Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Größe: px
Ab Seite anzeigen:

Download "Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung"

Transkript

1 Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer

2 Überblick Hypothesenbewertung, Risikoschätzung Anwendungen/Beispiele 2

3 Überblick Hypothesenbewertung, Risikoschätzung Anwendungen/Beispiele 3

4 Lernen und Vorhersage Klassifikation, Regression: Lernproblem Eingabe: Trainingsdaten Ausgabe: Hypothese (Modell) Modell wird verwendet, um Vorhersagen für neue Testbeispiele zu treffen Verschiedene Verfahren kennengelernt L ( x, y1),...,( x Lineare Modelle, Entscheidungsbäume, Naive Bayes, y 1 m m f : X Y f ( x)? x Testbeispiel ) 4

5 Hypothesenbewertung Frage: Nachdem wir Verfahren implementiert, Hypothese trainiert haben etc.: wie gut sind die Vorhersagen? Was genau heißt gut? Wie berechnet / misst / schätzt man es? Gute Vorhersagen : in der Zukunft, wenn die gelernte Hypothese eingesetzt wird (auf Testdaten) Hypothesenbewertung : Verfahren zur Abschätzung der Genauigkeit/Güte von Vorhersagen gelernter Modelle 5

6 Hypothesenbewertung Um Hypothesenbewertung formal zu untersuchen, müssen wir Annahmen über die Eigenschaften von Trainings- und Testdaten machen Zentrale Annahme: dem Lernproblem liegt eine (unbekannte) Verteilung p(x,y) zugrunde Beispiel Spam-Filterung Verteilung über Instanzen p( x, y) p( x) p( y x) Verteilung für Label gegeben Instanz p(x) Wahrscheinlichkeit dass wir x sehen p(y x) Wahrscheinlichkeit dass Mensch x als y {Spam/Ok} klassifiziert 6

7 Hypothesenbewertung i.i.d. -Annahme: Beispiele sind independent and identically distributed. Trainingsdaten werden unabhängig aus der Verteilung p(x,y) gezogen: ( x, y ) ~ p( x, y) i i Testdaten ebenfalls i.i.d. aus dieser Verteilung gezogen ( x, y) ~ p( x, y) Immer realistisch? Trainingsbeispiele Testbeispiel (Anwendung des Modells) Wir nehmen im Folgenden immer i.i.d. Daten an 7

8 Verlustfunktionen Wir haben Annahmen darüber gemacht, welche Instanzen (x,y) auftauchen werden Testbeispiel (x,y), Hypothese sagt f(x). Verlustfunktion definiert, wie schlecht das ist: Nicht-negativ: Problem-spezifisch, gegeben. Verlustfunktionen für Klassifikation Zero-one loss: ( y, y') 0, wenn y y'; 1, sonst ( y, f( x)) y, y': ( y, y') 0 Klassenabhängige Kostenmatrix Verlustfunktionen für Regression Squared loss: ( y, y') ( y y') Verlust der Vorhersage f(x) auf Instanz (x,y) 2 8

9 Hypothesenbewertung: Risiko Zentraler Begriff der Hypothesenbewertung: Risiko Risiko einer Hypothese: erwarteter Verlust für eine neue Instanz ( x, y) ~ p( x, y) Testbeispiel x mit Label y (Zufallsvariable) ( y, f( x)) Verlust auf Testbeispiel (Zufallsvariable) R( f ) E[ ( y, f ( x))] ( y, f ( x)) p( x, y) dxdy Für Zero-One-Loss heisst Risiko auch Fehlerrate. Für Squared Loss heisst Risiko auch Mean Squared Error. Hauptziel der Hypothesenbewertung: Risikobestimmung Nicht möglich, das Risiko exakt zu bestimmen, weil p(x,y) unbekannt ist Schätzproblem 9

10 Einschub: Begriff Schätzer Wir wollen das Risiko einer Hypothese aus Daten schätzen Formalisierung: ein Schätzer ist ein Verfahren, das Beobachtungen L auf einen Schätzwert abbildet. Beispiel Münzwurf: Beobachtung N k, N z : wie oft Kopf/Zahl gesehen schätze Münzparameter (Wahrscheinlichkeit, dass Kopf fällt) Notation: Schätzer für (unbekannten) Wert wird mit bezeichnet ˆ 10

