Thermodynamik II - Übung 1. Nicolas Lanzetti

Größe: px
Ab Seite anzeigen:

Download "Thermodynamik II - Übung 1. Nicolas Lanzetti"

Transkript

1 Thermodynamik II - Übung 1 Nicolas Lanzetti Nicolas Lanzetti

2 Hinweise zu der Übung Name: Nicolas Lanzetti; 6. Semester Maschinenbau; Mail: Raum: ML F39; Zeit: Dienstag, 13:15-15:00; Alle Unterlagen: n.ethz.ch/student/lnicolas. Nicolas Lanzetti

3 Informationen zur Vorlesung Zwei obligatorischen Zwischenprüfungen: am 19. April 2016 (LAV); am 24. Mai 2016 (LTNT). Jede Zwischenprüfung zählt 15% der Endnote (in alle Fälle!); Es ist nicht möglich, die Zwischenprüfung als unbenotete Übung zu schreiben; Erlaubte Hilfsmitteln: Tabellen; Institutformelsammlung LAV und Institutformelsammlung LTNT; 8 Blätter eingene Zusammenfassung (keine Müsterlösungen); Taschenrechner gemäss Einschränkungen. Sprechstunde: Montag 12:15-13:00 im ML H34.3. Nicolas Lanzetti

4 Taschenrechner Lange Ausdücke; Lösung von Gleichungen; Ableitungen und Integralen; Variablen; Einheiten; Graphen; Programmbarkeit; Nicht nur für Thermo. Liste der erlaubten Taschenrechner: Vorlesungsinformationen (Webseite der Vorlesung). Nicolas Lanzetti

5 Heutige Themen Chemische Reaktionen; Allgemeine Oxidationsreaktion von Brennstoffen; Luftüberschussfaktor; 1. Hauptsatz für offene Systeme; Reaktionsenthalpie; Reaktionswärme. Nicolas Lanzetti

6 Chemische Reaktionen Nicolas Lanzetti

7 Chemische Reaktionen Allgemeine Schreibweise: j v j M j j v j M j. (1) Stöchiometrische Koeffizienten: für die Edukte (Reaktanden): für die Produkte: v j 0, v j = 0. (2) v j = 0, v j 0. (3) Wichtig: Im Allgemeinen laufen chemische Reaktionen gleichzeitig in beiden Richtungen ab! Nicolas Lanzetti

8 Chemische Reaktionen Als einführendes Beispiel betrachten wir die vollständige Reaktion von Methan (CH 4 ): Methan + Luft? CH 4 + a (O N 2 ) b CO 2 + c H 2 O + d N 2 Bilanzierung liefert: CH (O N 2 ) 1 CO H 2 O N 2 Nicolas Lanzetti

9 Verbrennung von C x H y O z an Luft λ 1: C xh y O z + λ ( x + y 4 z ) 2 x CO 2 + y 2 H2O + (λ 1) ( x + y 4 z 2 λ 1: C xh y O z + λ ( x + y 4 z ) 2 (O N 2) (4) ) ( O λ x + y 4 z 2 (O N 2) (5) ) N 2 (1 λ) C xh y O z + λ x CO 2 + λ y 2 H2O λ (x + y 4 z 2 ) N 2 Nicolas Lanzetti

10 Luftüberschussfaktor Der Luftüberschussfaktor ist definiert als λ = Qualititiv: ṁ Luft /ṁ Brennstoff (ṁ Luft /ṁ Brennstoff ) stöch = ṅ Luft /ṅ Brennstoff (ṅ Luft /ṅ Brennstoff ) stöch. (6) λ = was wir (aus der Aufgabenstellung) haben. (7) was gemäss Stoffbilanz notwendig ist Man kann drei Fälle unterscheiden: λ < 1: Fettes Gemisch (zu wenig Luft); λ = 1: Stochiometrisches Gemisch; λ > 1: Mageres Gemisch (zu viel Luft). Nicolas Lanzetti

11 Luftüberschussfaktor Als Beispiel betrachten wir wiederum die Verbrennung von CH 4 : CH (O N 2 ) 1 CO H 2 O N 2 Der Luftmassenstrom ist kg /s und der Brennstoffmassenstrom ist 1 kg /s. Man berechne den Luftüberschussfaktor. Der stöchiometrische Massenstromverhältnis ist ( ) ṁl ṁ B stöch = M L ṅ L M B ṅ B = M L M B = (M O M N2 )/4.76 M CH4 = Der Luftüberschussfaktor λ ist also: ṁ Luft /ṁ Brennstoff λ = = = 3. (9) (ṁ Luft /ṁ Brennstoff ) stöch (8) Nicolas Lanzetti

12 1. Hauptsatz für offene Systeme Aus Thermodynamik I kennen wir d dt E = Q Ẇ s + ( ṁ i,e h i,e + w 2 ) i,e 2 + g z i,e i ( ṁ i,a h i,a + w 2 ) i,a 2 + g z i,a. i (10) Mit KE PE 0 und der Annahme eines stationären Systems kann die Gleichung zu 0 = Q Ẇ s + i ṁ i,e h i,e i ṁ i,a h i,a (11) vereinfacht werden. Nicolas Lanzetti

13 1. Hauptsatz für offene Systeme Diese Gleichung kann in ṁ i,a h i,a i i ṁ i,e h i,e = Q Ẇs (12) umgeformt werden und somit Ḣ E P = Q Ẇ s. (13) Zur Erinnerung: Vorzeichen: W > 0: Vom System geleistete Arbiet; W < 0: Am System geleistete Arbiet; Q > 0: Zum System zugeführte Wärme; Q < 0: Vom System abgegebene Wärme. Nicolas Lanzetti

14 1. Hauptsatz für offene Systeme Nicolas Lanzetti

15 Enthalpieänderung Es gilt: Enthalpie = Bildungsenthalpie + Thermische Bindung h(t, p) = h 0 f (T ref, p ref ) + (h(t, p) h(t ref, p ref )). (14) Bei idealen Gasen: h(t ) = h 0 f (T ref ) + (h(t ) h(t ref )) (15) mit T ref = 298 K und p ref = 1 bar. Die Enthalpieänderung ist somit Ḣ E P = Ḣ P Ḣ E = ṅ P h(t P, p P ) ṅ E h(t E, p E ). (16) Bei ṅ P und ṅ E : stöchiometrische Koeffizienten berücksichtigen! Nicolas Lanzetti

16 Bildungsenthalpie h 0 f Differenz zwischen gebrauchte Enthalpie für das Aufbrechen von einer chemischer Bindung einer Molekül und die Enthalpie, die gewonnen wird bei der Herstellung von neuen chemischen Bindungen für eine neue Molekül. Die Energie die aufgenommen oder freisegetzt würde, wenn die elementare chemische Elementen sich zusammengebunden haben um eine Molekül zu produzieren. Mit der Energie, die eine Bindung hat, kann man die Bildungshentalpie schätzen. Nicolas Lanzetti

17 Reaktionsenthalpie und Reaktionswärme Mit der Annahme keine Arbeit folgt aus dem 1. Hauptsatz (molspezifisch) H E P = Q [Q] = [ H] = kj /kmol oder H E P = H P H E = v h(t P, p P ) v h(t E, p E ) = Q v (hf 0 (T ref ) + h(t P ) h(t ref )) v (hf 0 (T ref ) + h(t E ) h(t ref )) = Q Nicolas Lanzetti

18 Reaktionsenthalpie und Reaktionswärme Die maximale Wärme bekommt man wenn T P = T E = T : Q max = v (h 0 f (T ref ) + h(t ) h(t ref )) v (h 0 f (T ref ) + h(t ) h(t ref )) (17) Diese maximale Wärme nennt man Reaktionswärme: Q R T = Q max T = H R T (18) mit T = T ref : H R Tref = (v v ) h 0 f (19) T T ref : H R T = H R Tref + H th = H R Tref + (v v ) (h(t ) h(t ref )) (20) Nicolas Lanzetti

19 Reaktionsenthalpie und Reaktionswärme Die Reaktionswärme bei T = T ref ist die Wärme die durch die Verbrennung entsteht. Bei T T ref muss diese Wärme mit der thermischen Entalpie korrigiert werden. Konvektion: Der stochiometrische Koeffiezient des Brennstoffes muss gleich 1 sein! v B Nicolas Lanzetti

20 Fragen? Nicolas Lanzetti

Thermodynamik I - Übung 1. Nicolas Lanzetti

Thermodynamik I - Übung 1. Nicolas Lanzetti Thermodynamik I - Übung 1 Nicolas Lanzetti Nicolas Lanzetti 02.10.2015 1 Hinweise zu der Übung Name: Nicolas Lanzetti; 5. Semester Maschinenbau; Mail: Raum: CHN C14; Zeit: Freitag, 8:15-10:00; Alle Unterlagen:

Mehr

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Organisatorisches Änderungen für nächste Woche Vorlesung

Mehr

XI. Thermodynamik einfacher chemischer Reaktionen. - Reaktionstechnik - Verbrennung - Wasseraufbereitung - Brennstoffzellen - etc.

