Rechnerpraktikum zur Optimierung III

Größe: px
Ab Seite anzeigen:

Download "Rechnerpraktikum zur Optimierung III"

Transkript

1 TU München Lehrstuhl Mathematische Optimierung Prof. Dr. M. Ulbrich Dipl.-Math. Florian Lindemann Sommersemester 007 Teil II Rechnerpraktikum zur Optimierung III Für die Bearbeitung des Aufgabenzettels benötigen wir MATLAB. Dieses können Sie im Terminal durch den Aufruf starten. /usr/local/applic/bin/matlab P3. Berechnung eines 60-eckigen Polyeders (C 60 -Molekül) Die 60 Ecken v i = (v 1 i,v i,v3 i ) R3 eines Polyeders sollen so bestimmt werden, dass seine Oberfläche aus 1 regelmäßigen Fünf- und 0 regelmäßigen Sechsecken der Seitenlänge 1 besteht (C 60 -Molekül). Für je zwei benachbarte Ecken v i,v j muss daher gelten v i v j 1 = 0. Weiter gelten in jedem Fünfeck (v i1,v i,v i3,v i4,v i5,v i1 ) die Gleichungen v ij v ij+ 4sin (3π/10) = 0, j = 1,...,5, wobei i 6 = i 1, i 7 = i. Ebenso gilt für jedes Sechseck (v i1,v i,v i3,v i4,v i5,v i6,v i1 ) v ij v ij+ 4sin (π/3) = 0, j = 1,...,6, wobei i 7 = i 1, i 8 = i. Schließlich fordern wir noch, um das Polyeder zu fixieren, v 1 = 0, v 1 = v = 0, v 1 3 = 0. All diese = 76 Gleichungen schreiben wir in der Form F(x) = 0 mit F : R 180 R 76 und x = (v 1,...,v 60 ) T. Zur numerischen Behandlung überführen wir das obige Gleichungssystem in ein nichtlineares Optimierungsproblem: min f(x), f(x) = 1 x R 180 F(x). (1) Anhand dieses hochdimensionalen Problems lassen sich die Eigenschaften von Optimierungsverfahren sehr gut visualisieren. Mit Hilfe von MATLAB wurden ein Gradienten- und ein Gauß-Newton-Verfahren zur Lösung dieses Problems implementiert. Die entsprechenden Prozeduren heißen gradverf und GaussNewton. Außerdem stehen unter den Namen xinit1, xinit, usw., mehrere Startpolyeder zur Verfügung. 1

2 Gradientenverfahren mit Armijo-Schrittweitenwahl: x k+1 = x k + σ k s k, s k = f(x k ) = F (x k ) T F(x k ), σ k { k k = 0,1...} maximal mit f(x k +σ k s k ) f(x k ) σ k γ f(x k ) T s k. Gauß-Newton-Verfahren mit Armijo-Schrittweitenwahl: x k+1 = x k + σ k s k, F (x k ) T F (x k )s k = F (x k ) T F(x k ) (= f(x k )), σ k wie oben. a) Laden Sie sich über die Website des Rechnerpraktikums die Datei P3.tar herunter und entpacken Sie diese in Ihrem Arbeitsverzeichnis. Starten Sie MATLAB und wechseln Sie in dieses Arbeitsverzeichnis. b) Durch die Eingabe x1 = load( xinit1 ); gradverf(x1, ffct ); wird das Gradientenverfahren auf das Problem (1) angewendet, wobei im Punkt xinit1 gestartet wird. Nach jeder Iteration wird das zur aktuellen Iterierten gehörende Polyeder graphisch dargestellt. Außerdem werden k, f(x k ), f(x k ) und σ k ausgegeben. Durch Drücken der <CR>-Taste kann die nächste Iteration gestartet werden. Ebenso wird durch x = load( xinit ); GaussNewton(x, Ffct, ffct ); das Gauß-Newton-Verfahren gestartet, wobei xinit der Startpunkt ist. Führen Sie für mehrere Startpolyeder xinit1, xinit,... das Gradientenund das Gauß-Newton-Verfahren durch und bewerten Sie die Leistungsfähigkeit der beiden Algorithmen. c) Wir wollen nochmal den Startpunkt xinit6 mit dem Gauß-Newton-Verfahren betrachten und mehr Iterationen zulassen. Öffnen Sie dafür die Datei GaussNewton.m und setzen Sie die maximale Iterationszahl itmax auf den Wert 100. Starten Sie das Verfahren erneut und beurteilen Sie das Ergebnis. Wie ist die Lösung zu interpretieren und warum?

3 P4. Gradienten-, Newton-, inverses BFGS-Verfahren a) Laden Sie sich über die Website des Rechnerpraktikums die Datei P4.tar herunter und entpacken Sie diese in Ihrem Arbeitsverzeichnis. b) Untersuchen Sie mit MATLAB das Konvergenzverhalten des Gradienten-, Newton- und des inversen BFGS-Verfahrens für folgende Funktionen und Startpunkte: Dateiname Zielfunktion f Startpunkte 1) ExA.m (x 1 x ) + (x 1 4) (0,0), (10,10) ) ExBk.m x 1 + kx, (1,10), (10,1), k = 1,10,100 (1,100) 3) Rosenbrock.m 100(x x 1 ) + (1 x 1 ) (0,0), (-1.,1) 4) Brown.m (Browns (x ) (x 10 6 ) (1,1), (10,10) schlecht skalierte Fkt.) +(x 1 x ) Orientieren Sie sich dabei an folgender Syntax: Gradientenverfahren: Newtonverfahren: inverses BFGS-Verfahren: gradverf([0;0], ExA ); newton([0;0], ExA ); bfgs([0;0], ExA, gexa ); In allen Fällen wird das jeweilige Optimierungsverfahren mit dem Startpunkt (0,0) auf die Funktion ExA angewendet. Beim BFGS-Verfahren ist eine gesonderte Eingabe der Funktion zur Auswertung des Gradienten (in diesem Fall gexa) vorgesehen. Entsprechende Funktionen gexb1, gbrown, usw. sind ebenfalls vorhanden. Um mehr Iterationen beim Gradientenverfahren zuzulassen, öffnen Sie die Datei gradverf.m und setzen Sie die maximale Iterationszahl itmax auf den Wert

4 P5. Alternative Schrittweitenberechnung Bei der Armijo-Regel wird die Schrittweite zu einem Punkt x und einer Abstiegsrichtung s durch folgenden Algorithmus bestimmt: Bestimme die größte Zahl σ {1,β,β,...}, für die gilt: f(x + σs) f(x) σγ f(x) T s wobei β, γ (0, 1). Dabei wird σ so lange mit dem Faktor β verkleinert, bis die Armijo-Bedingung erfüllt ist. Anstelle dieses Backtracking-Ansatzes kann man die Funktion φ(σ) = f(x + σs) interpolieren, um eine geeignete Schrittweite zu finden. Die Armijo-Bedingung kann mit φ auf folgende Form gebracht werden: φ(σ) φ(0) σγφ (0) () Gesucht ist ein σ welches () erfüllt. Sei eine Startschätzung σ 0 (z.b. σ 0 = 1) gegeben. Falls σ 0 () nicht erfüllt, so approximieren wir φ(σ) mit Hilfe eines quadratischen Modells φ Q (σ): ( φ(σ0 ) φ(0) σ 0 φ ) (0) φ Q (σ) = σ + φ (0)σ + φ(0) σ 0 welches die Interpolationsbedingungen φ Q (0) = φ(0),φ Q (σ 0 ) = φ(σ 0 ) und φ Q (0) = φ (0) erfüllt. Die neue Schrittweite ist das Minimum von φ Q, also φ (0)σ0 σ 1 = (φ(σ 0 ) φ(0) φ (0)σ 0 ) Falls σ 1 die Armijo-Bedingung () erfüllt, so ist die Suche beendet. Andernfalls kann man ein kubisches Modell φ K (σ) erstellen, welches den Interpolationsbedingungen an φ(0),φ (0),φ(σ 0 ) und φ(σ 1 ) genügt: φ K (σ) = aσ 3 + bσ + σφ (0) + φ(0) wobei ( a b ) = 1 ( σ 0 σ1 σ0 σ 1 (σ 1 σ 0 ) σ0 3 σ1 3 )( φ(σ1 ) φ(0) φ (0)σ 1 φ(σ 0 ) φ(0) φ (0)σ 0 ) Über die erste Ableitung von φ K kann man erkennen, dass das Minimum σ von φ K im Intervall [0,σ 1 ] liegt und gegeben ist durch σ = b + b 3aφ (0) 3a Falls σ die Armijo-Bedingung () erfüllt, so ist eine passende Schrittweite gefunden. Falls nicht, kann der Prozess der kubischen Interpolation fortgesetzt werden, bis eine Lösung gefunden wird, wobei die Werte φ(0),φ (0) und die letzten beiden Werte von φ benutzt werden. Um zu vermeiden, dass ein σ k entweder zu nahe an σ k 1 oder zu viel kleiner als σ k 1 ist, wird zudem folgende Regel eingeführt: 4

5 Falls σ k / [β min σ k 1,β max σ k 1 ] setzen wir: σ k = σ k 1 Dabei sind β min,β max (0,1) mit β min < β max zwei von k und auch von einer äußeren Iteration unabhängige Konstanten. Dies garantiert, dass in endlich vielen Schritten eine Schrittweite gefunden wird und das Gradientenverfahren mit dieser Schrittweitenregel global konvergiert. a) Laden Sie sich über die Website des Rechnerpraktikums die Datei P5.tar herunter und entpacken Sie diese in Ihrem Arbeitsverzeichnis. Starten Sie MATLAB und wechseln Sie in dieses Arbeitsverzeichnis. b) Die Armijo-Regel mit Interpolation ist in der Datei InterpArmijo.m implementiert. Vergleichen Sie den Quelltext mit der Beschreibung der Schrittweitenregel. c) Ein Gradientenverfahren, welches mit der interpolierten Armijo-Regel arbeitet ist IPAgradverf. Testen Sie die neue Schrittweitenregel anhand des Problems ExA aus der Aufgabe P4 mit dem Startpunkt (10,10): IPAgradverf([10;10], ExA ); und vergleichen Sie das Ergebnis und die Iterationszahlen mit dem Gradientenverfahren mit normaler Armijo-Regel. Testen Sie auch andere Startpunkte. d) Vergleichen Sie die beiden Verfahren anhand einiger Probleme aus der Aufgabe P4. e) Vergleichen Sie sie auch beim Polyeder-Problem aus Aufgabe P3. Um die Iterationszahlen besser vergleichen zu können, können Sie die pause Befehle in der Datei IPAgradverf.m auskommentieren (mit %). P6. Hausaufgabe Im nächsten Rechnerpraktikum wollen wir Optimierungssoftware auf den Rechnern installieren. Diese nutzt zum Lösen der auftretenden Gleichungssysteme externe Lineare-Algebra-Pakete. Damit wir diese nutzen können, muss sich jeder Benutzer vorher bei der HSL (früher Harwell Subroutine Library) registrieren lassen. Ihre Hausaufgabe besteht darin, sich die Pakete MA7 und MC19 zu besorgen: a) Gehen Sie zur Seite Folgen Sie den Instruktionen auf der Seite, lesen Sie die Nutzer-Lizenz und registrieren Sie sich, wenn Sie mit den Lizenzvereinbarungen einverstanden sind. b) Wenn Sie sich registriert haben, erhalten Sie einen Username und ein Passwort. Damit haben Sie Zugang zu HSL Archive Programs. Laden Sie sich dort die Pakete MA7 und MC19 herunter. Beachten Sie, dass Sie ebenfalls die Pakete FD05, ID05 und ZA0 benötigen, die Sie auch dort heruterladen können (für die Arithmetik Generic IEEE). 5

