Algorithmische Methoden für schwere Optimierungsprobleme

Größe: px
Ab Seite anzeigen:

Download "Algorithmische Methoden für schwere Optimierungsprobleme"

Transkript

1 Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische Informatik nationales Algorithmische Forschungszentrum Methoden in der Helmholtz-Gemeinschaft für schwere Optimierungsprobleme

2 Fortsetzung Vorlesung 9 Programm: Clusteranalyse in Graphen Modularität 2 Henning Meyerhenke, Institut für Theoretische Informatik

3 Inhalt Einführung 3 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

4 Stetig wachsende Datenflut Schlagwort Big Data in aller Munde Rasantes Wachstum der Menge von (irregulär strukturierten) Daten: Teilchenbeschleuniger, Teleskope: Terabytes / Tag Facebook: 1G+ Mitglieder, 1G+ Aktionen/Tag Web-Graph, Log-Dateien, Smartphone-Aktionen 4 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

5 Stetig wachsende Datenflut Schlagwort Big Data in aller Munde Rasantes Wachstum der Menge von (irregulär strukturierten) Daten: Teilchenbeschleuniger, Teleskope: Terabytes / Tag Facebook: 1G+ Mitglieder, 1G+ Aktionen/Tag Web-Graph, Log-Dateien, Smartphone-Aktionen Big Data: Nicht nur Graphdaten, aber auch! 4 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

6 Was ist BIG? Irregulär strukturierte Daten wachsen mit enormer Geschwindigkeit: Facebook: 1G+ Mitglieder, durchschnittlich 130 Freunde, 1G+ neue Inhalte pro Tag Twitter: 1G Tweets pro Woche Web-Graph Finanztransaktionen 5 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

7 Gesundheitspolitische Erwägungen Epidemien (Grippe,...) sind in sozialen Netzwerken nachvollziehbar Lassen sich (gesundheits)politische Entwicklungen durch Analyse von sozialen Medien vorhersagen? Zu bedenken: Twitter: 1G+ Tweets/Woche Andere Dienste auch relevant Datenschutz Zielkonflikt zwischen Laufzeit und Genauigkeit wordpress.com 6 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

8 Community Detection Natürliche Gruppen eines Netzwerks identifizieren Komplexität reduzieren: Anwendung teurer Algorithmen nur auf Teile des Netzwerks aber welche? Clusteranalyse (z. B. geometrisch) Daten desselben Clusters sind sich ähnlich Daten verschiedener Cluster sind sich unähnlich 7 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

9 Community Detection Natürliche Gruppen eines Netzwerks identifizieren Komplexität reduzieren: Anwendung teurer Algorithmen nur auf Teile des Netzwerks aber welche? Clusteranalyse (z. B. geometrisch) Daten desselben Clusters sind sich ähnlich Daten verschiedener Cluster sind sich unähnlich Community Detection Knoten desselben Clusters sind stark miteinander verbunden Knoten verschiedener Cluster sind schwach miteinander verbunden blogspot.com 7 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

10 Community Detection Problem (Graph Clustering / Community Detection) Eingabe: Graph G = (V, E) Ausgabe: Clusterung (Partition von V ), die Zielfunktion optimiert Oft: Zielfunktion (ZF) wägt Anteil der internen Kanten, Anteil der externen Kanten und Clustergrößen ab Fast alle (interessanten) ZF sind N P-schwer zu optimieren 8 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

11 Community Detection Problem (Graph Clustering / Community Detection) Eingabe: Graph G = (V, E) Ausgabe: Clusterung (Partition von V ), die Zielfunktion optimiert Oft: Zielfunktion (ZF) wägt Anteil der internen Kanten, Anteil der externen Kanten und Clustergrößen ab Fast alle (interessanten) ZF sind N P-schwer zu optimieren Weitere Anwendungen Ähnliche Objekte finden (Gene, Produkte, Personen,...) Verteiltes Rechnen, Speichern Visualisierung 8 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

12 Zielfunktion Modularität Frage: Wie formalisiert man Ähnlichkeit? 9 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

13 Zielfunktion Modularität Frage: Wie formalisiert man Ähnlichkeit? Populäre Zielfunktion (wenn auch mit Nachteilen): Modularität (engl. modularity) Man betrachtet die Differenz aus zwei Verhältnissen: Anteil der tatsächlichen Intra-Cluster-Kanten Erwarteter Anteil dieser Kanten in einem Zufallsgraphen mit gleicher Gradfolge ( ( ) ) E(C) q(c) = m v C deg(v) 2 2m C C 9 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

14 Zielfunktion Modularität Frage: Wie formalisiert man Ähnlichkeit? Populäre Zielfunktion (wenn auch mit Nachteilen): Modularität (engl. modularity) Man betrachtet die Differenz aus zwei Verhältnissen: Anteil der tatsächlichen Intra-Cluster-Kanten Erwarteter Anteil dieser Kanten in einem Zufallsgraphen mit gleicher Gradfolge ( ( ) ) E(C) q(c) = m v C deg(v) 2 2m C C Erklärung: Tafel/Übung! Modularität hat einige bekannte Nachteile, z. B. das Auflösungsproblem (kann man teilweise durch ein Gewichtungsschema beseitigen) 9 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

15 Modularität Komplexität Optimierung bzgl. Modularität ist streng N P-schwer Problem 1: MODULARITY Gegeben ein Graph G und eine Zahl K, gibt es eine Clusterung C von G, für die q(c) K gilt? 10 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

16 Modularität Komplexität Optimierung bzgl. Modularität ist streng N P-schwer Problem 1: MODULARITY Gegeben ein Graph G und eine Zahl K, gibt es eine Clusterung C von G, für die q(c) K gilt? Problem 2: 3-PARTITION Seien 3k positive ganze Zahlen a 1,..., a 3k derart gegeben, dass 3k i=1 a i = kb und b/4 < a i < b/2 für eine ganze Zahl b und alle i = 1,..., 3k. Gibt es eine Partition dieser Zahlen in k Mengen derart, dass die Zahlen in jeder Menge in der Summe b ergeben? Beweis in Master-Vorlesung AMNA! 10 Henning Meyerhenke, Institut für Theoretische Informatik Einführung

17 Inhalt Einführung 11 Henning Meyerhenke, Institut für Theoretische Informatik

18 Spektrale Optimierung von Modularität N P-schwer: Was nun? : Globale Methode (Heuristik) Hier: Darstellung für Teilung in 2 Cluster Allgemeines k durch rekursives Vorgehen Setzt voraus, dass k bekannt ist 12 Henning Meyerhenke, Institut für Theoretische Informatik

19 Spektrale Optimierung von Modularität N P-schwer: Was nun? : Globale Methode (Heuristik) Hier: Darstellung für Teilung in 2 Cluster Allgemeines k durch rekursives Vorgehen Setzt voraus, dass k bekannt ist Gegeben: Schlichter, ungerichteter und zusammenhängender Graph G = (V, E), V = n, mit positiven Kantengewichten Gesucht: 2-Clusterung (V 1, V 2 ), die Modularität maximiert 12 Henning Meyerhenke, Institut für Theoretische Informatik

20 Das grobe Vorgehen 1. Kodiere Clusterung in Vektoren 2. Kodiere Graphen in einer Matrix 3. Zielfunktion und Nebenbedingungen aufstellen 4. Diskretes Problem zu kontinuierlichem Problem relaxieren 5. Kontinuierliches Problem mit Mitteln der linearen Algebra und der Analysis lösen 6. Lösung diskretisieren 13 Henning Meyerhenke, Institut für Theoretische Informatik

21 Das grobe Vorgehen 1. Kodiere Clusterung in Vektoren 2. Kodiere Graphen in einer Matrix 3. Zielfunktion und Nebenbedingungen aufstellen 4. Diskretes Problem zu kontinuierlichem Problem relaxieren 5. Kontinuierliches Problem mit Mitteln der linearen Algebra und der Analysis lösen 6. Lösung diskretisieren 13 Henning Meyerhenke, Institut für Theoretische Informatik

22 Kodierung von Bipartitionen in Vektoren Sei (V 1, V 2 ) eine 2-Clusterung von V. Wir kodieren diese in x = (x 1,..., x n ) T Z n durch: x i = { 1 vi V 1 +1 v i V 2 Beachten Sie: Normiert mit x 2 2 = n. 14 Henning Meyerhenke, Institut für Theoretische Informatik

23 Das grobe Vorgehen 1. Kodiere Clusterung in Vektoren 2. Kodiere Graphen in einer Matrix 3. Zielfunktion und Nebenbedingungen aufstellen 4. Diskretes Problem zu kontinuierlichem Problem relaxieren 5. Kontinuierliches Problem mit Mitteln der linearen Algebra und der Analysis lösen 6. Lösung diskretisieren 15 Henning Meyerhenke, Institut für Theoretische Informatik

24 Kodierung des Graphen in einer Matrix Adjazenzmatrix: A = Henning Meyerhenke, Institut für Theoretische Informatik

25 Kodierung des Graphen in einer Matrix Adjazenzmatrix: A = Gradmatrix: D = Henning Meyerhenke, Institut für Theoretische Informatik

26 Kodierung des Graphen in einer Matrix Definition (Laplace-Matrix) L := D A L = = Henning Meyerhenke, Institut für Theoretische Informatik

27 Modularität: Andere Formulierung Beobachtung q(c) lässt sich auch schreiben als: 1 2m ij ( A ij wobei δ das Kronecker-Symbol ist und C(i) der Cluster von Knoten i in C. ) deg(i) deg(j) δ(c(i), C(j)), (1) 2m 18 Henning Meyerhenke, Institut für Theoretische Informatik

28 Modularitäts-Matrix Definition Sei die Modularitäts-Matrix B definiert als: B ij = A ij deg(i) deg(j) 2m Proposition n j=1 B ij = 0 i q(c) = 1 4m xt Bx mit B = B(G) und x = x(c) 19 Henning Meyerhenke, Institut für Theoretische Informatik

29 Modularitäts-Matrix Definition Sei die Modularitäts-Matrix B definiert als: B ij = A ij deg(i) deg(j) 2m Proposition n j=1 B ij = 0 i q(c) = 1 4m xt Bx mit B = B(G) und x = x(c) Beweis: Übung! 19 Henning Meyerhenke, Institut für Theoretische Informatik

30 Das grobe Vorgehen 1. Kodiere Clusterung in Vektoren 2. Kodiere Graphen in einer Matrix 3. Zielfunktion und Nebenbedingungen aufstellen 4. Diskretes Problem zu kontinuierlichem Problem relaxieren 5. Kontinuierliches Problem mit Mitteln der linearen Algebra und der Analysis lösen 6. Lösung diskretisieren 20 Henning Meyerhenke, Institut für Theoretische Informatik

31 Zielfunktion und Nebenbedingungen Maximiere q = 1 4m xt Bx u. d. Nb. x i { 1, 1} i 21 Henning Meyerhenke, Institut für Theoretische Informatik

32 Zielfunktion und Nebenbedingungen Maximiere q = 1 4m xt Bx u. d. Nb. x i { 1, 1} i Bild des Suchraums: Siehe Tafel! 21 Henning Meyerhenke, Institut für Theoretische Informatik

33 Das grobe Vorgehen 1. Kodiere Clusterung in Vektoren 2. Kodiere Graphen in einer Matrix 3. Zielfunktion und Nebenbedingungen aufstellen 4. Diskretes Problem zu kontinuierlichem Problem relaxieren 5. Kontinuierliches Problem mit Mitteln der linearen Algebra und der Analysis lösen 6. Lösung diskretisieren 22 Henning Meyerhenke, Institut für Theoretische Informatik

34 Das kontinuierliche Problem Die Ganzzahligkeits-Bedingung wird relaxiert: Maximiere q = 1 4m xt Bx u. d. Nb. x i R i und x T x = n (quadratische Norm) 23 Henning Meyerhenke, Institut für Theoretische Informatik

35 Das grobe Vorgehen 1. Kodiere Clusterung in Vektoren 2. Kodiere Graphen in einer Matrix 3. Zielfunktion und Nebenbedingungen aufstellen 4. Diskretes Problem zu kontinuierlichem Problem relaxieren 5. Kontinuierliches Problem mit Mitteln der linearen Algebra und der Analysis lösen 6. Lösung diskretisieren 24 Henning Meyerhenke, Institut für Theoretische Informatik

36 Lösen des kontinuierlichen Problems Herleitung des EV-Problems anhand der Ableitung der ZF und Überführung in Lagrange-Optimierung (Details nicht Teil dieser Vorlesung) Schließlich: Berechne Eigenvektor z 1 zum größten Eigenwert von B 25 Henning Meyerhenke, Institut für Theoretische Informatik

37 Das grobe Vorgehen 1. Kodiere Clusterung in Vektoren 2. Kodiere Graphen in einer Matrix 3. Zielfunktion und Nebenbedingungen aufstellen 4. Diskretes Problem zu kontinuierlichem Problem relaxieren 5. Kontinuierliches Problem mit Mitteln der linearen Algebra und der Analysis lösen 6. Lösung diskretisieren 26 Henning Meyerhenke, Institut für Theoretische Informatik

38 Lösung diskretisieren Kontinuierliche Lösung x = z 1 diskrete Lösung x mit folgenden Eigenschaften: x i {+1, 1} (x soll eine 2-Clusterung kodieren) { 1 xi < 0 x i = +1 x i > 0 27 Henning Meyerhenke, Institut für Theoretische Informatik

39 Spektrale Partitionierung Algorithmus Eingabe: G = (V, E) Ausgabe: 2-Clusterung (V 1, V 2 ) von G 1. Konstruiere B(G) 2. Berechne den Eigenvektor z 1 von B(G) 3. Partitioniere Indizes von z 1 in zwei Teile: V 1 := {i z 1 (i) < 0}, V 2 := {i z 1 (i) > 0} 4. Weise die Null-Einträge von z 1 beliebig zu 5. return (V 1, V 2 ) 28 Henning Meyerhenke, Institut für Theoretische Informatik

40 Diskussion Vorteile: Schnell programmiert (Eigenlöser-Bibliothek vorausgesetzt) Verbreitetes Clustering-Konzept Theoretische Analyse 29 Henning Meyerhenke, Institut für Theoretische Informatik

41 Diskussion Vorteile: Schnell programmiert (Eigenlöser-Bibliothek vorausgesetzt) Verbreitetes Clustering-Konzept Theoretische Analyse Nachteile: Laufzeit nicht so gut wie schnelle lokale Verfahren Qualität in der Regel nicht so gut wie Multilevel + lokale Heuristik (Praxis) bzw. LP oder SDP (Theorie) 29 Henning Meyerhenke, Institut für Theoretische Informatik

42 Diskussion Vorteile: Schnell programmiert (Eigenlöser-Bibliothek vorausgesetzt) Verbreitetes Clustering-Konzept Theoretische Analyse Nachteile: Laufzeit nicht so gut wie schnelle lokale Verfahren Qualität in der Regel nicht so gut wie Multilevel + lokale Heuristik (Praxis) bzw. LP oder SDP (Theorie) Trotzdem wertvoll: In der Praxis z. B. als Startlösung 29 Henning Meyerhenke, Institut für Theoretische Informatik

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Clustering: Partitioniere Objektmenge in Gruppen(Cluster), so dass sich Objekte in einer Gruppe ähnlich sind und Objekte

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Dozent: Prof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK

Mehr

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik

Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Netzwerke / Graphen verschiedene Typen von Graphen: einfache

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Angewandte Informatik

Angewandte Informatik Angewandte Informatik Analyse des Graphs G zur Bestimmung von Parallel- undreihenschaltung Prof. Dr. Nikolaus Wulff Gewichteter Multigraph Die Adjazenzmatrix eines Graphen eignet sich auch zur Analyse

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

Euklidische Distanzmatrizen. Andrei Grecu

Euklidische Distanzmatrizen. Andrei Grecu Euklidische Distanzmatrizen Andrei Grecu Übersicht Motivation Definition und Problemstellung Algo 1: Semidefinite Programmierung Algo 2: Multidimensional Scaling Algo 3: Spring Embedder Algo 4: Genetischer

Mehr

Wie Google Webseiten bewertet. François Bry

Wie Google Webseiten bewertet. François Bry Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Inhaltsverzeichnis. Grundlagen

Inhaltsverzeichnis. Grundlagen Grundlagen 1 Logik und Mengen... 1 1.1 Elementare Logik... 1 1.2 Elementare Mengenlehre... 10 1.3 Schaltalgebra... 15 1.3.1 Anwendung: Entwurf von Schaltkreisen... 21 1.4 Mit dem digitalen Rechenmeister...

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Diskrete Strukturen Kapitel 1: Einleitung

Diskrete Strukturen Kapitel 1: Einleitung WS 2015/16 Diskrete Strukturen Kapitel 1: Einleitung Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

Big Data aus Sicht der Algorithmentechnik

Big Data aus Sicht der Algorithmentechnik Big Data aus Sicht der Algorithmentechnik Parallele Analyse- und Optimierungsmethoden für große Graphen Juniorprof. Dr. Henning Meyerhenke, ITI Antrittsvorlesung, 28. Januar 2013, Fakultät für Informatik,

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

2. Übungsblatt zu Algorithmen II im WS 2016/2017

2. Übungsblatt zu Algorithmen II im WS 2016/2017 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Dr. Christian Schulz, Dr. Simon Gog Michael Axtmann. Übungsblatt zu Algorithmen II im WS 016/017 Aufgabe

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Lineares Programmieren

Lineares Programmieren Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2011 Nachtrag Art Gallery Problem Lässt sich der Triangulierungs-Algorithmus

Mehr

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme Universität Hamburg Fachbereich Mathematik Seminar: Proseminar Graphentheorie Dozentin: Haibo Ruan Sommersemester 2011 Ausarbeitung zum Modulabschluss Graphentheorie spannende Bäume, bewertete Graphen,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Universität des Saarlandes

Universität des Saarlandes Universität des Saarlandes FR 6.2 Informatik Prof. Dr. Kurt Mehlhorn WiSe 2015/2016 Übungen zu Ideen der Informatik http://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter15/ideen/

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Christian Schulz und Johannes Singler

Christian Schulz und Johannes Singler Christian Schulz und Johannes Singler, Prof. Sanders 1 KIT Christian Universität des Schulz Landes Baden-Württemberg und Johannes undsingler: nationales 3. Übung Forschungszentrum Algorithmen in der Helmholtz-Gemeinschaft

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

Probabilistische Analyse von Algorithmen

Probabilistische Analyse von Algorithmen Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen 27. Mai 2005 Übersicht Einführung 1 Einführung 2 Exkurs: Wahrscheinlichkeitstheorie Borgwardts 3 Idee 4 Formale Beschreibung des s Motivation

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Daniel Borchmann. Sommerakademie Görlitz September 2007

Daniel Borchmann. Sommerakademie Görlitz September 2007 Einführung in Semidenite Programmierung Daniel Borchmann Sommerakademie Görlitz 2007 12. September 2007 1 Einleitung Lineare Optimierung Semidenite Optimierung 2 MAX-CUT MAX-BISECTION MAX-2SAT Einleitung

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Customization (Zuschneiden)

Customization (Zuschneiden) Customization (Zuschneiden) Anpassen der (Graph)Datenstruktur an die Anwendung. I Ziel: schnell, kompakt. I benutze Entwurfsprinzip: make the common case fast I Listen vermeiden Mögliches Problem: Software-Engineering-Alptraum

Mehr

Algorithmen für schwierige Optimierungsprobleme Vorlesung für den Bereich Bachelor Informatik

Algorithmen für schwierige Optimierungsprobleme Vorlesung für den Bereich Bachelor Informatik Algorithmen für schwierige Optimierungsprobleme Vorlesung für den Bereich Bachelor Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

11. Rekursion, Komplexität von Algorithmen

11. Rekursion, Komplexität von Algorithmen 11. Rekursion, Komplexität von Algorithmen Teil 2 Java-Beispiele: Power1.java Hanoi.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 23. Nov. 2015 Anwendung der Rekursion Rekursiv

Mehr

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin Anwendungen von Netzwerkfluss Wojciech Polcwiartek Institut für Informatik FU Berlin 13. 01. 2009 Gliederung Einführung Netzwerk, Fluss und Schnitt Max-Flow-Min-Cut Theorem Algorithmen zum Bestimmen vom

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 9 10.12.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T20 Beweisen Sie die

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit:

2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit: Vorlesung 5.5. VERBINDUNGSNETZWERKE Kommunikation zwischen den einzelnen Komponenten eines arallelrechners wird i.d.r. über ein Netzwerk organisiert. Dabei unterscheidet man zwei Klassen der Rechner: TOOLOGIE:

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Technische Universität Chemnitz Chemnitz, 19.10.2009 Prof. Dr. C. Helmberg, A. Lau Optimierung für Nichtmathematiker Übung 2 Einführung in die Modellierungssprache AMPL 1. Wir betrachten zunächst das Mozartproblem

Mehr

Analysis of Crash Simulation Data using Spectral Embedding with Histogram Distances

Analysis of Crash Simulation Data using Spectral Embedding with Histogram Distances Analysis of Crash Simulation Data using Spectral Embedding with Histogram Distances Luisa Schwartz Universität Bonn Institut für Numerische Simulation Fraunhofer SCAI 25. September 2014 Luisa Schwartz

Mehr

Modulnummer Modulname Verantwortlicher Dozent. Lineare Algebra und Analytische Geometrie

Modulnummer Modulname Verantwortlicher Dozent. Lineare Algebra und Analytische Geometrie MN-SEBS-MAT-LAAG (MN-SEGY-MAT-LAAG) (MN-BAWP-MAT-LAAG) Lineare Algebra und Analytische Geometrie Direktor des Instituts für Algebra n Die Studierenden besitzen sichere Kenntnisse und Fähigkeiten insbesondere

Mehr

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung Kapitel : Minimale spannende Bäume Gliederung der Vorlesung. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman

Mehr

Ranking by Reordering Tobias Joppen

Ranking by Reordering Tobias Joppen Ranking by Reordering Tobias Joppen 09.07.2014 Fachbereich Informatik Knowledge Engineering Prof. Johannes Fürnkranz 1 Überblick Einleitung Rank-differential Methode Idee Problemdefinition Beispiel Vereinfachung

Mehr

Operations Research I

Operations Research I Operations Research I Lineare Programmierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2015 Peter Becker (H-BRS) Operations Research I Sommersemester 2015

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Einführung in die Volkswirtschaftslehre

Einführung in die Volkswirtschaftslehre Einführung in die Volkswirtschaftslehre Übung 1: Mathematische Analyseinstrumente Dipl.-Volksw. J.-E.Wesselhöft/ Dipl.-Volksw. J.Freese Bachelor Modul Volkswirtschaftliche Analyse (WS-14-V-03) HT 2009

Mehr

Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken

Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken Schulinterner Lehrplan Mathematik in der ab dem Schuljahr 2014/15 Eingeführtes Schulbuch: Mathematik Gymnasiale

Mehr