XI. Thermodynamik einfacher chemischer Reaktionen. - Reaktionstechnik - Verbrennung - Wasseraufbereitung - Brennstoffzellen - etc. XI. Thermodynamik einfacher chemischer Reaktionen Technische Thermodynamik Anwendung: Fragestellung: - Reaktionstechnik - Verbrennung - Wasseraufbereitung - Brennstoffzellen - etc. - Bestimmung der Stoffströme

Mehr

7.2 Energiebilanz bei chemischen Stoffumwandlungen

7.2 Energiebilanz bei chemischen Stoffumwandlungen 7.2 Energiebilanz bei chemischen Stoffumwandlungen Betrachtung eines Reaktionsgefäßes mit eintretenden Edukten und austretenden Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft (kinetische

Mehr

Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen.

Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen. 1) DEFINITIONEN DIE CHEMISCHE REAKTION Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen. Der Massenerhalt: Die Masse ändert sich im Laufe einer Reaktion

Mehr

Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft. Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus.

Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft. Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus. 7.2 Energiebilanz bei chemischen Stoffumwandlungen 2.2-1 Betrachtung eines Reaktionsgefäßes mit eintretenden Edukten und austretenden Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft Massen-,

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

Bevor man sich an diesen Hauptsatz heranwagt, muss man sich über einige Begriffe klar sein. Dazu gehört zunächst die Energie.

Bevor man sich an diesen Hauptsatz heranwagt, muss man sich über einige Begriffe klar sein. Dazu gehört zunächst die Energie. Thermodynamik 1 1.Hauptsatz der Thermodynamik Bevor man sich an diesen Hauptsatz heranwagt, muss man sich über einige Begriffe klar sein. Dazu gehört zunächst die Energie. Energie ist die Fähigkeit Arbeit

Mehr

Vorprüfung in Chemie für Studierende des Maschinenbaus und des Gewerbelehramts Studiengang Bachelor

Vorprüfung in Chemie für Studierende des Maschinenbaus und des Gewerbelehramts Studiengang Bachelor Grundlagen der Chemie für Studierende des Maschinenbaus, Prof. Deutschmann Vorprüfung in Chemie für Studierende des Maschinenbaus und des Gewerbelehramts Studiengang Bachelor Freitag, 20. März 2009, 14:00-17:00

Mehr

Energie und chemische Reaktion. Was ist Energie? Welche Einheit hat Energie?

Energie und chemische Reaktion. Was ist Energie? Welche Einheit hat Energie? Was ist Energie? Welche Einheit hat Energie? Was ist Energie? Es gibt verschiedene Formen von Energie, die ineinander überführt werden können. Energie kann jedoch nicht vernichtet oder erzeugt. Es gibt

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Klausur im Fach Thermodynamik I, SS 2012 am 06.08.2012

Klausur im Fach Thermodynamik I, SS 2012 am 06.08.2012 e r e n e g y e n g i n e e r i n g..t c o n o m i c s. e n v i e n r o n m Technische Universität Berlin INSTITUT FÜR ENERGIETECHNIK Prof. Dr.-Ing. G. Tsatsaronis. Klausur im Fach Thermodynamik I, SS

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 23. August 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen.

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Thermodynamik Was ist das? Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Gesetze der Thermodynamik Erlauben die Voraussage, ob eine bestimmte

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

Bekannter Stoff aus dem 1. Semester:

Bekannter Stoff aus dem 1. Semester: Bekannter Stoff aus dem 1. Semester: Atombau! Arten der Teilchen! Elemente/Isotope! Kernchemie! Elektronenhülle/Quantenzahlen Chemische Bindung! Zustände der Materie! Ionenbindung! Atombindung! Metallbindung

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

Einführung in die Physikalische Chemie: Inhalt

Einführung in die Physikalische Chemie: Inhalt Einführung in die Physikalische Chemie: Inhalt Kapitel 10: Thermochemie Inhalt: Literatur: 10.1 Konventionen und thermochemische Grössen 10.2 Der Satz von Hess 10.3 Das Kirchhoffsche Gesetz 10.4 Inkrement-Tabellen

Mehr

Reaktion und Energie

Reaktion und Energie Reaktion und Energie Grundsätzliches Bei chemischen Reaktionen werden die Atome der Ausgangsstoffe neu angeordnet, d. h. Bindungen werden gespalten und neu geknüpft. Die Alltasgserfahrung legt nahe, dass

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen

Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen 3.5 Die chemische Produktionsdichte Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen und mit folgt Die rechte Seite der Gleichung wird als chemische Produktionsdichte bezeichnet: Sie

Mehr

Thermodynamik: Definition von System und Prozess

Thermodynamik: Definition von System und Prozess Thermodynamik: Definition von System und Prozess Unter dem System verstehen wir den Teil der elt, an dem wir interessiert sind. Den Rest bezeichnen wir als Umgebung. Ein System ist: abgeschlossen oder

Mehr

4 Die chemische Reaktion

4 Die chemische Reaktion 4 Die chemische Reaktion Chemische Reaktionen sind Stoffumwandlungsprozesse. In einer submikroskopischen Betrachtungsweise ist eine chemische Reaktion stets mit einer Änderung der relativen Lage der Atomkerne

Mehr

Vorlesung Anorganische Chemie

Vorlesung Anorganische Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Login Prüfungsanmeldung Nur Bachelor! https://www.verwaltung.uni-freiburg.de/qis E-Mail Frau Jones: friederike.jones.pruefamt@cpg.uni-freiburg.de

Mehr

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ;

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ; 4.11. Innere Energie (ideals. Gas): U =!! nr Erhöhung der inneren Energie durch emperaturerhöhung um Δ: bei konstanten olumen (isochor): ΔU = C! Δ Differentiell: du = C v d δq=du=c d => d=δq/c 1. Hauptsatz

Mehr

Thermodynamik. Thermodynamik

Thermodynamik. Thermodynamik Geschlossenes System: Energieaustausch, aber kein Materieaustausch mit der Umgebung. Innere Energie: Jeder Stoff hat in sich Energie in irgendeiner Form gespeichert: die innere Energie U. U 1 = innere

Mehr

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Klausur H2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Wie wirkt sich eine

Mehr

Chemie Zusammenfassung KA 2

Chemie Zusammenfassung KA 2 Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen

Mehr

Thermodynamik Formelsammlung

Thermodynamik Formelsammlung RH-öln Thermoynamik ormelsammlung 2006 Thermoynamik ormelsammlung - I 1 Grunlagen Boltzmannkonstante: 1.3 Größen un Einheitensysteme Umrechnung ahrenheit nach Celsius: Umrechnung Celsius nach elvin: abgeschlossenes

Mehr

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 6 Kalorimetrie Aufgabe: Mittels eines Flüssigkeitskalorimeters ist a) die Neutralisationsenthalpie von säure b) die ösungsenthalpie

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Thermodynamik und Gleichgewichte 1. a) Was sagt die Enthalpie aus? Die Enthalpie H beschreibt den Energiegehalt von Materie

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 8. Aufgabe kg Luft (perfektes Gas: κ = 1,4 ; R L = 287 J

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 8. Aufgabe kg Luft (perfektes Gas: κ = 1,4 ; R L = 287 J Aufgabe 3 0 kg Luft perfektes Gas: κ,4 ; R L 287 J von T 293 K und p 0,96 bar werden auf 0 bar verdichtet. Dies soll. isochor 2. isotherm 3. reversibel adiabat und 4. polytrop mit n,3 geschehen. a Skizzieren

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

2.11 Innere Energie und Enthalpie für Gasgemische

2.11 Innere Energie und Enthalpie für Gasgemische 2.11 Innere Energie und Enthalpie für Gasgemische Komponenten: Partielle spezifische und partielle molare innere Energie der Komponente: u i, u i,m Partielle spezifische und partielle molare innere Enthalpie

Mehr

Seite 1 von Standortbestimmung / Äquivalenzprüfung. Chemie. Freitag, 23. Mai 2014, Uhr

Seite 1 von Standortbestimmung / Äquivalenzprüfung. Chemie. Freitag, 23. Mai 2014, Uhr Seite 1 von 8 2. Standortbestimmung / Äquivalenzprüfung Chemie Freitag, 23. Mai 2014, 16.45-18.45 Uhr Dauer der Prüfung: 120 Minuten Erlaubte Hilfsmittel: Eine vom Dozenten visierte Formelsammlung, Ein

Mehr

Stunde IV. Redoxreaktionen Elektrochemie. Anfängertutorium. ao. Prof. Dr. Hans Flandorfer

Stunde IV. Redoxreaktionen Elektrochemie. Anfängertutorium. ao. Prof. Dr. Hans Flandorfer Stunde IV Redoxreaktionen Elektrochemie Anfängertutorium ao. Prof. Dr. Hans Flandorfer Redoxreaktionen Anfängertutorium ao. Prof. Dr. Hans Flandorfer Chemische Reaktionen Fällungsreaktionen Säure/Basereaktionen

Mehr

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436 Inhaltsverzeichnis 1 Allgemeine Grundlagen... 1 1.1 Thermodynamik... 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 WasistThermodynamik?... 9 1.2 SystemundZustand... 11 1.2.1 SystemundSystemgrenzen...

Mehr

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz:

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz: Übung 9 Aufgabe 5.12: Kompression von Luft Durch einen Kolbenkompressor sollen ṁ = 800 kg Druckluft von p h 2 =12bar zur Verfügung gestellt werden. Der Zustand der angesaugten Außenluft beträgt p 1 =1,

Mehr

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse?

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse? Aufgabe 11: Das Betriebsverhalten eines Viertakt- Dieselmotors kann durch folgenden reversiblen Kreisprozess näherungsweise beschrieben werden, wobei kinetische und potenzielle Energien zu vernachlässigen

Mehr

Kettenreaktionen. Kapitel 2. In diesem Kapitel sollen die folgenden Fragen beantwortet werden:

Kettenreaktionen. Kapitel 2. In diesem Kapitel sollen die folgenden Fragen beantwortet werden: Kapitel 2 Kettenreaktionen In diesem Kapitel sollen die folgenden Fragen beantwortet werden: Was versteht man unter einer Kettenreaktion? Welches sind die verschiedenen Typen von Reaktionsschritten, die

Mehr

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm Energie bei chemischen Reaktionen Chemische Reaktionen sind Stoffumwandlungen bei denen Teilchen umgeordnet und chemische Bindungen gespalten und neu geknüpft werden, wodurch neue Stoffe mit neuen Eigenschaften

Mehr

Maßeinheiten der Wärmelehre

Maßeinheiten der Wärmelehre Maßeinheiten der Wärmelehre Temperatur (thermodynamisch) Benennung der Einheit: Einheitenzeichen: T für Temp.-punkte, ΔT für Temp.-differenzen Kelvin K 1 K ist der 273,16te Teil der (thermodynamischen)

Mehr

Thermodynamik & Kinetik

Thermodynamik & Kinetik Thermodynamik & Kinetik Inhaltsverzeichnis Ihr versteht die Begriffe offenes System, geschlossenes System, isoliertes System, Enthalpie, exotherm und endotherm... 3 Ihr kennt die Funktionsweise eines Kalorimeters

Mehr

Ausgangsdaten. Holzzusammensetzung (Buche): kg kg. kg kg. kg B := kg n kg B := kg. Literaturwerte für Holzgas: m 3

Ausgangsdaten. Holzzusammensetzung (Buche): kg kg. kg kg. kg B := kg n kg B := kg. Literaturwerte für Holzgas: m 3 Ausgangsdaten Holzzusammensetzung (Buche): c B := 0.47 h B := 0.062 o B := 0.447 n B := 0.0022 s B := 0.0002 Literaturwerte für Holzgas: r CO := 0.2 m3 r H.2 := 0.2 m3 r CO2 := 0.13 m3 r N2 := 0.45 m3

Mehr

Grundlagen der Chemie Elektrolyt- und Nichtelektrolytlösungen

Grundlagen der Chemie Elektrolyt- und Nichtelektrolytlösungen Elektrolyt- und Nichtelektrolytlösungen Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elektrolyt- und Nichtelektrolytlösungen

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust! Chr.Nelius: Zahlentheorie (SoSe 2016) 1 14. Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor

Mehr

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler U München Reinhard Scholz Physik Department, 33 homas Eissfeller, Peter Greck, illmann Kubis, Christoph Schindler http://www.wsi.tum.de/33/eaching/teaching.htm Übung in heoretischer Physik 5B (hermodynamik)

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012)

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012) U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter Vogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 8 Abgabe Di 3. Juli 202). Extremalprinzip

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Klausur Physikalische Chemie für TUHH (Chemie III)

Klausur Physikalische Chemie für TUHH (Chemie III) 07.03.2012 14.00 Uhr 17.00 Uhr Moritz / Pauer Klausur Physikalische Chemie für TUHH (Chemie III) Die folgende Tabelle dient Korrekturzwecken und darf vom Studenten nicht ausgefüllt werden. 1 2 3 4 5 6

Mehr

Heizöl ist ein flüssiger Brennstoff und wird nach Ausgangsprodukt in. - Teeröle

Heizöl ist ein flüssiger Brennstoff und wird nach Ausgangsprodukt in. - Teeröle Zusammenfassung zur Vorlesung Optimierte Gebäudetechnik / Teil Wärmeversorgungssysteme ab 3.KW/00 Heizöl ist ein flüssiger Brennstoff und wird nach Ausgangsprodukt in zwei Hauptgruppen eingeteilt: - Mineralische

Mehr

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen Chemie für Biologen Vorlesung im WS 200/05 V2, Mi 10-12, S0 T01 A02 Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen (Teil : 03.11.200) MILESS: Chemie für Biologen 66 Chemische

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Allgemeine Vorgehensweise

Allgemeine Vorgehensweise Allgemeine Vorgehensweise 1. Skizze zeichnen und Systemgrenze ziehen 2. Art des Systems festlegen (offen, geschlossen, abgeschlossen) und Eigenschaften charakterisieren (z.b. adiabat, stationär, ruhend...)

Mehr

Tabellen und Formelsammlung Chemie

Tabellen und Formelsammlung Chemie Tabellen und Forelsalung Cheie Fakultät Maschinenbau Stand SS 2015 Nachfolgende Tabellen und Inforationen staen aus de Lehrbuch G. Kickelbick, Cheie für Ingenieure, Pearson-Verlag, 2008 soweit nicht anderweitig

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple Übungssunterlagen Energiesysteme I Prof. Dr.-Ing. Bernd Epple 1 1. Allgemeine Informationen Zum Bearbeiten der Übungen können die Formelsammlungen aus den Fächern Technische Thermodynamik 1, Technische

Mehr

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 1. Bestimmung der Verbrennungsenthalpie

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 1. Bestimmung der Verbrennungsenthalpie Praktikum Physikalische Chemie I (C-2) Versuch Nr. 1 Bestimmung der Verbrennungsenthalpie Praktikumsaufgaben 1. Ermittlung der Kalorimeterkonstante durch Verbrennung von Benzoesäure. 2. Bestimmung der

Mehr

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik Name: Klausur Wärmelehre E2/E2p, SoSe 2012 Braun Matrikelnummer: Benotung für: O E2 O E2p (bitte ankreuzen, Mehrfachnennungen möglich) Mit Stern (*) gekennzeichnete Aufgaben sind für E2-Kandidaten [E2p-Kandidaten

Mehr

Klausur Strömungsmechanik 1 WS 2009/2010

Klausur Strömungsmechanik 1 WS 2009/2010 Klausur Strömungsmechanik 1 WS 2009/2010 03. März 2010, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Eine Reaktionsgleichung beschreibt die Umwandlung von Stoffen (Atomen, Molekülen, Ionen etc.), also einen chemischen Prozess.

Eine Reaktionsgleichung beschreibt die Umwandlung von Stoffen (Atomen, Molekülen, Ionen etc.), also einen chemischen Prozess. Chemische Reaktionen 1. Was ist eine Reaktionsgleichung? Eine Reaktionsgleichung beschreibt die Umwandlung von toffen (Atomen, Molekülen, Ionen etc.), also einen chemischen Prozess. Auf der einen eite

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 1- Dampfdruckdiagramm Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Dampfdruckdiagramm wird dieses Vorgespräch durch einen Multiple-Choice

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg GRUNDLAGEN Modul: Versuch: Elektrochemie 1 Abbildung 1: I. VERSUCHSZIEL

Mehr

Chemische Verbrennung

Chemische Verbrennung Christopher Rank Sommerakademie Salem 2008 Gliederung Die chemische Definition Voraussetzungen sgeschwindigkeit Exotherme Reaktion Reaktionsenthalpie Heizwert Redoxreaktionen Bohrsches Atommodell s Elektrochemie:

Mehr

Klausur zur Vorlesung "Grundzüge der Chemie" für Studierende des Maschinenbaus BITTE AUSFÜLLEN BITTE HALTEN SIE IHREN STUDENTAUSWEIS BEREIT

Klausur zur Vorlesung Grundzüge der Chemie für Studierende des Maschinenbaus BITTE AUSFÜLLEN BITTE HALTEN SIE IHREN STUDENTAUSWEIS BEREIT 1 PUNKTZAL NTE Klausur zur Vorlesung "Grundzüge der hemie" für Studierende des Maschinenbaus Termin: 17. Juni 2003 rt: Z 10 Zeit: 9.30-11.30 Uhr Dauer: 120 Minuten BITTE AUSFÜLLEN BITTE ALTEN SIE IREN

Mehr

Roland Reich. Thermodynamik. Grundlagen und Anwendungen in der allgemeinen Chemie. Zweite, verbesserte Auflage VCH. Weinheim New York Basel Cambridge

Roland Reich. Thermodynamik. Grundlagen und Anwendungen in der allgemeinen Chemie. Zweite, verbesserte Auflage VCH. Weinheim New York Basel Cambridge Roland Reich Thermodynamik Grundlagen und Anwendungen in der allgemeinen Chemie Zweite, verbesserte Auflage VCH Weinheim New York Basel Cambridge Inhaltsverzeichnis Formelzeichen Maßeinheiten XV XX 1.

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 19. Februar 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

Musterklausur 1 zur Allgemeinen und Anorganischen Chemie

Musterklausur 1 zur Allgemeinen und Anorganischen Chemie Musterklausur 1 zur Allgemeinen und Anorganischen Chemie Achtung: Taschenrechner ist nicht zugelassen. Aufgaben sind so, dass sie ohne Rechner lösbar sind. Weitere Hilfsmittel: Periodensystem der Elemente

Mehr

5 Energieumsatz. bei chemischen Reaktionen

5 Energieumsatz. bei chemischen Reaktionen 45 5 Energieumsatz bei chemischen Reaktionen Zusammenfassung Bei chemischen Prozessen wird Energie aufgenommen oder abgegeben. Die Thermochemie befasst sich mit den Energiebeträgen, die als Wärme umgesetzt

Mehr

- Chemie und Energie -

- Chemie und Energie - Name: Datum: - Chemie und Energie - Eine Einführung zum 1. Hauptsatz der Thermodynamik 1: Heißer Kaffee aber wie?! Versuch 1: Kaffeetasse to go Becher Isolierbecher Sie haben heute Morgen verschlafen,

Mehr

Moderne Methoden der Chemie - die Differenz-Thermo- Analyse (DTA)

Moderne Methoden der Chemie - die Differenz-Thermo- Analyse (DTA) Moderne Methoden der Chemie - die Differenz-Thermo- Analyse (DTA) Einleitung Moderne Anaylsemethoden haben die Chemie - insbesondere in den letzten 50 Jahren - stark verändert. Sie ermöglichen völlig neue

Mehr

3.4 Energieumsatz bei Reaktionen

3.4 Energieumsatz bei Reaktionen 3.4 Energieumsatz bei Reaktionen Versuch: Verbrennen eines Stückes Holz Beobachtung: Energie wird freigesetzt in Form von Wärme. Jede Reaktion ist mit einem Energieumsatz gekoppelt. Reaktionen, bei denen

Mehr

Inhaltsverzeichnis XVII. Häufig verwendete Formelzeichen. 1 Allgemeine Grundlagen l

Inhaltsverzeichnis XVII. Häufig verwendete Formelzeichen. 1 Allgemeine Grundlagen l Inhaltsverzeichnis Häufig verwendete Formelzeichen XVII 1 Allgemeine Grundlagen l 1.1 Thermodynamik 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 Was ist Thermodynamik? 9 1.2 System

Mehr

Einführung in die chemische Thermodynamik

Einführung in die chemische Thermodynamik G. Kortüm /H. Lachmann Einführung in die chemische Thermodynamik Phänomenologische und statistische Behandlung 7., ergänzte und neubearbeitete Auflage Verlag Chemie Weinheim Deerfield Beach, Florida Basel

Mehr

Grundlagen der Chemie für Nichtchemiker AUFGABENSAMMLUNG

Grundlagen der Chemie für Nichtchemiker AUFGABENSAMMLUNG AUFGABENSAMMLUNG 1. Chemische Grundlagen: Masse -Berechnungen 1-1. Berechnen Sie die molaren Massen folgender Stoffe: a)caco 3 ; b)caso 4 2H 2 O; c)agcl; d)al 2 O 3 ; e)phenol C 6 H 5 OH; f)magnesiumammoniumphosphat-

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-2 (MWG) Massenwirkungsgesetz Versuchs-Datum: 20. Juni 2012 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael

Mehr

Elemente des Periodensystems. Natürliche Häufigkeit der Elemente

Elemente des Periodensystems. Natürliche Häufigkeit der Elemente Elemente des Periodensystems Natürliche Häufigkeit der Elemente 1 Der Wasserstoff Vorkommen Eigenschaften Gewinnung Verwendung Verbindungen 2 Vorkommen Interstellare Wasserstoffwolken Orion-Nebel und auf

Mehr

Übungsaufgaben Physikalische Chemie

Übungsaufgaben Physikalische Chemie Übungsaufgaben Physikalische Chemie A1. Welchen Druck übt gasförmiger Stickstoff mit einer Masse von 2,045 g bei 21 C in einem Gefäß mit einem Volumen von 2,00 l aus? A2. In Haushaltgeräten zur Erzeugung

Mehr

Allgemeine Gasgleichung und technische Anwendungen

Allgemeine Gasgleichung und technische Anwendungen Allgemeine Gasgleichung und technische Anwendungen Ziele i.allgemeine Gasgleichung: Darstellung in Diagrammen: Begriffsdefinitionen : Iso bar chor them Adiabatische Zustandsänderung Kreisprozess prinzipiell:

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr

Zur exergetischen Systematik von Brennstoffen

Zur exergetischen Systematik von Brennstoffen Dieser Aufsatz ist Basis für den Vortrag Zur exergetischen Systematik von Brennstoffen am 8. 1. 3 in Lahnstein (VDI-Thermodynamikkolloquium Zur exergetischen Systematik von Brennstoffen Prof. Dr.-Ing.

Mehr

Standortbestimmung / Äquivalenzprüfung. Chemie. Mittwoch, 13. April 2016, Uhr

Standortbestimmung / Äquivalenzprüfung. Chemie. Mittwoch, 13. April 2016, Uhr Seite 1 von 7 Standortbestimmung / Äquivalenzprüfung Chemie Mittwoch, 13. April 2016, 16.45-18.15 Uhr Dauer der Prüfung: 90 Minuten Erlaubte Hilfsmittel: Eine gedruckte und/oder eine persönlich erstellte

Mehr

3.4 Chemische Reaktionen und Reaktionsgleichgewichte Diskussion der chemischen Reaktionsbereitschaft einer Mischung

3.4 Chemische Reaktionen und Reaktionsgleichgewichte Diskussion der chemischen Reaktionsbereitschaft einer Mischung Inhalt von Abschnitt 3.4 3.4-0 3.4 Chemische Reaktionen und Reaktionsgleichgewichte 3.4.1 Diskussion der chemischen Reaktionsbereitschaft einer Mischung 3.4.2 Die Änderung der freien Enthalpie und die

Mehr

Bruttoreaktionen sagen nichts darüber aus, wie der Umsatz tatsächlich abläuft.

Bruttoreaktionen sagen nichts darüber aus, wie der Umsatz tatsächlich abläuft. 7. Chemische Stoffumwandlungen 7.1 Massenbilanz bei chemischen Stoffumwandlungen Bruttoreaktionen, z. B. die Knallgasreaktion H 2 + ½ O 2 = H 2 O, beschreiben die Mengenverhätnisse beim Umsatz H 2 zu O

Mehr

Ergänzung im Web www.thermodynamik-formelsammlung.de

Ergänzung im Web www.thermodynamik-formelsammlung.de Ergänzung im Web www.thermodynamik-formelsammlung.de Kapitel 13 Ideale Gasgemische Anhang B Zustandsdiagramme B5 B6 lg p,h-diagramm für Propan h 1+x,x w -Diagramm für feuchte Luft (farbig) AnhangC Stoffwert-Bibliotheken

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Summenformel Elektronenstrichformel Name Siedepunkt

Summenformel Elektronenstrichformel Name Siedepunkt Die homologe Reihe der Alkene Summenformel Elektronenstrichformel Name Siedepunkt C 2 H 4 Ethen -104 C C 3 H 6 Propen -47 C C 4 H 8 1-Buten -6 C C 5 H 10 (...) 1-Penten 30 C C 6 H 12 (...) 1-Hexen 63 C

Mehr