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Rechnerpraktikum zur Optimierung III

Rechnerpraktikum zur Optimierung III TU München Lehrstuhl Mathematische Optimierung Prof. Dr. M. Ulbrich Dipl.-Math. Florian Lindemann Sommersemester 2007 Teil I Rechnerpraktikum zur Optimierung III P1. Durchhängenes Seil Die senkrechten

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung TU München Lehrstuhl Mathematische Optimierung Prof. Dr. Michael Ulbrich Dipl.-Math. Florian Lindemann Wintersemester 2008/09 Blatt 2 Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung P5. Installation

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Aufgabe 5 Bestimmen

Mehr

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest

Mehr

6.8 Newton Verfahren und Varianten

6.8 Newton Verfahren und Varianten 6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

NUMERISCHE MATHEMATIK I

NUMERISCHE MATHEMATIK I D-MATH ETH Zürich, 22. August 2011 Prof. Ch. Schwab NUMERISCHE MATHEMATIK I 1. Interpolation und Quadratur (25 P.) a) Sei [a, b] R 1 mit a < b ein beschränktes Intervall, und f C 2 ([a, b]). Zeigen Sie,

Mehr

Numerische Integration und Differentiation

Numerische Integration und Differentiation Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Polynominterpolation

Polynominterpolation Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses

Mehr

8.3 Lösen von Gleichungen mit dem Newton-Verfahren

8.3 Lösen von Gleichungen mit dem Newton-Verfahren 09.2.202 8.3 Lösen von Gleichungen mit dem Newton-Verfahren Beispiel: + 2 e Diese Gleichung kann nicht nach aufgelöst werden, da die beiden nicht zusammengefasst werden können. e - - 2 0 Die gesuchten

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Optimierung mit Matlab

Optimierung mit Matlab Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Computerbasierte Mathematische Modellierung für Mathematiker, Wirtschaftsmathematiker, Informatiker im Wintersemester

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Kapitel 8: Suche nach Nullstellen und Extremwerten

Kapitel 8: Suche nach Nullstellen und Extremwerten Kapitel 8: Suche nach Nullstellen und Extremwerten Nullstellensuche (root finding) Einfachste Variante: Suche Nullstelle(n) einer 1D-Funktion: f(x) = 0 (1) Dies umfaßt bereits scheinbar andere Fälle, z.b.

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Numerische Verfahren der nicht-linearen Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Line

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München Fakultät

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

Die CUTEr Testbibliothek

Die CUTEr Testbibliothek Die CUTEr Testbibliothek Slide 1 Motivation Softwarepakete mit vollkommen verschiedenen Anwendungsschwerpunkten Optimierung entweder nur einer von vielen Schwerpunkten oder sogar nur Nebenprodukt zur Lösung

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Vorwort 2 1 Der Taschenrechner 3 1.1 Erste Rechnungen.................................. 3 1.2 Bearbeiten und Löschen der Eingaben....................... 4 1.3 Mehrere

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

KLAUSUR zu Einführung in die Optimierung. Studiengang: Bachelor Master Diplom (bitte ankreuzen)

KLAUSUR zu Einführung in die Optimierung. Studiengang: Bachelor Master Diplom (bitte ankreuzen) Mathematisches Institut WS 2012/13 der Heinrich-Heine-Universität 7.02.2013 Düsseldorf Prof. Dr. Achim Schädle KLAUSUR zu Einführung in die Optimierung Bitte folgende Angaben ergänzen und DEUTLICH LESBAR

Mehr

Überbestimmte lineare Gleichungssysteme

Überbestimmte lineare Gleichungssysteme Überbestimmte lineare Gleichungssysteme Fakultät Grundlagen September 2009 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme Übersicht 1 2 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme

Mehr

1 Rechnen mit 2 2 Matrizen

1 Rechnen mit 2 2 Matrizen 1 Rechnen mit 2 2 Matrizen 11 Produkt Wir berechnen das allgemeine Produkt von A = Für das Produkt gilt AB = a11 a 12 a 21 a 22 a11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12

Mehr

Iterative Lösung Linearer Gleichungssysteme

Iterative Lösung Linearer Gleichungssysteme Iterative Lösung Linearer Gleichungssysteme E. Olszewski, H. Röck, M. Watzl 1. Jänner 00 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Vorwort C.F.Gauß in einem Brief vom 6.1.18 an Gerling:

Mehr

Mathcad Prime 2.0 Grundlagen

Mathcad Prime 2.0 Grundlagen Mathcad Prime 2.0 Grundlagen Überblick Kursnummer TRN 3431 T Kursdauer 2 Tage In diesem Kurs lernen Sie die Grundlagen von Mathcad Prime kennen. Sie lernen die umfangreichen Funktionen von Mathcad Prime

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Praktikum Statische Prozessoptimierung. VERSUCH StatPO-1 Nichtlineare Optimierung

Praktikum Statische Prozessoptimierung. VERSUCH StatPO-1 Nichtlineare Optimierung Fakultät für Informatik und Automatisierung Institut für Automatisierungs und Systemtechnik Fachgebiet Simulation und Optimale Prozesse Praktikum Statische Prozessoptimierung VERSUCH StatPO-1 Nichtlineare

Mehr

Eine Kurzanleitung zu Mathematica

Eine Kurzanleitung zu Mathematica MOSES Projekt, GL, Juni 2003 Eine Kurzanleitung zu Mathematica Wir geben im Folgenden eine sehr kurze Einführung in die Möglichkeiten, die das Computer Algebra System Mathematica bietet. Diese Datei selbst

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Klausur zur Vordiplom-Prüfung

Klausur zur Vordiplom-Prüfung Technische Universität Hamburg-Harburg SS 25 Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren 22. Juli 25 Sie haben 9 Minuten Zeit zum Bearbeiten der

Mehr

Nichtlineare Optimierungsprobleme mit Komplexität

Nichtlineare Optimierungsprobleme mit Komplexität Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-

Mehr

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 6. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 00 6. Wie hat man eine reelle Zahl α > 0 so in a b 3 positive Summanden x, y, z zu zerlegen, damit fx, y x y

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Datenanalyse in der Physik. Übung 1. Übungen zu C und MAPLE

Datenanalyse in der Physik. Übung 1. Übungen zu C und MAPLE Datenanalyse in der Physik Übung 1 Übungen zu C und MAPLE Prof. J. Mnich joachim.mnich@desy.de DESY und Universität Hamburg Datenanalyse in der Physik Übung 1 p. 1 Bemerkungen zu den Übungen Schulungsaccounts

Mehr

NICHTLINEARE GLEICHUNGSSYSTEME

NICHTLINEARE GLEICHUNGSSYSTEME NICHTLINEARE GLEICHUNGSSYSTEME Christian Kanzow Julius Maximilians Universität Würzburg Institut für Mathematik Am Hubland 97074 Würzburg e-mail: kanzow@mathematik.uni-wuerzburg.de URL: http://www.mathematik.uni-wuerzburg.de/

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Nichtlineare Gleichungen

Nichtlineare Gleichungen Nichtlineare Gleichungen Ein wichtiges Problem in der Praxis ist die Bestimmung einer Lösung ξ der Gleichung f(x) =, () d.h. das Aufsuchen einer Nullstelle ξ einer (nicht notwendig linearen) Funktion f.

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Problem lokaler Minima

Problem lokaler Minima Optimierung Optimierung Häufige Aufgabe bei Parameterschätzung: Minimierung der negativen log-likelihood-funktion F(a) oder der Summe der quadratischen Abweichungen S(a) und Berechnung der Unsicherheit

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Einführung in die Optimierung

Einführung in die Optimierung Einführung in die Optimierung Prof. Dr. Bastian von Harrach Universität Stuttgart, Fachbereich Mathematik - IMNG Lehrstuhl für Optimierung und inverse Probleme Wintersemester 2014/15 http://www.mathematik.uni-stuttgart.de/oip

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

4) Lösen linearer Gleichungssysteme mit zwei oder drei Unbekannten

4) Lösen linearer Gleichungssysteme mit zwei oder drei Unbekannten 1) Wechsel der Darstellung Taschenrechner CASIO fx-991 ES Denn es ist eines ausgezeichneten Mannes nicht würdig, wertvolle Stunden wie ein Sklave im Keller der einfachen Berechnungen zu verbringen. Gottfried

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke.

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke. MATHEMATIK Schönbuch-Gymnasium Holzgerlingen Seite 1/5 Ähnliche Figuren - Strahlensätze Figuren zentrisch strecken Eigenschaften der zentrischen Streckung kennen und Zentrische Streckung anwenden Strahlensätze

Mehr

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

Lineare und nichtlineare Optimierung

Lineare und nichtlineare Optimierung Lineare und nichtlineare Optimierung AXEL DREVES Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Universität der Bundeswehr München Werner-Heisenberg-Weg 39 85577 Neubiberg/München

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Iterative Methods for Improving Mesh Parameterizations

Iterative Methods for Improving Mesh Parameterizations Iterative Methods for Improving Mesh Parameterizations Autoren: Shen Dong & Michael Garland, SMI 07 Nicola Sheldrick Seminar Computergrafik April 6, 2010 Nicola Sheldrick (Seminar Computergrafik)Iterative

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

Optimale Steuerung 1

Optimale Steuerung 1 Optimale Steuerung 1 Kapitel 5: Eindimensionale Nichtlineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Beispiel: Optimierung des Rohrleitungsdurchmessers für den

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

KORREKTURANLEITUNGEN zum Testheft A1

KORREKTURANLEITUNGEN zum Testheft A1 Projekt Standardisierte schriftliche Reifeprüfung in Mathematik KORREKTURANLEITUNGEN zum Testheft A1 A1 Zahlen N Z Q R 0,03-6 π 3 10-3 1 Bemerkung: Die Aufgabe gilt nur dann als richtig gelöst, wenn alle

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

Nichtlineare Optimierung

Nichtlineare Optimierung Technische Universität Berlin Fakultät II Institut für Mathematik Nichtlineare Optimierung Vorlesung im Wintersemester 05/06 Dietmar Hömberg Im WS 01/0.2 gehalten von F. Tröltzsch. Grundlage der Vorlesung

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Lösungsvorschlag - Zusatzaufgaben (2)

Lösungsvorschlag - Zusatzaufgaben (2) HOCHSCHULE KARLSRUHE Sommersemester 014 Elektrotechnik - Sensorik Übung Mathematik I B.Sc. Paul Schnäbele Lösungsvorschlag - Zusatzaufgaben ) a) x ) fx) = D = R \ { } x + Es liegt keine gängige Symmetrie

Mehr

Einführung in die nichtlineare Optimierung

Einführung in die nichtlineare Optimierung Einführung in die nichtlineare Optimierung Prof. Dr. Walter Alt Semester: SS 2010 1 Vorwort Dieses Dokument wurde als Skript für die auf der Titelseite genannte Vorlesung erstellt und wird jetzt im Rahmen

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

Damit läßt sich die Aufgabe durch einfaches Rechnen zeigen: k=1

Damit läßt sich die Aufgabe durch einfaches Rechnen zeigen: k=1 Aufgabe (4 Punte) Sei A eine n m-matrix Die Matrix A T ist die m n-matrix, die durch Vertauschen der Zeilen und Spalten aus A hervorgeht (dh: aus Zeilen werden Spalten, und umgeehrt) Die Matrix A T heißt

Mehr

II. Nichtlineare Optimierung

II. Nichtlineare Optimierung II. Nichtlineare Optimierung 1. Problemstellungen 2. Grundlagen 3. Probleme ohne Nebenbedingungen 4. Probleme mit Nebenbedingungen Theorie 5. Probleme mit Nebenbedingungen Verfahren H. Weber, FHW, OR SS06,

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr