik

26 Experimente Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Fokus Physik SII Zeitbedarf: 9 Ustd. Spektrum der elektromagnetischen Strahlung Grenzen Forschung am CERN und DESY Bausteine der Materie? Zeitbedarf: 6 Ustd. Strahlung und Materie Standardmodell der Elementarteilchen UF3 Systematisierung E6 Modelle Kap. 17: Elementarteilchen Michelson und Morley: 19.3 Lichtuhr: 19.5 Myonenzerfall: 19.6 Navigationssysteme Welchen Einfluss hat Bewegung auf den Ablauf der Zeit? Zeitbedarf: 5 Ustd. Relativität von Raum und Zeit Konstanz der Lichtgeschwindigkeit Zeitdilatation UF1 Wiedergabe E6 Modelle Kap. 19: Relativitätstheorie Zyklotron: 6.6 Teilchenbeschleuniger Ist die Masse bewegter Teilchen konstant? Zeitbedarf: 6 Ustd. Relativität von Raum und Zeit Veränderlichkeit der Masse Energie-Masse Äquivalenz UF4 Vernetzung B1 Kriterien Kap. 19: Relativitätstheorie

27 Experimente Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Fokus Physik SII Das heutige Weltbild Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt? Zeitbedarf: 2 Ustd. Relativität von Raum und Zeit Konstanz der Lichtgeschwindigkeit Zeitdilatation Veränderlichkeit der Masse Energie-Masse Äquivalenz E7 Arbeits- und Denkweisen K3 Präsentation Kap. 19: Relativitätstheorie Summe Qualifikationsphase (Q2) Grundkurs: 41 Stunden Konkretisierte Unterrichtsvorhaben

28 sfeld: Quantenobjekte Inhalt Experiment/Medium Kommentar/didaktische Hinweise Fokus Physik S II Elementarladung (5 Ustd.) erläutern anhand einer vereinfachten Version des Millikanversuchs die grundlegenden Ideen und Ergebnisse zur Bestimmung der Elementarladung (UF1, E5), untersuchen, ergänzend zum Realexperiment, Computersimulationen zum Verhalten von Quantenobjekten (E6). schwebender Wattebausch Millikanversuch Schwebefeldmethode (keine Stokes sche Reibung) Auch als Simulation möglich Begriff des elektrischen Feldes in Analogie zum Gravitationsfeld besprechen, Definition der Feldstärke über die Kraft auf einen Probekörper, in diesem Fall die Ladung Homogenes elektrisches Feld im Plattenkondensator, Zusammenhangs zwischen Feldstärke im Plattenkondensator, Spannung und Abstand der Kondensatorplatten vorgeben und durch Auseinanderziehen der geladenen Platten demonstrieren 5.1 Geladene Körper 5.2 Elektrische Ladung als physikalische Größe 5.3 Elektrisches Feld 5.9 Kondensator 5.13 Bestimmung der Elementarladung

29 Experiment/Medium Kommentar/didaktische Hinweise Fokus Physik S II Elektronenmasse (7 Ustd.) beschreiben Eigenschaften und Wirkungen homogener elektrischer und magnetischer Felder und erläutern deren Definitionsgleichungen. (UF2, UF1), bestimmen die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer elektrischen Spannung (UF2), modellieren Vorgänge im Fadenstrahlrohr (Energie der Elektronen, Lorentzkraft) mathematisch, variieren Parameter und leiten dafür deduktiv Schlussfolgerungen her, die sich experimentell überprüfen lassen, und ermitteln die Elektronenmasse (E6, E3, E5), e/m-bestimmung mit dem Fadenstrahlrohr und Helmholtzspulenpaar auch Ablenkung des Strahls mit Permanentmagneten (Lorentzkraft) evtl. Stromwaage bei hinreichend zur Verfügung stehender Zeit) Messung der Stärke von Magnetfeldern mit der Hallsonde Einführung der 3-Finger-Regel und Angabe der Gleichung für die Lorentzkraft: Einführung des Begriffs des magnetischen Feldes (in Analogie zu den beiden anderen Feldern durch Kraft auf Probekörper, in diesem Fall bewegte Ladung oder stromdurchflossener Leiter) und des Zusammenhangs zwischen magnetischer Kraft, Leiterlänge und Stromstärke. Vertiefung des Zusammenhangs zwischen Spannung, Ladung und Überführungsarbeit am Beispiel Elektronenkanone. 5.3 Elektrisches Feld 5. 5 Elektrisches Potenzial und elektrische Spannung 5. 7 Feldgleichung und Feldkonstante Freie Ladungsträger im elektrischen Feld 6.1 Magnetische Feldstärke 6. 2 Magnetfeld von Leiter und Spule 6. 3 Lorentzkraft und Halleffekt 6. 6 Bewegung von Ladungsträgern im Magnetfeld 6. 7 Massenspektometer und Geschwindigkeitsfilter Streuung von Elektronen an Festkörpern, de Broglie- Wellenlänge (3 Ustd.) erläutern die Aussage der de Broglie-Hypothese, wenden diese zur Erklärung des Beugungsbildes beim Elektronenbeugungsexperiment an und bestimmen die Wellenlänge der Elektronen (UF1, UF2, E4). Experiment zur Elektronenbeugung an polykristallinem Graphit Veranschaulichung der Bragg- Bedingung analog zur Gitterbeugung Materiewellen Strukturbestimmung von Festkörpern Summe: 15 Ustd. Inhaltsfeld: Elektrodynamik (GK)