11 Hypothesenbewertung:Risikoschätzung Risikoschätzung aus Daten Wenn aus p(x,y) gezogene Daten T ( x, y ),...,( x, y ) ( x, y ) ~ p( x, y) gegeben sind, kann das Risiko geschätzt werden: Wichtig: Wo kommt T her? m m m Rˆ( f ) m ( y, f j ( x j )) "Empirisches Risiko" j1 Trainingsdaten (T=L)? Verfügbare Daten in disjunkte L und T aufteilen. Cross-Validation. i i 11

12 Bias eines Schätzers Schätzer Schätzer ist Zufallsvariable: Instanzen in T zufällig gezogen Wert des Schätzers hängt von zufällig gezogenen Instanzen ab, ist also Produkt eines Zufallsprozesses Schätzer hat einen Erwartungswert Schätzer ist erwartungstreu, genau dann wenn: 1 ˆ( ) m j1 ( j, ( j )) m R f y f x ( x, y ) ~ p( x, y) Welche ( x, y ) werden gezogen? j j Erwartungswert des empirischen Risikos = echtes Risiko. j j 12

13 Bias eines Schätzers Schätzer R ˆ ( f ) ist erwartungstreu, genau dann wenn: Ansonsten hat R ˆ ( f ) einen Bias: E[ Rˆ( f )] R( f ) Bias E[ Rˆ ( f )] R( f ) Schätzer ist optimistisch, wenn Bias < 0. Schätzer ist pessimistisch, wenn Bias > 0. Schätzer ist erwartungstreu, wenn Bias = 0. 13

14 Varianz eines Schätzers Schätzer R ( ) hat eine Varianz Je größer die Stichprobe ist, die zum Schätzen verwendet wird, desto geringer ist die Varianz. Varianz vs. Bias: ˆ f Var[ Rˆ ( f )] E[ Rˆ ( f ) ] E[ Rˆ ( f )] 2 2 Hohe Varianz: großer Zufallsanteil bei der Bestimmung des empirischen Risikos. Großer Bias: systematischer Fehler bei der Bestimmung des empirischen Risikos. 14

15 Varianz eines Schätzers Erwarteter (quadratischer) Fehler des Schätzers: E Rˆ f 2 [( ( ) R) ] Lässt sich zerlegen in Bias und Varianz Linearität Erwartungswert ˆ 2 ˆ 2 ˆ 2 [( ( ) ) ] [ ( ) 2 ( ) ] E R f R E R f RR f R Verschiebungssatz Wert Rˆ ( f) R R ˆ ˆ 2 2 E[ R( f ) ] 2 RE[ R( f )] R E[ Rˆ( f )] 2 RE[ Rˆ( f )] R E[ Rˆ( f ) ] E[ Rˆ( f )] ˆ ( E[ R( f )] R) Var[ R( f )] Bias Rˆ f 2 [ ( )] Var[ R( f ) ˆ ˆ ] Bias dominiert Varianz dominiert 15

16 Risikoschätzer auf den Trainingsdaten Welche Menge T verwenden? 1. Versuch: Trainingsdaten L Hypothese f, trainiert auf Empirisches Risiko gemessen auf Trainingsdaten Ist dieses empirische Risiko ein erwartungstreuer optimistischer pessimistischer L ( x, y ),...,( x, y ) 1 1 R ˆ 1 ( f m L ) 1 ( y j j, f ( x j )) m Schätzer für das echte Risiko und warum? m m 16

17 Risikoschätzer auf den Trainingsdaten Empirisches Risiko auf den Trainingsdaten ist ein optimistischer Schätzer des echten Risikos Empirisches Risiko aller möglichen Hypothesen für ein festes L? Aufgrund von Zufallseffekten gilt für einige Hypothesen f, dass Rˆ L ( f ) R ( f ) und für andere Hypothesen f, dass. Rˆ ( f ) R ( f ) L Lernalgorithmus wählt eine Hypothese f L mit kleinem empirischen Risiko Rˆ ( f ) L L ˆ ( ) ( ) Wahrscheinlich, dass R f R f (Risiko unterschätzt) L L L 17