30 Experiment/Medium Kommentar/didaktische Hinweise Fokus Physik S II Wandlung von mechanischer in elektrische Energie: Elektromagnetische Induktion Induktionsspannung (5 Ustd.) erläutern am Beispiel der Leiterschaukel das Auftreten einer Induktionsspannung durch die Wirkung der Lorentzkraft auf bewegte Ladungsträger (UF1, E6), definieren die Spannung als Verhältnis von Energie und Ladung und bestimmen damit Energien bei elektrischen Leitungsvorgängen (UF2), bestimmen die relative Orientierung von Bewegungsrichtung eines Ladungsträgers, Magnetfeldrichtung und resultierender Kraftwirkung mithilfe einer Drei-Finger-Regel (UF2, E6), werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5). bewegter Leiter im (homogenen) Magnetfeld Leiterschaukelversuch Messung von Spannungen mit diversen Spannungsmessgeräten (nicht nur an der Leiterschaukel) Gedankenexperimente zur Überführungsarbeit, die an einer Ladung verrichtet wird. Deduktive Herleitung der Beziehung zwischen U, v und B. Definition der Spannung und Erläuterung anhand von Beispielen für Energieumwandlungsprozesse bei Ladungstransporten, Anwendungsbeispiele. Das Entstehen einer Induktionsspannung bei bewegtem Leiter im Magnetfeld wird mit Hilfe der Lorentzkraft erklärt, eine Beziehung zwischen Induktionsspannung, Leitergeschwindigkeit und Stärke des Magnetfeldes wird (deduktiv) hergeleitet. Die an der Leiterschaukel registrierten (zeitabhängigen) Induktionsspannungen werden mit Hilfe der hergeleiteten Beziehung auf das Zeit- Geschwindigkeit-Gesetz des bewegten Leiters zurückgeführt Elektrisches Potenzial und elektrische Spannung 6. 3 Lorentzkraft und Halleffekt 7. 1 Phänomen Induktion 7. 2 Induktionsgesetz 7. 3 Faraday entdeckt die elektromagnetische Induktion

31 Experiment/Medium Kommentar/didaktische Hinweise Fokus Physik S II Technisch praktikable Generatoren: Erzeugung sinusförmiger Wechselspannungen (4 Ustd.) recherchieren bei vorgegebenen Fragestellungen historische Vorstellungen und Experimente zu Induktionserscheinungen (K2), erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3), Internetquellen, Lehrbücher, Firmeninformationen, Filme und Applets zum Generatorprinzip Experimente mit drehenden Leiterschleifen in (näherungsweise homogenen) Magnetfeldern, Wechselstromgeneratoren Hier bietet es sich an, arbeitsteilige Präsentationen auch unter Einbezug von Realexperimenten anfertigen zu lassen Wechselspannung und Generator Anwendungen der Induktion erläutern das Entstehen sinusförmiger Wechselspannungen in Generatoren (E2, E6), werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5). führen Induktionserscheinungen an einer Leiterschleife auf die beiden grundlegenden Ursachen zeitlich veränderliches Magnetfeld bzw. zeitlich veränderliche (effektive) Fläche zurück (UF3, UF4), Messung und Registrierung von Induktionsspannungen mit Oszilloskop und digitalem Messwerterfassungssystem Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der senkrecht vom Magnetfeld durchsetzten Fläche wird deduktiv erschlossen.

32 Experiment/Medium Kommentar/didaktische Hinweise Fokus Physik S II Nutzbarmachung elektrischer Energie durch Transformation Transformator (5 Ustd.) erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3), ermitteln die Übersetzungsverhältnisse von Spannung und Stromstärke beim Transformator (UF1, UF2). geben Parameter von Transformatoren zur gezielten Veränderung einer elektrischen Wechselspannung an (E4), werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5). führen Induktionserscheinungen an einer Leiterschleife auf die beiden grundlegenden Ursachen zeitlich veränderliches Magnetfeld bzw. zeitlich veränderliche (effektive) Fläche zurück (UF3, UF4), diverse Netzteile von Elektro-Kleingeräten (mit klassischem Transformator) Internetquellen, Lehrbücher, Firmeninformationen Demo-Aufbautransformator mit geeigneten Messgeräten ruhende Induktionsspule in wechselstromdurchflossener Feldspule - mit Messwerterfassungssystem zur zeitaufgelösten Registrierung der Induktionsspannung und des zeitlichen Verlaufs der Stärke des magnetischen Feldes Der Transformator wird eingeführt und die Übersetzungsverhältnisse der Spannungen experimentell ermittelt. Dies kann auch durch einen Schülervortrag erfolgen (experimentell und medial gestützt). Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der Stärke des magnetischen Feldes wird experimentell im Lehrerversuch erschlossen. Die registrierten Messdiagramme werden von den SuS eigenständig ausgewertet Transformator Anwendungen der Induktion

33 Experiment/Medium Kommentar/didaktische Hinweise Fokus Physik S II Energieerhaltung Ohm sche Verluste (4 Ustd.) verwenden ein physikalisches Modellexperiment zu Freileitungen, um technologische Prinzipien der Bereitstellung und Weiterleitung von elektrischer Energie zu demonstrieren und zu erklären (K3), bewerten die Notwendigkeit eines geeigneten Transformierens der Wechselspannung für die effektive Übertragung elektrischer Energie über große Entfernungen (B1), zeigen den Einfluss und die Anwendung physikalischer Grundlagen in Lebenswelt und Technik am Beispiel der Bereitstellung und Weiterleitung elektrischer Energie auf (UF4), beurteilen Vor- und Nachteile verschiedener Möglichkeiten zur Übertragung elektrischer Energie über große Entfernungen (B2, B1, B4). Modellexperiment (z.b. mit Hilfe von Aufbautransformatoren) zur Energieübertragung und zur Bestimmung der Ohm schen Verluste bei der Übertragung elektrischer Energie bei unterschiedlich hohen Spannungen Hier bietet sich ein arbeitsteiliges Gruppenpuzzle an, in dem Modellexperimente einbezogen werden Transformator Summe: 18 Ustd.

MCG Physik Einführungsphase

MCG Physik Einführungsphase MCG Physik Einführungsphase Themen und Kompetenzen aus dem Stoffverteilungsplan zum Lehrbuch Impulse Physik Oberstufe Einführungsphase NRW Kinematik Lineare Bewegungen erläutern die Größen Position, Strecke,

Mehr

Schulinternes Curriculum im Fach Physik SII Einführungsphase

Schulinternes Curriculum im Fach Physik SII Einführungsphase Schulinternes Curriculum im Fach Physik SII Einführungsphase Inhaltsfeld: Mechanik Kontexte: Physik im Straßenverkehr, Fall- und Wurfbewegungen im Sport Leitfrage: Wie lassen sich Bewegungen vermessen,

Mehr

Kräfte und Bewegungen. Energie und Impuls. Gravitation Kräfte und Bewegungen. Energie und Impuls. Schwingungen und Wellen Kräfte und Bewegungen

Kräfte und Bewegungen. Energie und Impuls. Gravitation Kräfte und Bewegungen. Energie und Impuls. Schwingungen und Wellen Kräfte und Bewegungen Teil 1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitideen sfelder, liche Schwerpunkte Physik im Straßenverkehr Mechanik Physik und Sport Kräfte und Bewegungen

Mehr

Schulinternes Curriculum Fachgruppe Physik Jahrgangsstufe EF

Schulinternes Curriculum Fachgruppe Physik Jahrgangsstufe EF Jahrgangsstufe EF Inhaltsfeld 1: Mechanik Kräfte und Bewegungen Fachlicher Kontext: Straßenverkehr Sequenzen 1. Lineare Bewegungen (gleichförmige Bewegung, gleichmäßig beschleunigte Bewegung) 2. Überlagerte

Mehr

Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik 2.1.1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Physik und Bewegungen

Mehr

E2 Wahrnehmung und Messung E5 Auswertung und erklärt werden? Quantenobjekte Elektron (Teilchenaspekt)

E2 Wahrnehmung und Messung E5 Auswertung und erklärt werden? Quantenobjekte Elektron (Teilchenaspekt) Freiherr-vom-Stein-Gymnasium Dieckmannstr. 141 48161 Münster Schulinternes Curriculum Physik, Sekundarstufe II, Grundkurs Q1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Qualifikationsphase

Mehr

Inhalt. Didaktische und Methodische Hinweise. Kompetenzen. Kontext: Erforschung des Lichts

Inhalt. Didaktische und Methodische Hinweise. Kompetenzen. Kontext: Erforschung des Lichts Kontext: Erforschung des Lichts Leitfrage: Wie kann das Verhalten von Licht beschrieben und erklärt werden? liche Schwerpunkte: Die Erforschung des Lichts als Grundlage zur Beschreibung mittels Modellvorstellungen

Mehr

Technisch praktikable Generatoren - Schwingende Leiterschaukel - Erzeugung sinusförmiger Wechselspannung

Technisch praktikable Generatoren - Schwingende Leiterschaukel - Erzeugung sinusförmiger Wechselspannung Unterrichtsvorhaben der Qualifikationsphase GK/ Inhaltsfeld Elektrodynamik Erforschung des Elektrons Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

Mehr

Schulinterner Lehrplan (Übersichtsraster) des Joseph-Haydn-Gymnasiums Senden zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan (Übersichtsraster) des Joseph-Haydn-Gymnasiums Senden zum Kernlehrplan für die gymnasiale Oberstufe. Physik Schulinterner Lehrplan (Übersichtsraster) des Joseph-Haydn-Gymnasiums Senden zum Kernlehrplan für die gymnasiale Oberstufe Physik 1 Die Fachgruppe Physik am JHG Senden Das Joseph-Haydn-Gymnasium ist das

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Städtischen Gymnasium Bergkamen. Chemie

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Städtischen Gymnasium Bergkamen. Chemie Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Städtischen Gymnasium Bergkamen Chemie Inhalt Seite 1 Die Fachgruppe Chemie... 3 2.1 Unterrichtsvorhaben... 5 2.1.1 Übersichtsraster

Mehr

Wo. Kontext Inhalte Kompetenzen: Die SuS Vorschlag für Versuche Weitere Absprachen 5 Physik in Sport und Verkehr. unterscheiden gleichförmige und

Wo. Kontext Inhalte Kompetenzen: Die SuS Vorschlag für Versuche Weitere Absprachen 5 Physik in Sport und Verkehr. unterscheiden gleichförmige und Schulinternes Curriculum Physik Einführungsphase Inhaltsfeld Mechanik Kräfte und Bewegungen 5 Physik in Sport und Verkehr Geradlinige Bewegungen (unbeschleunigt und beschleunigt): s-t- / v-t- / a-t-diagramme

Mehr

Gymnasium an der Wolfskuhle. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Gymnasium an der Wolfskuhle. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik Gymnasium an der Wolfskuhle Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik am Gymnasium an der Wolfskuhle 3 2 Entscheidungen zum Unterricht

Mehr

Physik. Einführungsphase (EF) Friedrich-Harkort-Schule Herdecke. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe

Physik. Einführungsphase (EF) Friedrich-Harkort-Schule Herdecke. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Friedrich-Harkort-Schule Herdecke Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Einführungsphase (EF) (ab Schuljahr 2014/15) Physik Übersichtsraster Unterrichtsvorhaben in der Einführungsphase

Mehr

Schulcurriculum Physik

Schulcurriculum Physik Schulcurriculum Physik Einführungsphase Inhaltsfeld: Mechanik Kontext: Physik und Sport Leitfrage: Wie lassen sich Bewegungen vermessen, analysieren und optimieren? Inhaltliche Schwerpunkte: Kräfte und

Mehr

Vorläufiges schulinternes Curriculum des Fachbereichs Physik Einführungsphase (EF)

Vorläufiges schulinternes Curriculum des Fachbereichs Physik Einführungsphase (EF) Schulinternes Curriculum der Fachschaft Physik Einführungsphase 1 Vorläufiges schulinternes Curriculum des Fachbereichs Physik Einführungsphase (EF) Lineare Bewegungen 1. Geradlinige Bewegungen mit konstanter

Mehr

Physik. Schulinternes Curriculum zum Kernlehrplan für die gymnasiale Oberstufe. Einführungsphase. (Stand: )

Physik. Schulinternes Curriculum zum Kernlehrplan für die gymnasiale Oberstufe. Einführungsphase. (Stand: ) Schulinternes Curriculum zum Kernlehrplan für die gymnasiale Oberstufe Physik Einführungsphase Silverberg-Gymnasium Bedburg Eichendorffstraße 1 50181 Bedburg (Stand: 30.10.2015) Schulinterner Lehrplan

Mehr

Schulinterner Lehrplan Gymnasium Thusneldastraße. Einführungsphase. Physik

Schulinterner Lehrplan Gymnasium Thusneldastraße. Einführungsphase. Physik Schulinterner Lehrplan Gymnasium Thusneldastraße zum Kernlehrplan für die Einführungsphase Physik Die Fachgruppe Physik in der Schule Die Fachgruppe Physik versucht in besonderem Maße, jeden Lernenden

Mehr

Schulinterner Lehrplan (SILP) Physik

Schulinterner Lehrplan (SILP) Physik Christian-Rohlfs-Gymnasium Hagen Schulinterner Lehrplan (SILP) Physik Grundkurs Qualifikationsphase Q1 (GK Q1) Stand: 22.6.2015 SILP CRG GK-Q1 1 Unterrichtsvorhaben der Qualifikationsphase (Q1) GRUNDKURS

Mehr

Schulinterner Lehrplan Physik Franz-Stock-Gymnasium Arnsberg

Schulinterner Lehrplan Physik Franz-Stock-Gymnasium Arnsberg Schulinterner Lehrplan Physik Franz-Stock-Gymnasium Arnsberg Übersichtsraster Unterrichtsvorhaben Physik Einführungsphase Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche

Mehr

1 Die Fachgruppe Mathematik am Dietrich-Bonhoeffer-Gymnasium

1 Die Fachgruppe Mathematik am Dietrich-Bonhoeffer-Gymnasium 1 Die Fachgruppe Mathematik am Dietrich-Bonhoeffer-Gymnasium In der Einführungsphase werden mehrere parallele Grundkurse eingerichtet, aus denen sich für die Qualifikationsphase Leistungs- und Grundkurse

Mehr

Übersichtsraster Unterrichtsvorhaben

Übersichtsraster Unterrichtsvorhaben Schulinterner Lehrplan, Physik Einführungsphase Gymnasium Maria Königin Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte

Mehr

Schulinterner Lehrplan (SILP) Physik

Schulinterner Lehrplan (SILP) Physik Christian-Rohlfs-Gymnasium Hagen Schulinterner Lehrplan (SILP) Physik Einführungsphase (EF) Stand: 28.9.2014 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage

Mehr

Heinrich-Mann-Gymnasium. Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase. Physik

Heinrich-Mann-Gymnasium. Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase. Physik Heinrich-Mann-Gymnasium Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase Physik Stand: 07.05.2014 Übersichtsraster Unterrichtsvorhaben in der Einführungsphase Unterrichtsvorhaben der Einführungsphase

Mehr

Albertus-Magnus-Gymnasium Bergisch Gladbach. Schulinterner Lehrplan der Stufe EF zum Kernlehrplan für die gymnasiale Oberstufe.

Albertus-Magnus-Gymnasium Bergisch Gladbach. Schulinterner Lehrplan der Stufe EF zum Kernlehrplan für die gymnasiale Oberstufe. Albertus-Magnus-Gymnasium Bergisch Gladbach Schulinterner Lehrplan der Stufe EF zum Kernlehrplan für die gymnasiale Oberstufe Physik Entscheidungen zum Unterricht Hinweis: Die nachfolgend dargestellte

Mehr

Stoffverteilungsplan Impulse Physik Qualifikationsphase Grundkurs (Ausgabe 2015 ISBN ) zum neuen Kernlehrplan Physik NRW 2014

Stoffverteilungsplan Impulse Physik Qualifikationsphase Grundkurs (Ausgabe 2015 ISBN ) zum neuen Kernlehrplan Physik NRW 2014 Stoffverteilungsplan Impulse Physik Qualifikationsphase Grundkurs (Ausgabe 2015 ISBN 978-3-12-772677-0) zum neuen Kernlehrplan Physik NRW 2014 Inhaltsfeld/Kontext Quantenobjekte: Erforschung des Photons

Mehr

Konkretisierte Unterrichtsvorhaben

Konkretisierte Unterrichtsvorhaben Konkretisierte Unterrichtsvorhaben I. Einführungsphase Inhaltsfeld: Mechanik Kontext: Physik und Sport Leitfrage: Wie lassen sich Bewegungen vermessen, analysieren und optimieren? Inhaltliche Schwerpunkte:

Mehr

Schulinterner Lehrplan für die Einführungsphase im Fach PHYSIK

Schulinterner Lehrplan für die Einführungsphase im Fach PHYSIK 1. Überblick Inhaltsfeld: Mechanik Unterrichtsvorhaben der Einführungsphase Mögliche Kontexte und Leitfragen Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Physik und Sport Wie lassen sich

Mehr

Strahlung und Materie Energiequantelung der Atomhülle Spektrum der elektromagnetischen Strahlung

Strahlung und Materie Energiequantelung der Atomhülle Spektrum der elektromagnetischen Strahlung Freiherr-vom-Stein-Gymnasium Dieckmannstr. 141 48161 Münster Schulinternes Curriculum Physik, Sekundarstufe II, Grundkurs Q2 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Qualifikationsphase

Mehr

Einführungsphase Kontext, Inhaltsfeld, Zeitbedarf Inhaltliche Schwerpunkte Kompetenzschwerpunkte Unterrichtsvorhaben I. Kräfte und Bewegungen

Einführungsphase Kontext, Inhaltsfeld, Zeitbedarf Inhaltliche Schwerpunkte Kompetenzschwerpunkte Unterrichtsvorhaben I. Kräfte und Bewegungen Stand: August 2015 Schulinterner Lehrplan SII für das Fach Physik (Jahrgangsstufen EF, Q1, Q2) Übersichtsraster Unterrichtsvorhaben EF Einführungsphase Kontext, Inhaltsfeld, Zeitbedarf Inhaltliche Schwerpunkte

Mehr

Muster für einen Studienbericht im Fach Physik GK

Muster für einen Studienbericht im Fach Physik GK Muster für einen Studienbericht im Fach Physik GK Name: (bitte individuelle Eintragungen eindeutig vornehmen) I. Inhalt gem. Kernlehrplan und fachlichen Vorgaben für das Zentralabitur im Jahr 2017 (Schwerpunkte

Mehr

Klasse 9/10 Blatt 1. Kerncurriculum für das Fach Physik Schulcurriculum (kursiv) Rosenstein- Gymnasium Heubach

Klasse 9/10 Blatt 1. Kerncurriculum für das Fach Physik Schulcurriculum (kursiv) Rosenstein- Gymnasium Heubach Klasse 9/10 Blatt 1 1 Wärmelehre Wdh. Temperaturmessung (Celsius) absolute Temperatur (Kelvin) Entropie (qualitativ), Wdh. Energieübertragung durch Wärme und Arbeit Innere Energie Wärmeleitung, Wärmestrahlung,

Mehr

Inhalt Kompetenzen Medien/Experimente Kommentar. Luftkissenfahrbahn mit digitaler Messwerterfassung: Messreihen zur gleichförmigen und

Inhalt Kompetenzen Medien/Experimente Kommentar. Luftkissenfahrbahn mit digitaler Messwerterfassung: Messreihen zur gleichförmigen und Beschreibung und Analyse von linearen Bewegungen unterscheiden gleichförmige und gleichmäßig beschleunigte Bewegungen und erklären zugrundeliegende Ursachen (UF2), vereinfachen komplexe Bewegungs- und

Mehr

Lehrplan im Fach Physik EF (Einführungsphase)

Lehrplan im Fach Physik EF (Einführungsphase) 1 Übersichtsraster Unterrichtsvorhaben Lehrplan im Fach Physik EF (Einführungsphase) Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte

Mehr

Physik Einführungsphase

Physik Einführungsphase schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Landrat-Lucas-Gymnasium Leverkusen Physik Einführungsphase Unterrichtsvorhaben Die Darstellung der Unterrichtsvorhaben im schulinternen

Mehr

Schulinterner Lehrplan für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan für die gymnasiale Oberstufe. Physik Schulinterner Lehrplan für die gymnasiale Oberstufe Physik Inhalt 1 Fachgruppe Physik am Gymnasium Siegburg Alleestraße... 3 2 Entscheidungen zum Unterricht... 5 3 Entscheidungen zu fach- und unterrichtsübergreifenden

Mehr

2.1.1 Übersichtsraster Unterrichtsvorhaben

2.1.1 Übersichtsraster Unterrichtsvorhaben 2.1.1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Physik und Straßenverkehr Wie lassen

Mehr

3. N. I Einführung in die Mechanik. II Grundbegriffe der Elektrizitätslehre

3. N. I Einführung in die Mechanik. II Grundbegriffe der Elektrizitätslehre 3. N I Einführung in die Mechanik Kennen die Begriffe Kraft und Arbeit Erläutern von Vektoren und Skalaren Lösen von maßstäblichen Konstruktionsaufgaben mit dem Kräfteparallelogramm Können Kräfte messen

Mehr

Physik. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. am Hüffertgymnasium Warburg

Physik. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. am Hüffertgymnasium Warburg Physik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Hüffertgymnasium Warburg Beschluss der Fachkonferenz am 18.6.2015 Inhalt Seite 1 Die Fachgruppe Physik am Hüffertgymnasium

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik des Gymnasiums Horn-Bad Meinberg 3 2 Entscheidungen zum Unterricht 5 2.1 Unterrichtsvorhaben

Mehr

Gymnasium An der Stenner. schulinterner Lehrplan für die gymnasiale Oberstufe. Physik

Gymnasium An der Stenner. schulinterner Lehrplan für die gymnasiale Oberstufe. Physik Gymnasium An der Stenner schulinterner Lehrplan für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik in der Schule...3 2 Entscheidungen zum Unterricht...4 3 Einführungsphase...6 4 Grundkurs

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Physik 8. Jahrgang Übersicht

Physik 8. Jahrgang Übersicht Physik. Jahrgang Übersicht Inhaltsfelder Mechanik - Physik und Sport (Geschwindigkeit, Weg-Zeit- Diagramm, Kraft, Kraftmessung) - Der Mensch auf dem Mond (Gewichtskraft, Reibung, Newtonsche Gesetze) -

Mehr

Schulinterner Lehrplan Einführungsphase Physik Einführungsphase. Bewegungen und Kräfte

Schulinterner Lehrplan Einführungsphase Physik Einführungsphase. Bewegungen und Kräfte Schulinterner Lehrplan Einführungsphase Physik Einführungsphase Bewegungen und Kräfte Zeit Inhalte / Experimente Kontexte Fachwissen Erkenntnisgewinnung Kommunikation Bewertung 2 Einführung allgemein Fahrzeuge

Mehr

Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Physik und Sport

Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Physik und Sport Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Physik und Sport Mechanik E7 Arbeits- und Denkweisen Wie lassen sich Bewegungen

Mehr

Quantenobjekte Photon (Wellenaspekt) Elektron (Teilchenaspekt) Quantenobjekte und ihre Eigenschaften

Quantenobjekte Photon (Wellenaspekt) Elektron (Teilchenaspekt) Quantenobjekte und ihre Eigenschaften Schulinternes Curriculum im Fach Physik Sekundarstufe II Teil 1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Qualifikationsphase (Q1) - GRUNDKURSE Kontext und Leitideen sfelder, liche Kompetenzschwerpunkte

Mehr

Physik. Lernziele (Kl. 9) Lerninhalte (Kl. 9)

Physik. Lernziele (Kl. 9) Lerninhalte (Kl. 9) Physik Lernziele (Kl. 9) Lerninhalte (Kl. 9) 1. Elektrizitätslehre 1.1 Magnetische Felder Kenntnis über Dauermagnete und deren Felder - Dauermagnete, Magnetpole - Kräfte zwischen Dauermagneten - Magnetfeld,

Mehr

Übersichtsraster Unterrichtsvorhaben Einführungsphase - 80 Stunden

Übersichtsraster Unterrichtsvorhaben Einführungsphase - 80 Stunden Übersichtsraster Unterrichtsvorhaben Einführungsphase - 80 Stunden Vorhaben I Vorhaben II Vorhaben III Kontext und Leitfrage: Physik und Sport Wie lassen sich Bewegungen vermessen und analysieren? Inhaltsfelder:

Mehr

Bildungsplan Gymnasium Physik Kompetenzen und (verbindliche) Inhalte Klasse 8

Bildungsplan Gymnasium Physik Kompetenzen und (verbindliche) Inhalte Klasse 8 Bildungsplan Gymnasium Physik Kompetenzen und (verbindliche) Inhalte Klasse 8 1. Physik als Naturbeobachtung unter bestimmten Aspekten a) zwischen Beobachtung und physikalischer Erklärung unterscheiden

Mehr

Implementation Physik II. Implementation II Lehrplan Physik in der Qualifikationsphase

Implementation Physik II. Implementation II Lehrplan Physik in der Qualifikationsphase Implementation II Lehrplan Physik in der Qualifikationsphase Der Weg zum Zentralabitur 2017 Ergebnisse des Abiturs Physik 2015 Abitur 2016 Vorgaben 2017, 2018 Beispielklausur 2017 für den Grundkurs Klausurbeispiele

Mehr

Einführung Einleitung Grundlagen Bewegung und Energie. 1.1 Grundbegriffe... 16

Einführung Einleitung Grundlagen Bewegung und Energie. 1.1 Grundbegriffe... 16 3 Inhaltsverzeichnis Einführung..................................................... 12 Einleitung..................................................... 12 Grundlagen.....................................................

Mehr

Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik in der Schule XY 3 2 Entscheidungen zum Unterricht 5 2.1 Unterrichtsvorhaben

Mehr

Schulinterner Lehrplan EBG Unna, Sek. II. Physik

Schulinterner Lehrplan EBG Unna, Sek. II. Physik Schulinterner Lehrplan EBG Unna, Sek. II Physik Inhalt Seite 1 Das Fach Physik am EBG... 3 2 Entscheidungen zum Unterricht... 4 3 Entscheidungen zu fach- und unterrichtsübergreifenden Fragen... 15 4 Qualitätssicherung

Mehr

Stoffverteilungsplan Physik Gymnasium

Stoffverteilungsplan Physik Gymnasium Stoffverteilungsplan Physik Gymnasium Impulse Physik Thüringen Klassenstufe 9/10 Schülerbuch 978-3-12-772544-5 Klassenstufe 9/10 Arbeitsheft 978-3-12-772545-2 Schule: Lehrer: Sach- und Methodenkompetenz

Mehr

Fachcurriculum Physik JS (4-stündig)

Fachcurriculum Physik JS (4-stündig) Fachcurriculum Physik JS (4-stündig) 1. Physik als Naturbetrachtung unter bestimmten Aspekten zwischen Beobachtung und physikalischer Erklärung unterscheiden zwischen der Erfahrungswelt und deren physikalischer

Mehr

Mariengymnasium Warendorf Europaschule. Schulinterner Lehrplan zum Kernlehrplan für das Gymnasium Sekundarstufe II. Physik. (Stand:

Mariengymnasium Warendorf Europaschule. Schulinterner Lehrplan zum Kernlehrplan für das Gymnasium Sekundarstufe II. Physik. (Stand: Mariengymnasium Warendorf Europaschule Schulinterner Lehrplan zum Kernlehrplan für das Gymnasium Sekundarstufe II Physik (Stand: 05.07.2016) Inhalt Seite 1 Rahmenbedingungen der fachlichen Arbeit 3 2 Entscheidungen

Mehr

Schulinterner Lehrplan (SILP) Physik

Schulinterner Lehrplan (SILP) Physik Christian-Rohlfs-Gymnasium Hagen Schulinterner Lehrplan (SILP) Physik Grundkurs Qualifikationsphase Q2 (GK Q2) Stand: 22.6.2015 SILP CRG GK-Q2 1 Unterrichtsvorhaben der Qualifikationsphase (Q2) GRUNDKURS

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Inhalt Seite. 1 Die Fachgruppe Physik am Goethe-Gymnasium 2

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Inhalt Seite. 1 Die Fachgruppe Physik am Goethe-Gymnasium 2 GOETHE GYMNASIUM Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik am Goethe-Gymnasium 2 2 Unterrichtvorhaben 3 2.1 Einführungsphase 4 2.1.1

Mehr

Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Albertus-Magnus-Gymnasium. Physik

Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Albertus-Magnus-Gymnasium. Physik Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Albertus-Magnus-Gymnasium Physik Inhalt Seite 1 Die Fachgruppe Physik am AMG 3 2 Entscheidungen zum Unterricht 5 2.1 Unterrichtsvorhaben

Mehr

Chemie Sekundarstufe II

Chemie Sekundarstufe II Chemie Sekundarstufe II Einführungsphase Grundkurs Qualifikationsphase Leistungskurs Q1 Q2 Q1 Unterrichtsvorhaben Unterrichtsvorhaben Unterrichtsvorhaben Unterrichtsvorhaben Unterrichtsvorhaben Q2 übergeordnete

Mehr

FACH: PHYSIK JAHRGANG: 11

FACH: PHYSIK JAHRGANG: 11 Folge der Einheiten Dauer der Einheit (ca.) SCHULINTERNER ARBEITSPLAN 1 14 Beschreiben und Beobachten von Bewegungen (Bahnkurven, Bezugssystem) Geradlinige Bewegungen mit konstanter Geschwindigkeit (t,s-

Mehr

Schulinterner Kernlehrplan für die gymnasiale Oberstufe (Physik Einführungsphase)

Schulinterner Kernlehrplan für die gymnasiale Oberstufe (Physik Einführungsphase) Schulinterner Kernlehrplan für die gymnasiale Oberstufe (Physik Einführungsphase) 1. Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche

Mehr

EF Q1 Q2 Seite 1

EF Q1 Q2 Seite 1 Folgende Kontexte und Inhalte sind für den Physikunterricht der Jahrgangsstufe 8 verbindlich. Fakultative Inhalte sind kursiv dargestellt. Die Versuche und Methoden sind in Ergänzung zum Kernlehrplan als

Mehr

Stoffverteilungsplan zum neuen Kernlehrplan für das Gymnasium in Nordrhein-Westfalen und seine Umsetzung mit

Stoffverteilungsplan zum neuen Kernlehrplan für das Gymnasium in Nordrhein-Westfalen und seine Umsetzung mit Stoffverteilungsplan zum neuen Kernlehrplan für das Gymnasium in Nordrhein-Westfalen und seine Umsetzung mit Fokus Physik Sekundarstufe II Qualifikationsphase Grundkurs 1/27 Unterrichtsvorhaben der Qualifikationsphase

Mehr

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel Präambel Dieses Curriculum stellt keinen Maximallehrplan dar, sondern will als offenes Curriculum die Möglichkeit bieten, auf die didaktischen und pädagogischen Notwendigkeiten der Qualifikationsphase

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase Städt. Gymnasium Köln-Deutz Schaurtestraße. Physik

Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase Städt. Gymnasium Köln-Deutz Schaurtestraße. Physik Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase Städt. Gymnasium Köln-Deutz Schaurtestraße Physik Allgemeine Bemerkungen zur Schule und zu den Arbeitsbedingungen im Fach Physik Das Deutzer

Mehr

Lehrplan. Physik. Handelsschule. Ministerium für Bildung, Kultur und Wissenschaft

Lehrplan. Physik. Handelsschule. Ministerium für Bildung, Kultur und Wissenschaft Lehrplan Physik Handelsschule Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024 Saarbrücken Saarbrücken 2006 Hinweis: Der Lehrplan ist online

Mehr

Hinweise zur Vorbereitung auf die Abiturprüfung 2011 Prüfungsschwerpunkte Physik

Hinweise zur Vorbereitung auf die Abiturprüfung 2011 Prüfungsschwerpunkte Physik Grundkurs 1. Schwerpunkte Die Angaben sind im Zusammenhang mit den Einheitlichen Prüfungsanforderungen (EPA) vom 01.12.1989 in der Fassung vom 05.02.2004 und dem Rahmenlehrplan für den Unterricht in der

Mehr

Mechanik Kräfte und Bewegungen Energie und Impuls. Mechanik Gravitation Kräfte und Bewegungen Energie und Impuls

Mechanik Kräfte und Bewegungen Energie und Impuls. Mechanik Gravitation Kräfte und Bewegungen Energie und Impuls Schulinternes Curriculum Physik, Sekundarstufe II, Einführungsphase Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte

Mehr

Deutsche Schule Tokyo Yokohama Lehrplan Physik Sekundarstufe II Stand: März 98

Deutsche Schule Tokyo Yokohama Lehrplan Physik Sekundarstufe II Stand: März 98 Deutsche Schule Tokyo Yokohama Lehrplan Physik Sekundarstufe II Stand: März 98 1.Vorbemerkungen und Ziele: Aufgabe des Faches Physik in der gymnasialen Oberstufe Im Unterricht des Faches Physik geht es

Mehr

Schulinternes Curriculum Physik

Schulinternes Curriculum Physik Schulinternes Curriculum Physik Jahrgangsstufe Kontexte Inhalte Vorschläge für zentrale Versuche Konzeptbezogene Kompetenzen Prozessbezogene Kompetenzen 8 Elektrizität messen, verstehen, anwenden Alltagserfahrungen

Mehr

Mechanik Kräfte und Bewegungen Energie und Impuls

Mechanik Kräfte und Bewegungen Energie und Impuls Φ Fachschaft P H Y S I K, Gymnasium Wilnsdorf Φ Stand: 06.2014 2.2 Übersichtsvorhaben für die Sekundarstufe 2 2.2.1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext

Mehr

Viktoriagymnasium. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Einführungsphase

Viktoriagymnasium. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Einführungsphase Viktoriagymnasium Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Einführungsphase gültig ab Schuljahr 2014/15 2 Inhalt Seite 1 Die Fachschaft Physik am Viktoriagymnasium 2

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Max-Planck-Gymnasium. Physik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Max-Planck-Gymnasium. Physik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Max-Planck-Gymnasium Physik 1 Die Fachgruppe Physik am MPG Das Max-Planck-Gymnasium befindet sich in einer mittleren Stadt des Ruhrgebiets.

Mehr

Physik Kursstufe (2-stündig)

Physik Kursstufe (2-stündig) Kern- und PHYSIK Physik Kursstufe (2-stündig) VORBEMERKUNG Der 2-stündige Physikkurs führt in grundlegende Fragestellungen, Sachverhalte, Strukturen sowie deren Zusammenhänge ein und vermittelt exemplarisch

Mehr

Physik. Schulinterner Lehrplan. Sekundarstufe II. Verabschiedete Fassung vom 17. November 2015 Erstellt von Dr. Arnold Schroeder, OStR

Physik. Schulinterner Lehrplan. Sekundarstufe II. Verabschiedete Fassung vom 17. November 2015 Erstellt von Dr. Arnold Schroeder, OStR Schulinterner Lehrplan Physik Sekundarstufe II Verabschiedete Fassung vom 17. November 2015 Erstellt von Dr. Arnold Schroeder, OStR Gymnasium Am Turmhof, Mechernich 17.11.2015 Seite 1 von 16 Inhalt Vorwort...

Mehr

Schulinternes Curriculum Sek II

Schulinternes Curriculum Sek II Physik Schulinternes Curriculum Sek II Inhalt Seite 1 Die Fachgruppe Physik des Dietrich Bonhoefer Gymnasiums 3 2 Entscheidungen zum Unterricht 5 2.1 Unterrichtsvorhaben 2.2 Grundsätze der fachmethodischen

Mehr

St.-Ursula-Gymnasium Attendorn. Fachschaft Physik. Anstaltslehrplan für die gesamte Oberstufe

St.-Ursula-Gymnasium Attendorn. Fachschaft Physik. Anstaltslehrplan für die gesamte Oberstufe St.-Ursula-Gymnasium Attendorn Fachschaft Physik Anstaltslehrplan für die gesamte Oberstufe Seite 1 von 85 Seite 1. Die Fachgruppe Physik am St.-Ursula-Gymnasium 2 2. Entscheidungen zum Unterricht 3 2.1

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Inhalt 1 Die Fachgruppe Physik am Gymnasium der Stadt Würselen 2 2 Entscheidungen zum Unterricht 3 2.1 Unterrichtsvorhaben 3

Mehr

Physik. Schuleigenes Kerncurriculum. Klasse Kepler-Gymnasium Freudenstadt. Schwingungen und Wellen. Elektrodynamik: Felder und Induktion

Physik. Schuleigenes Kerncurriculum. Klasse Kepler-Gymnasium Freudenstadt. Schwingungen und Wellen. Elektrodynamik: Felder und Induktion 1 Klasse 11+12 Elektrodynamik: Felder und Induktion Einführung in die Kursstufe Felder Analogien zwischen Gravitationsfeld, Magnetfeld und elektrischem Feld Eigenschaften, Visualisierung und Beschreibung

Mehr

Schulinterner Kernlehrplan für die gymn. Oberstufe (Physik Qualifikationsphase Gk)

Schulinterner Kernlehrplan für die gymn. Oberstufe (Physik Qualifikationsphase Gk) Schulinterner Kernlehrplan für die gymn. Oberstufe (Physik Qualifikationsphase Gk) 1. Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Qualifikationsphase (Q1) GRUNDKURS Kontext und Leitfrage

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Curriculum für das Fach: Physik

Curriculum für das Fach: Physik Curriculum für das Fach: Physik Das Unterrichtsfach Physik orientiert sich an den Merkmalen der Fachwissenschaft Physik: Sie ist eine theoriegeleitete Erfahrungswissenschaft, betrachtet die Natur unter

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Städtisches Gymnasium Wülfrath. Einführungsphase

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Städtisches Gymnasium Wülfrath. Einführungsphase Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Städtisches Gymnasium Wülfrath Einführungsphase Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase

Mehr

Schulinternes Curriculum ARG

Schulinternes Curriculum ARG Physik Schulinternes Curriculum ARG Unterrichtsvorhaben Fachliche Kompetenzen Inhalte Methoden / Material UMGANG MIT DACHWISSEN verwenden Entropie als Wärmeäquivalent. S1 1 THERMODYNAMIK ea ERKENNTNISGEWINNUNG

Mehr

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

Konkretisiertes Unterrichtsvorhaben. Einführungsphase (1. / 2. Semester)

Konkretisiertes Unterrichtsvorhaben. Einführungsphase (1. / 2. Semester) Konkretisiertes Unterrichtsvorhaben Einführungsphase (1. / 2. Semester) Inhaltsfelder: Mechanik Basiskonzepte: Wechselwirkung: Newton sche Gesetze, Gravitation Struktur der Materie: Masse Inhalt Grundlegendes

Mehr

I. Astronomische Weltbilder

I. Astronomische Weltbilder Grundwissen Physik 10. Jahrgangsstufe I. Astronomische Weltbilder 1. Geozentrisches Weltbild Wichtige Eigenschaften nach Ptolemäus 100-160: - Die Erde ist der Mittelpunkt der Welt - Das kugelförmige Himmelsgewölbe

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die Sekundarstufe II. Fach. Physik

Schulinterner Lehrplan zum Kernlehrplan für die Sekundarstufe II. Fach. Physik Schulinterner Lehrplan zum Kernlehrplan für die Sekundarstufe II Fach Physik 1 Inhalt Seite 1. Rahmenbedingungen der fachlichen Arbeit 3 2. Entscheidungen zum Unterricht 4 2.1 Unterrichtsvorhaben 4 2.1.A.

Mehr

Neu bei LEIFIphysik 2013/14

Neu bei LEIFIphysik 2013/14 Neu bei LEIFIphysik 2013/14 Dezember 2014 Radioaktivität - Fortführung: Musteraufgabe Radioaktives Cäsium in Wildschweinfleisch Elektromagnetische Wellen: Musteraufgabe Der Zeitzeichensender DCF77 Quantenobjekt

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase am Apostelgymnasium Köln. Physik

Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase am Apostelgymnasium Köln. Physik Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase am Apostelgymnasium Köln Physik Inhalt 1 Die Fachgruppe Physik am Apostelgymnasium 3 2 Entscheidungen zum Unterricht 4 2.1 Unterrichtsvorhaben

Mehr

Betty-Reis-Gesamtschule Wassenberg Lehrplan Physik Sekundarstufe II. Jahrgangsstufe 11.I

Betty-Reis-Gesamtschule Wassenberg Lehrplan Physik Sekundarstufe II. Jahrgangsstufe 11.I Jahrgangsstufe 11.I Teilnahme am Straßenverkehr Änderung: 2006 Anfahren und Überholen Beschleunigung aus dem Stand, Beschleunigungsdauer Überholvorgänge, Strecke und Dauer von Überholvorgängen Bremsen

Mehr

Schulinterner Lehrplan SII. für das Fach. Physik

Schulinterner Lehrplan SII. für das Fach. Physik Schulinterner Lehrplan SII für das Fach Physik Seite 1 von 85 Inhalt Seite 1. Die Fachgruppe Physik am Rivius Gymnasium 2 2. Entscheidungen zum Unterricht 3 2.1 Übersicht über die Unterrichtsvorhaben 4

Mehr

Hausinternes Curriculum Biologie: Inhalte, Methoden

Hausinternes Curriculum Biologie: Inhalte, Methoden Hausinternes Curriculum Biologie: Inhalte, Methoden (Stand: August 2015) E1 Cytologie Cytologie unter dem Aspekt der funktionellen Morphologie unter besonderer Berücksichtigung des licht- und elektronenmikroskopischen

Mehr

11.1. Physik VV zentrale Versuche. Stufe Thema zentrale Unterrichtsgegenstände MECHANIK

11.1. Physik VV zentrale Versuche. Stufe Thema zentrale Unterrichtsgegenstände MECHANIK Stufe Thema Unterrichtsgegenstände 11.1 MECHANIK KINEMATIK UND DYNA- MIK DES MASSENPUNK- TES Gesetze der gleichförmigen und gleichmäßig beschleunigten Bewegung träge Masse, Trägheitssatz Kraft, Grundgleichung

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit

Mehr

4 an Beispielen Energiefluss und Energieentwertung quantitativ darstellen.

4 an Beispielen Energiefluss und Energieentwertung quantitativ darstellen. 3.3 Konzeptbezogene Kompetenzen im Fach Kompetenzen zum Basiskonzept Energie" Jahrgang 9 Energiekonzept auf der Grundlage einfacher Beispiele so weit entwickelt, dass sie... 1 an Vorgängen aus ihrem Erfahrungsbereich

Mehr

LEHRPLAN FÜR DAS GRUNDLAGENFACH PHYSIK

LEHRPLAN FÜR DAS GRUNDLAGENFACH PHYSIK LEHRPLAN FÜR DAS GRUNDLAGENFACH PHYSIK A. Stundendotation Klasse 1. 2. 3. 4. Wochenstunden 2 2 2 B. Didaktische Konzeption (1) Beitrag des Faches zur gymnasialen Bildung Der Unterricht im Grundlagenfach

Mehr

Klasse 8 E-Lehre I: Wiederholung der Themen aus den Naturphänomenen (auch Magnetfeld und Erdmagnetfeld)

Klasse 8 E-Lehre I: Wiederholung der Themen aus den Naturphänomenen (auch Magnetfeld und Erdmagnetfeld) Physikcurriculum Klassen 7 / 8 Stundenzahl Themenbereiche / Wahlthemen zur Ergänzung 15 25 10 10 30 Klasse 7 Themen aus der Akustik, Quelle Empfänger Prinzip Wahrnehmung (Lautstärke, Tonhöhe, Hören) physikalische

Mehr

St.-Ursula-Gymnasium Attendorn. Fachschaft Physik. Anstaltslehrplan für die gesamte Oberstufe

St.-Ursula-Gymnasium Attendorn. Fachschaft Physik. Anstaltslehrplan für die gesamte Oberstufe St.-Ursula-Gymnasium Attendorn Fachschaft Physik Anstaltslehrplan für die gesamte Oberstufe Seite 1 von 85 Seite 1. Die Fachgruppe Physik am St.-Ursula-Gymnasium 2 2. Entscheidungen zum Unterricht 3 2.1

Mehr