18 Risikoschätzer auf den Trainingsdaten Empirisches Risiko der vom Lerner gewählten Hypothese auf den Trainingsdaten ( Trainingsfehler ) ist ein optimistischer Schätzer des echten Risikos: E[ Rˆ ( f )] R( f ) L L L Problem ist die Abhängigkeit von gewählter Hypothese und zur Fehlerschätzung verwendeten Daten Ansatz: Testdaten verwenden, die von den Trainingsdaten unabhängig sind. 18

19 Holdout-Testing Idee: Fehlerschätzung auf unabhängigen Testdaten Gegeben: Daten D ( x, y ),...,( x, y ) 1 1 d d Teile Daten auf in Trainingsdaten Testdaten L ( x, y ),...,( x, y ) 1 1 T ( x, y ),...,( x, y ) m m1 m1 d d L T m und 19

20 Holdout-Testing Starte Lernalgorithmus mit Daten L, gewinne so Hypothese. f L ˆ ( ) Ermittle empirisches Risiko R f auf Daten T. Starte Lernalgorithmus auf Daten D, gewinne so Hypothese f D. Ausgabe: Hypothese, benutze RT fl als Schätzer für das Risiko von f D T f D L T L ˆ ( ) 20

21 Holdout-Testing: Analyse Ist der Schätzer ˆ ( ) für Risiko der Hypothese erwartungstreu, optimistisch, pessimistisch? R f f D T L 21

22 Holdout-Testing: Analyse Schätzer Rˆ T ( f ) ist pessimistisch für R( f L D ): Rˆ ( f ) ist erwartungstreu für fl T L f L wurde mit weniger Trainingsdaten gelernt als f D und hat daher im Erwartungswert ein höheres Risiko Aber Schätzer RT fl ist in der Praxis brauchbar, während Rˆ ( f ) meist 0 (oder nahe 0) ist. L L ˆ ( ) 22

23 Holdout-Testing: Analyse Warum wird Hypothese f D trainiert und zurückgeliefert? Rückgegebene Hypothese f D und nicht fl, weil ein geringeres Risiko hat, also besser ist. f D 23

24 Holdout-Testing: Analyse Was sind die Vorteile/Nachteile wenn Testmenge T möglichst groß möglichst klein gewählt wird? ˆ ( ) T möglichst groß, damit Risikoschätzer RT fl geringe Varianz hat. T möglichst klein, damit Risikoschätzer Rˆ T ( fl ) geringen Bias hat, also nicht so stark pessimistisch ist. Braucht viele Daten, um gute Schätzungen zu bekommen Wird praktisch nur verwendet, wenn sehr viele Daten zur Verfügung stehen. Cross-Validation meist besser (siehe unten) 24

25 Cross-Validation Gegeben: Daten D Teile D in n gleich große Abschnitte mit D D und D i D 0 n i1 Wiederhole für i=1..n i ( x, y1),...,( x Trainiere f i mit L i =D \ D i. Bestimme empirisches Risiko ˆ ( ) auf D i., y 1 d d D1 D2 D3 D4 j R i ) D f i D,..., 1 Dn Training examples 25

26 Cross-Validation Mittle empirische Risikoschätzungen auf den jeweiligen Testmengen D i : 1 n n i 1 Trainiere f D auf allen Daten D. R Rˆ D ( f ) Liefere Hypothese f D und Schätzer R. i i Training examples 26

27 Leave-One-Out Cross-Validation Spezialfall n=d heisst auch leave-one-out Fehlerschätzung d 27

28 Cross-Validation: Analyse Ist der Schätzer Optimistisch / pessimistisch / erwartungstreu? 28

29 Cross-Validation: Analyse Ist der Schätzer Optimistisch / pessimistisch / erwartungstreu? Schätzer ist pessimistisch: Hypothesen f i werden auf Anteil (n-1)/n der verfügbaren Daten trainiert. Hypothese f D wird auf den gesamten Daten trainiert Cross-Validation Training examples Holdout 29

30 Cross-Validation: Analyse Bias/Varianz der Risikoschätzung im Vergleich zu Holdout- Testing? Varianz ist geringer als beim Holdout-Testing Mittelung über mehrere Holdout-Experimente, das reduziert die Varianz Alle Daten fließen in den Schätzer ein Bias ähnlich wie beim Holdout-Testing, je nach Split- Verhältnissen. Cross-Validation Training examples Holdout 30

31 Überblick Hypothesenbewertung, Risikoschätzung Anwendungen/Beispiele 31

32 Anwendungen/Beispiele Hypothesenevaluierung Wir wollen/müssen aus Anwendungsgründen wissen, wie gut Hypothese ist Macht es überhaupt Sinn, maschinelles Lernen in der Anwendung zu verwenden? Mit wie vielen falschen Vorhersagen müssen wir rechnen? Wir wollen mehrere verschiedene Lernansätze vergleichen Sollte man Entscheidungsbäume verwenden? SVMs? Logistische Regression? Naive Bayes? 32

33 Anwendungen Hypothesenevaluierung Verfahren hat einen Parameter, den wir einstellen müssen Regularisierungsparameter fw f x y w * 2 arg min f ( ( i), i) =? w i w (Hyper)Parameter, der Modellklasse bestimmt, z.b. Polynomgrad bei polynomieller Regression M i fw ( x) wi x M=? i0 In allen diesen Fällen ist der Trainingsfehler kein geeignetes Entscheidungskriterium! Fehlerschätzung mit Holdout-Menge oder Cross- Validation 33

34 Beispiel: Polynomgrad bei polynomieller Regression Polynommodell vom Grad M: fw ( x) wi x Wir lernen Modell durch Minimierung des quadratischen Verlustes (unregularisiert schlecht) w * Gelerntes Modell Echtes Modell m arg min ( f ( x ) y ) w i1 w i i 2 M i0 i Trainingsdaten L ( x, y ),...,( x, y ) 1 1 m m Polynomgrad M=3 Datenpunkte = echtes Modell plus Gaußsches Rauschen 34

35 Beispiel polynomielle Regression: Training vs. Testfehler Erfolg des Lernens hängt vom gewählten Polynomgrad M ab, der Komplexität des Modells kontrolliert 35

36 Beispiel polynomielle Regression: Training vs. Testfehler Trainingsfehler vs. Testfehler für unterschiedliche Polynomgrade Testfehler z.b. mit grosser Holdout-Menge gemessen Phänomen der Überanpassung ( Overfitting ): Trainingsfehler sinkt monoton mit M, aber Testfehler steigt für große M wieder 36

37 Beispiel polynomielle Regression: Training vs. Testfehler Problem der Überanpassung (Overfitting) wird geringer, wenn mehr Daten verfügbar 10 Beispiele, M = Beispiele, M = 9 In der Praxis verfügbare Daten begrenzt Modell muss regularisiert werden 37

38 Regularisierte Polynomielle Regression Polynommodell vom Grad M=9: f ( x) Lerne Modell durch Minimierung des regularisierten quadratischen Verlustes Gelerntes Modell Echtes Modell M w* arg min w ( ( ) ) i1 M 9, ln 18 2 fw xi yi w 2 M wi x i0 Trainingsdaten 1 1 i L ( x, y ),...,( x, y ) m Regularisiertes Modell vom Grad M=9 verhält sich wie Polynom niedrigerer Ordnung. m Regularisierer verhindert Overfitting 38

39 Regularisierte Polynomielle Regression Jetzt müssen wir einstellen Regularisierungsparameter kontrolliert Komplexität ähnlich wie Polynomgrad M M 9 ln M 9 ln 18 M 9 ln 0 39

40 Regularisierte Polynomielle Regression Trainingsfehler vs. Testfehler für unterschiedliche Werte des Regularisierungsparameters Testfehler z.b. mit grosser Holdout-Menge gemessen 0 Trainingsfehler minimal ohne Regularisierung, aber Testfehler besser für regularisiertes Modell Umgekehrtes Verhalten wie für unterschiedliche Polynomgrade 40

41 Regularisierte Polynomielle Regression Regularisierer wirkt wie eine Begrenzung der Modellkomplexität und verhindert Überanpassung In der Praxis am besten, Modellkomplexität durch Regularisierung zu kontrollieren (direkter Parameter wie bei Polynomen oft nicht verfügbar) Regularisierer kann durch Fehlerschätzung (Holdout- Testing oder Cross-Validation) eingestellt werden. 41

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und Selektion

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und Selektion

Mehr

Lineare Regression. Volker Tresp

Lineare Regression. Volker Tresp Lineare Regression Volker Tresp 1 Die Lernmaschine: Das lineare Modell / ADALINE Wie beim Perzeptron wird zunächst die Aktivierungsfunktion gewichtete Summe der Eingangsgrößen x i berechnet zu h i = M

Mehr

Die Datenmatrix für Überwachtes Lernen

Die Datenmatrix für Überwachtes Lernen Die Datenmatrix für Überwachtes Lernen X j j-te Eingangsvariable X = (X 0,..., X M 1 ) T Vektor von Eingangsvariablen M Anzahl der Eingangsvariablen N Anzahl der Datenpunkte Y Ausgangsvariable x i = (x

Mehr

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation Validation Oktober, 2013 1 von 20 Validation Lernziele Konzepte des maschinellen Lernens Validierungsdaten Model Selection Kreuz-Validierung (Cross Validation) 2 von 20 Validation Outline 1 Validation

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayes sches Lernen Niels Landwehr Überblick Grundkonzepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Sh Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 12 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Maschinelles Lernen Definition Lernen 2 agnostic -learning Definition

Mehr

Ringvorlesung interdisziplinäre, angewandte Mathematik: Maschinelles Lernen

Ringvorlesung interdisziplinäre, angewandte Mathematik: Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Ringvorlesung interdisziplinäre, angewandte Mathematik: Maschinelles Lernen Niels Landwehr, Paul Prasse, Termine VL Dienstag 12:15-13:45,

Mehr

Clusteranalyse: Gauß sche Mischmodelle

Clusteranalyse: Gauß sche Mischmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Klassifikation und Regression: nächste Nachbarn Katharina Morik, Uwe Ligges 14.05.2013 1 von 24 Gliederung Funktionsapproximation 1 Funktionsapproximation Likelihood 2 Kreuzvalidierung

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Projekt Maschinelles Lernen WS 06/07

Projekt Maschinelles Lernen WS 06/07 Projekt Maschinelles Lernen WS 06/07 1. Auswahl der Daten 2. Evaluierung 3. Noise und Pruning 4. Regel-Lernen 5. ROC-Kurven 6. Pre-Processing 7. Entdecken von Assoziationsregeln 8. Ensemble-Lernen 9. Wettbewerb

Mehr

Schätzung von Parametern

Schätzung von Parametern Schätzung von Parametern Schätzung von Parametern Quantitative Wissenschaft: Messung von Parametern Gemessene Werte weichen durch (statistische und systematische) Messfehler vom wahren Wert des Parameters

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 3: Lineares Modell, Klassifikation, PCA Randolf Altmeyer January 9, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum),

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), Kapitel 14 Parameterschätzung Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), = ( 1,..., n ) sei eine Realisierung der Zufallsstichprobe X = (X 1,..., X n ) zu

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten

Mehr

Punktschätzer Optimalitätskonzepte

Punktschätzer Optimalitätskonzepte Kapitel 1 Punktschätzer Optimalitätskonzepte Sei ein statistisches Modell gegeben: M, A, P ϑ Sei eine Funktion des Parameters ϑ gegeben, γ : Θ G, mit irgendeiner Menge G, und sei noch eine Sigma-Algebra

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

, Data Mining, 2 VO Sommersemester 2008

, Data Mining, 2 VO Sommersemester 2008 Evaluation 188.646, Data Mining, 2 VO Sommersemester 2008 Dieter Merkl e-commerce Arbeitsgruppe Institut für Softwaretechnik und Interaktive Systeme Technische Universität Wien www.ec.tuwien.ac.at/~dieter/

Mehr

Weitere Eigenschaften von Punktschätzern

Weitere Eigenschaften von Punktschätzern Weitere Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Ein zweiter Schätzer für p bei Binomialverteilung Vergleich der Schätzer anhand einer Simulation Erwartungstreue Bias Asymptotische

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Maschinelle Sprachverarbeitung: N-Gramm-Modelle

Maschinelle Sprachverarbeitung: N-Gramm-Modelle HUMBOLD-UNIVERSIÄ ZU BERLIN Institut für Informatik Lehrstuhl Wissensmanagement Maschinelle Sprachverarbeitung: N-Gramm-Modelle obias Scheffer, Ulf Brefeld Statistische Sprachmodelle Welche Sätze sind

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

W09 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung

W09 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung Der Verhältnisschätzer - Ratio estimator Beispiel: Schätzung der Anzahl Objekte (Bäume) in einem bestimmten Gebiet. Situation: Die Fläche ist unterteilt in Streifen / Transekte. Man wählt zufällig n =

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 24. Mai 2011 3. Schätzung von Parametern Problemstellung: Aus fehlerbehafteten Messungen möglichst genaue Ergebnisse erarbeiten zusammen mit Aussagen

Mehr

Notgepäck Genauigkeit

Notgepäck Genauigkeit Notgepäck Genauigkeit Beat Hulliger Dienst Statistische Methoden, Bundesamt für Statistik 20.4.2006 1 Was ist Genauigkeit genau? Um zu beschreiben, was Genauigkeit in der Statistik ist, müssen wir untersuchen,

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Analytics Entscheidungsbäume

Analytics Entscheidungsbäume Analytics Entscheidungsbäume Professional IT Master Prof. Dr. Ingo Claßen Hochschule für Technik und Wirtschaft Berlin Regression Klassifikation Quellen Regression Beispiel Baseball-Gehälter Gehalt: gering

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirtschaftsforschung Prof. Dr. Bernd Süßmuth Universität Leipzig Institut für Empirische Wirtschaftsforschung Volkswirtschaftslehre, insbesondere Ökonometrie 1 3. Momentenschätzung auf Stichprobenbasis

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Ausgangsdaten Bundesliga 2008/2009 Gegeben: Daten zu den 18 Vereinen der ersten Bundesliga

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Teil VII. Deskriptive Statistik. Woche 5: Deskriptive Statistik. Arbeitsschritte der Datenanalyse. Lernziele

Teil VII. Deskriptive Statistik. Woche 5: Deskriptive Statistik. Arbeitsschritte der Datenanalyse. Lernziele Woche 5: Deskriptive Statistik Teil VII Patric Müller Deskriptive Statistik ETHZ WBL 17/19, 22.05.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Bootstrap: Punktschätzung

Bootstrap: Punktschätzung Resampling Methoden Dortmund, 2005 (Jenő Reiczigel) 1 Bootstrap: Punktschätzung 1. Die Grundidee 2. Plug-in Schätzer 3. Schätzung des Standardfehlers 4. Schätzung und Korrektur der Verzerrung 5. Konsistenz

Mehr

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen. Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf

Mehr

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator Überblick Grundlagen Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Computergestützte Datenanalyse in der Kern- und Teilchenphysik

Computergestützte Datenanalyse in der Kern- und Teilchenphysik Computergestützte Datenanalysein der Kern- und Teilchenphysik p. 1/?? Computergestützte Datenanalyse in der Kern- und Teilchenphysik Vorlesung 4 Jan Friedrich Computergestützte Datenanalysein der Kern-

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

Annahmen des linearen Modells

Annahmen des linearen Modells Annahmen des linearen Modells Annahmen des linearen Modells zusammengefasst A1: Linearer Zusammenhang: y = 0 + 1x 1 + 2x 2 + + kx k A2: Zufallsstichprobe, keine Korrelation zwischen Beobachtungen A3: Erwartungswert

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Graphische Modelle iels Landwehr Überblick: Graphische Modelle Graphische Modelle: Werkzeug zur Modellierung einer Domäne mit verschiedenen

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Additive Modelle Katharina Morik, Weihs 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung.6.015 1 von 33 von 33 Ausgangspunkt: Funktionsapproximation Aufteilen der

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Christoph Sawade/Niels Landwehr/Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Christoph Sawade/Niels Landwehr/Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Graphische Modelle Christoph Sawade/Niels Landwehr/Tobias Scheffer Graphische Modelle Werkzeug zur Modellierung einer Domäne mit

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Korollar 116 (Grenzwertsatz von de Moivre)

Korollar 116 (Grenzwertsatz von de Moivre) Ein wichtiger Spezialfall das Zentralen Grenzwertsatzes besteht darin, dass die auftretenden Zufallsgrößen Bernoulli-verteilt sind. Korollar 116 (Grenzwertsatz von de Moivre) X 1,..., X n seien unabhängige

Mehr

Hidden-Markov-Modelle

Hidden-Markov-Modelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hidden-Markov-Modelle Tobias Scheffer Thomas Vanck Hidden-Markov-Modelle: Wozu? Spracherkennung: Akustisches Modell. Geschriebene

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

3.3 Methoden zur Evaluierung von Schätzern

3.3 Methoden zur Evaluierung von Schätzern 3.3 Methoden zur Evaluierung von Schätzern Bis jetzt haben wir nur glaubwürdige Techniken zur Konstruktion von Punktschätzern besprochen. Falls unterschiedliche Schätzer für einen Parameter resultieren,

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

Statistik II SoSe 2006 immer von 8:00-9:30 Uhr

Statistik II SoSe 2006 immer von 8:00-9:30 Uhr Statistik II SoSe 2006 immer von 8:00-9:30 Uhr Was machen wir in der Vorlesung? Testen und Lineares Modell Was machen wir zu Beginn: Wir wiederholen und vertiefen einige Teile aus der Statistik I: Konvergenzarten

Mehr

Statistik II. Regressionsanalyse. Statistik II

Statistik II. Regressionsanalyse. Statistik II Statistik II Regressionsanalyse Statistik II - 23.06.2006 1 Einfachregression Annahmen an die Störterme : 1. sind unabhängige Realisationen der Zufallsvariable, d.h. i.i.d. (unabh.-identisch verteilt)

Mehr

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller Woche 10: Lineare Regression Patric Müller Teil XII Einfache Lineare Regression ETHZ WBL 17/19, 03.07.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Logistische Regression

Logistische Regression Logistische Regression Markus Kalisch 30.09.2014 1 Big Picture: Statistisches Lernen Supervised Learning (X,Y) Unsupervised Learning X VL 7, 11, 12 Regression Y kontinuierlich VL 1, 2, 4, 5, 6 Klassifikation

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Naive Bayes für Regressionsprobleme

Naive Bayes für Regressionsprobleme Naive Bayes für Regressionsprobleme Vorhersage numerischer Werte mit dem Naive Bayes Algorithmus Nils Knappmeier Fachgebiet Knowledge Engineering Fachbereich Informatik Technische Universität Darmstadt

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Organisation und Überblick Nico Piatkowski und Uwe Ligges 8.0.07 von Fakten Team Vorlesung: Uwe Ligges, Nico Piatkowski Übung: Sarah Schnackenberg, Sebastian Buschjäger

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Forschungsstatistik I

Forschungsstatistik I Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Kapitel V - Erwartungstreue Schätzfunktionen

Kapitel V - Erwartungstreue Schätzfunktionen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel V - Erwartungstreue Schätzfunktionen Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Übersicht. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 1

Übersicht. Künstliche Intelligenz: 18. Lernen aus Beobachtungen Frank Puppe 1 Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen 19. Wissen beim Lernen 20. Statistische

Mehr

1 Diskriminanzanalyse

1 Diskriminanzanalyse Multivariate Lineare Modelle SS 2008 1 Diskriminanzanalyse 1. Entscheidungstheorie 2. DA für normalverteilte Merkmale 3. DA nach Fisher 1 Problemstellungen Jedes Subjekt kann einer von g Gruppen angehören

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Additive Modelle Katharina Morik, Weihs 2.6.2015 1 von 33 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 33 Ausgangspunkt: Funktionsapproximation Die bisher

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Name: Vorname: Matrikelnummer: Lösungsvorschlag zur Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik (Stochastik) Datum: 07.

Mehr

Die Maximum-Likelihood-Methode

Die Maximum-Likelihood-Methode Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr