IX. Relativistische Formulierung der Elektrodynamik

Größe: px
Ab Seite anzeigen:

Download "IX. Relativistische Formulierung der Elektrodynamik"

Transkript

1 Kurzer Rückblick auf klass. relativ. Mechanik 1 IX. Relativistische Formulierung der Elektrodynamik Die Aufteilung des elektromagnetischen Felds (auch von Strom und Ladungsdichte) in elektrisches und magnetisches Feld hängt vom Bewegungszustand des Beobachters ab. Suchen eine kovariante Formulierung, d.h. eine Fomulierung der Maxwellgleichungen unabhängig vom Bewegungszustand des Beobachters, auch um el. und magn. Felder beim Übergang zwischen verschiedenen KS ineinander umzurechnen. 1. Kurzer Rückblick auf relativistische Mechanik Im Gegensatz zur Newtonschen Mechanik existiert für gegeneinander gleichförmig bewegte Bezugssystem, keine universale Zeit:, Die Umrechnung zw. den Koordinaten ist durch die Lorentztransformation (LT) gegeben, eingeführt um Konstanz der Lichtgeschwindigkeit c Rechung zu tragen. LT hält dazu die folgende Abstände bei konstant: Theoretische Physik III (Elektrodynamik) p.1/13

2 Kurzer Rückblick auf klass. relativ. Mechanik 2 folgt aus der Forderung an die Theorie die Lichtgeschw. c in allen zueinander gleichförmig bewegten KS (Experiment) konstant zu halten. Norm Ortsabstand oder die Zeitabstand allein für sich. ist invariante Größe ( Lorentzskalar ), nicht der In ähnlicher Weise: E,B-Feld sind nicht invariant, sieht man sofort an bewegter Punktladung: im mitbewegten System der PL ist der Strom Null ( gleich ), von aussen gesehen aber: Stromfluss ( ). Man sucht eine forminvariante Darstellung der Maxwellgleichungen (unabh. vom KS). Daher sinnvoll Viervektoren einzuführen wie in relativist. Mechanik. Vierervektoren selbst werden durch die LT beim Wechsel des KS ineinander umgerechnet, Betrag bleibt unverändert. Bekanntes Beispiel aus der speziellen Relativitätstheorie ist der kontravariante Viervektor griechisch: Raum-Zeit Koordinaten ( ), lateinisch: Raum-Koordinaten (i) Die Norm dieses Vektors bleibt bei dem Wechsel zwischen Inertialsystemen konstant. Theoretische Physik III (Elektrodynamik) p.2/13

3 Kurzer Rückblick auf klass. relativ. Mechanik 3 Einführung des kovarianten metrischen Tensors Skalarprodukts: zur Defininition des sonst 0 Norm: Durch die Einführung des kovarianten Vektors : läßt sich das Skalarprodukt besser schreiben: zum kontravarianten Vektor (Einsteinsche Summekonvention für wiederholte Indizes, von denen einer kovariant (unten) und einer kontravariant (oben) ist.) Die Lorentztransformation zw. kann für Vierervektoren dann mit geschrieben werden, wobei eine Matrix darstellt. Theoretische Physik III (Elektrodynamik) p.3/13

4 Hier für den Fall einer Bewegung in x-richtung Kurzer Rückblick auf klass. relativ. Mechanik 4 :, Koordinatenschreibweise:. für die kovarianten Vektoren: (oben: ): Man findet durch Matrixmultiplikation, z.b. erste Vorzeile mal erste Nachspalte: LT in klass. Mechanik führt zu Paradoxa (Längenkontraktion, Zeitdilatation), weil nicht die Raum- und Zeitabstände invariant sind, sonderntheoretische nur Gesamtbe- Physik III (Elektrodynamik) p.4/13

5 Transformationsobjekte 5 2. Transformationsobjekte a) der Vierervektor mit Hilfe der LT transformiert um die Konstanz von c zu gewährleisten verallgemeinernd nennt man einen Vektor mit 4 Komponenten einen Vierervektor, wenn er sich beim Wechsel der KS wie der Vektor transformiert, d.h.. wird beim Wechsel des Koordinatensystems ( b) ein Skalar, der sich unter der LT nicht verändert, heißt Lorentzskalar Beispiel: Norm von Vierervektoren sind Lorentzskalare: ) c) eine Matrix, die sich unter der LT wie die Größe kontravarianter Tensor verhält, heißt (Hintereinanderschalten zweier Lorentztransformationen) Theoretische Physik III (Elektrodynamik) p.5/13

6 Verhalten der Kontinuitätsgleichung 6 3. Verhalten der Kontinuitätsgleichung unter Lorentztransformation Annahme, durch das Experiment gestützt: Die Ladung ist erhalten (Lorentzskalar) und erfüllt damit eine Kontinuitätsgleichung in allen Koordinatensystemen (nicht trivial, Masse ist z.b. kein Lorentzskalar) Kontinuitätsgleichung muß also in alle KS gelten: ist die Kontinuitätsgleichung in der Viererschreibweise mit dem Viererstrom. Theoretische Physik III (Elektrodynamik) p.6/13

7 Viererstrom 7 ein Vierervektor sein muß. Dazu zeigen wir, Man kann jetzt zeigen, daß dass die Kontinuitätsgleichung und die Viererableitung forminvariant unter LT ist: ist ein Vierervektor: 1. transformiert, ist also ein Vierervektor, wird wie 2.die Kontinuitätsgleichung ist ebenso invariant: Theoretische Physik III (Elektrodynamik) p.7/13

8 Viererstrom 8 Da die Stromdichte ein Vierervektor ist, transfomiert sie sich in völliger Analogie zur relativistische Mechanik: Analogie Mechanik Elektrodynamik Mechanik ED Strom- und Ladung mischen in Abhängigkeit des Bewegungszustands des Beobachters. Sie sind keine Invarianten beim Wechsel des KS. In ähnlicher Weise hängt die Aufteilung des em. Felds in Magnet- und elektrisches Feld vom Bewegungszustand des Beobachters ab. daher ist eine Viererformulierung der Maxwellgleichungen erstrebenswert, um eine System von Gleichungen zu haben die in allen KS gelten Theoretische Physik III (Elektrodynamik) p.8/13

9 Viererpotential 9 4. Das Viererpotential Potentialgleichungen in der Lorentzeichung: Zusammenfassen zu einer Vierergleichung: ist ein ist ein Vierervektor und muß ein Vierervektor sein, denn Lorentzskalar (beides bereits gezeigt). Theoretische Physik III (Elektrodynamik) p.9/13

10 Feldtensor Feldtensor und Maxwellgleichungen in Viererschreibweise Ansatz für einen Feldtensor: mit Was sind die Elemente? Ein Element als Beispiel: gefunden. Analog werden alle andere Elemente von ) ist antisymmetrisch( Theoretische Physik III (Elektrodynamik) p.10/13

11 Feldtensor 11 Der Feldstärketensor ist ein Lorentztensor, denn er wird aus 2 Vierervektoren aufgebaut: Die Maxwellgleichungen werden jetzt in Viererschreibweise abgeleitet: Lorentzeichung: wird der letzte Term null, mit Potentialgleichung: wird der erste Term mit dem Strom identifiziert: Maxwellgleichungen in Viererschreibweise ergibt in Komponenten: Theoretische Physik III (Elektrodynamik) p.11/13

12 Feldtensor 12 Die andere Maxwellgleichungen werden aus der Identität: gefunden: Die beide Gleichungen sind lorentzinvariant und gelten in dieser Form unverändert in zueinander gleichförmig bewegten Bezugssystemen. Die Felder sind durch ein Feldtensor dargestellt. Isolierte E,B Feldgleichungen sind nicht konsistent mit Lorentzinvarianz, die Einteilung des em Felds in E und B Feld ist abhängig vom Bezugssystem. E und B Feld müssen zum elektromagnetischen Feld zusammengefasst werden und bilden eine echte Einheit: das elektromagnetische Feld, dargestellt durch den lorentzinvarianten Tensor Theoretische Physik III (Elektrodynamik) p.12/13

10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation

10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation 10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation (a) Inertialsysteme und das spezielle Relativitätsprinzip Es gibt unendlich viele Inertialsysteme (IS), die sich relativ

Mehr

Klein-Gordon-Gleichung

Klein-Gordon-Gleichung Seminar zur Theorie der Atome, Kerne und kondensierten Matierie Klein-Gordon-Gleichung Judith Beier 17.12.2014 1 Inhaltsverzeichnis 1 Einblick in die Geschichte der relativistischen Quantenmechanik 3 2

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

Kapitel 4. Lorentz-Tensoren

Kapitel 4. Lorentz-Tensoren Kapitel 4 Lorentz-Tensoren Nach Möglichkeit versucht man, die Gesetze der Physik so aufzustellen, dass sie in allen Inertialsystemen die gleiche Form haben, also forminvariant unter Translationen und Rotationen

Mehr

Theoretische Elektrotechnik

Theoretische Elektrotechnik Theoretische Elektrotechnik Band 1: Variationstechnik und Maxwellsche Gleichungen von Dr. Roland Süße und Prof. Dr. Bernd Marx Technische Universität Ilmenau Wissenschaftsverlag Mannheim Leipzig Wien Zürich

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation

Mehr

Dieses Buch enthält eine kurze Einführung in die relativistische

Dieses Buch enthält eine kurze Einführung in die relativistische Vorwort Dieses Buch enthält eine kurze Einführung in die relativistische Mechanik. Dabei stehen die Bewegungsgleichungen für ein Masseteilchen im Mittelpunkt. Es richtet sich an Studenten, die bereits

Mehr

1.5 Relativistische Kinematik

1.5 Relativistische Kinematik 1.5 Relativistishe Kinematik 1.5.1 Lorentz-Transformation Grundlage: Spezielle Relativitätstheorie à In jedem Inertialsystem gelten die gleihen physikalishen Gesetze; Inertialsystem: System in dem das

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

Relativistische Punktmechanik

Relativistische Punktmechanik KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen

Mehr

Einführung in die Grundlagen der Theoretischen Physik

Einführung in die Grundlagen der Theoretischen Physik Günther Ludwig Einführung in die Grundlagen der Theoretischen Physik Band2: Elektrodynamik, Zeit, Raum, Kosmos Bertelsmann Universitätsverlag Inhalt Kurze Anleitung für den Leser 7 VIII. Elektrodynamik

Mehr

Spezielle Relativität

Spezielle Relativität Spezielle Relativität Gleichzeitigkeit und Bezugssysteme Thomas Schwarz 31. Mai 2007 Inhalt 1 Einführung 2 Raum und Zeit Bezugssysteme 3 Relativitätstheorie Beginn der Entwicklung Relativitätsprinzip Lichtausbreitung

Mehr

In Newtons Gravitationstheorie wird die Bewegung von N Massenpunkten, die sich gegenseitig durch Gravitation anziehen, durch

In Newtons Gravitationstheorie wird die Bewegung von N Massenpunkten, die sich gegenseitig durch Gravitation anziehen, durch I Einleitung 1 Newtons Gravitationstheorie Im Jahr 1687 veröffentlichte Newton seine Philosophiae naturalis principia mathematica, in denen er die Mechanik und die Gravitationstheorie behandelt. Newtons

Mehr

I.2.3 Minkowski-Raum. ~r x 3 benutzt.

I.2.3 Minkowski-Raum. ~r x 3 benutzt. I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer

Mehr

24 Minkowskis vierdimensionale Raumzeit

24 Minkowskis vierdimensionale Raumzeit 24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten

Mehr

VI. Formale Lösung der Maxwellgleichungen bei Anwesenheit von Quellen

VI. Formale Lösung der Maxwellgleichungen bei Anwesenheit von Quellen Vektor und skalares Potential (1) VI. Formale Lösung der Maxwellgleichungen bei Anwesenheit von Quellen 1. Vektor- und skalares Potential, Eichtransformation Maxwellgleichungen sind gekoppelte partielle

Mehr

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Holger Göbel Gravitation und Relativität Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Vorwort V Liste der verwendeten Symbole XV 1 Newton'sche Mechanik 1 1.1 Die Grundgleichungen der

Mehr

Elektromagnetische Felder

Elektromagnetische Felder К. Meetz W L Engl Elektromagnetische Felder Mathematische und physikalische Grundlagen Anwendungen in Physik und Technik Mit 192 Abbildungen Springer-Verlag Berlin Heidelberg New York 1980 Inhaltsverzeichnis

Mehr

Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren.

Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren. Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren. Mehr von PLARTHIN gibt's im Internet auf http://plarthin.wordpress.com Literatur: - deutsche Wikipedia - Spacetime and

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen Prof. C. Greiner, Dr. H. van Hees Wintersemester 13/14 Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 1 Präsenzübungen (P7) Viererimpuls und relativistisches Electron im Plattenkondensator (a) Es

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Skript zur Vorlesung Spezielle Relativitätstheorie

Skript zur Vorlesung Spezielle Relativitätstheorie Skript zur Vorlesung Spezielle Relativitätstheorie gelesen von: Apl. Prof. Dr. rer. nat. Jörg Main Skript von : Michael Klas 1 Inhaltsverzeichnis 1. Einführung... 4 1.1. Physik in dieser Raum-Zeit... 4

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Ein konzeptioneller Einblick Von Jan Kaprolat Gliederung Einleitung Übergang SRT -> ART Grundlegende Fragestellungen der ART Kurzer Einblick: Tensoralgebra Einsteinsche Feldgleichungen

Mehr

Sechste Vorlesung: Gravitation II

Sechste Vorlesung: Gravitation II Sechste Vorlesung: Gravitation II 6.1 Das Einstein-Hilbert-Funktional 6.2 Relativistische Elektrodynamik 6.3 Spurfreiheit des Energie-Impuls-Tensors T αβ em * 6.1 Das Einstein-Hilbert-Funktional Wir wollen

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 07. 12. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

7.6 Relativitätstheorie und Elektrodynamik

7.6 Relativitätstheorie und Elektrodynamik 7.6. RELATIVITÄTSTHEORIE UND ELEKTRODYNAMIK 77 7.6 Relativitätstheorie un Elektroynamik Für eine Beschreibung von Kenngrößen in er Natur, ie mit er speziellen Relativitätstheorie verträglich ist, ist es

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

9. Spezielle Relativitätstheorie

9. Spezielle Relativitätstheorie 7. Relativistischer Impuls 9. Spezielle Relativitätstheorie (SRT) Inhalt 9. Spezielle Relativitätstheorie 9.1 Galilei-Transformation 9.2 Lorentz-Transformation 9.3 Transformation von Geschwindigkeiten

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 16. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 16. 06.

Mehr

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern.

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern. II Spezielle Relativitätstheorie II.1 Einleitung Mechanik für v c (Lichtgeschwindigkeit: 3x10 8 m/s) Spezielle Relativitätstheorie: Raum und Zeit in Systemen, die sich gegeneinander mit konstanter Geschwindigkeit

Mehr

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Kapitel 7: Maxwell-Gleichungen

Kapitel 7: Maxwell-Gleichungen Kapitel 7: Maxwell-Gleichungen 1831-1879 Physik-II - Christian Schwanenberger - Vorlesung 50 7.1 Der Verschiebungsstrom 7 Maxwell - Gleichungen 7.1 Der Verschiebungsstrom Das Faraday sche Gesetz B beschreibt,

Mehr

Theoretische Physik 3 Elektrodynamik

Theoretische Physik 3 Elektrodynamik Rainer J. Jelitto Theoretische Physik 3 Elektrodynamik Eine Einführung in die mathematische Naturbeschreibung 2., korrigierte Auflage Mit 106 Abbildungen, Aufgaben und Lösungen Ä AULA-Verlag Wiesbaden

Mehr

Dirac Gl. relativistischer Fall

Dirac Gl. relativistischer Fall Dirac Gl. relativistischer Fall Freie Dirac Gleichung ohne Feld: ħ = c = iħ Ψ t α = Lösungsansatz: Ψx = = [ α p + mβ]ψ σ, β = σ 2 2 Pauli Matrizen ϕp χp pos. Energie e ipx iet p x neg. Energie Lösungen

Mehr

Theoretische Physik (Elektrodynamik)

Theoretische Physik (Elektrodynamik) Theoretische Physik (Elektrodynamik) Andreas Knorr andreas.knorr@physik.tu-berlin.de PN 72 Technische Universität Berlin Theoretische Physik III (Elektrodynamik) p.127 I Vorkenntnisse und Geschichte (1)

Mehr

Klassische Elektrodynamik

Klassische Elektrodynamik Theoretische Physik Band 3 Walter Greiner Klassische Elektrodynamik Institut für Festkörperphysik Fachgebiet Theoretische Physik Technische Hochschule Darmstadt Hochschulstr. 6 1P iu Verlag Harri Deutsch

Mehr

Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner Philipp Köhler

Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner Philipp Köhler Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner 2012 Philipp Köhler Übersicht Newton sche Mechanik und Galileitransformation Elektrodynamik Äther und das Michelson Morley Experiment

Mehr

IX Relativistische Mechanik

IX Relativistische Mechanik IX Relativistische Mechanik 34 Relativitätsprinzip Die bisher behandelte Newtonsche Mechanik gilt nur für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind. Im Teil IX stellen wir die

Mehr

Wir wollen zunächst die fundamentalen Feldgleichungen der Elektrostatik. roth = j

Wir wollen zunächst die fundamentalen Feldgleichungen der Elektrostatik. roth = j 208 4. Elektrodynamik 4 Elektrodynamik Die Kapitel 2 und 3 haben gezeigt, dass sich elektrostatische und magnetostatische Probleme völlig unabhängig voneinander behandeln lassen. Gewisse formale Analogien

Mehr

5.3.3 Die Lorentz-Transformationen

5.3.3 Die Lorentz-Transformationen 5.3. EINSTEINS SPEZIELLE RELATIVITÄTSTHEORIE 135 Wir kennen bereits die Transformationen zwischen Inertialsystemen der Potentiale der Elektrodynamik. So sind ϕ und A für eine gleichmäßig, geradlinig bewegte

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Grundideen der allgemeinen Relativitätstheorie

Grundideen der allgemeinen Relativitätstheorie Grundideen der allgemeinen Relativitätstheorie David Moch La Villa 2006 Inhalt Newtons Physik und ihr Versagen Einsteins Lösung von Raum und Zeit: Die spezielle Relativitätstheorie Minkowskis Vereinigung

Mehr

Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor

Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor 1.6 Tensoren Tensor vom Typ (k,l) = multilineare Abb. nach R x bedeutet kartesisches Produkt (geordnetes Paar) Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor Skalar: Type (0,0) Vektor:

Mehr

1.3 Transformation der Geschwindigkeit

1.3 Transformation der Geschwindigkeit [Griffiths 1.1.3, 1..1] 1.3 Transformation der Geschwindigkeit Seien S und S Inertialsysteme. S bewege sich gegenüber S mit der Geschwindigkeit V = V e 1. Es sei wieder β = V/c, γ = 1/ 1 β. Für ein Ereignis

Mehr

Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub

Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub 6. Dezember 2004 2 Inhaltsverzeichnis 2 spezielle Relativitätstheorie

Mehr

ELEKTROMAGNETISCHE FELDER

ELEKTROMAGNETISCHE FELDER ELEKTROMAGNETISCHE FELDER EIN LEHRBUCH DER THEORETISCHEN PHYSIK VON PROF.DR. WILHELM MACKE DIREKTOR DES INSTITUTS FÜR THEORETISCHE PHYSIK AN DER TECHNISCHEN HOCHSCHULE DRESDEN MIT 166 ABBILDUNGEN LEIPZIG

Mehr

Lorentz-Transformationen und Invarianz

Lorentz-Transformationen und Invarianz Lorentz-Transformationen und Invarianz Wolfgang Lange. April 0 Einleitung Bei der Suche nach einer allgemeinverständlichen Erläuterung von Transformationen und Tensoren fand ich die besten Erklärungen

Mehr

Spezielle Relativitätstheorie und Elektrodynamik Ferienkurs Elektrodynamik

Spezielle Relativitätstheorie und Elektrodynamik Ferienkurs Elektrodynamik Spezielle Relativitätstheorie und Elektrodynamik Ferienkurs Elektrodynamik 22.03.2011 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 2 1.1 Grundlagen................................... 2 1.2 Minkowski-Raum................................

Mehr

Seminarvortrag. Spinoren der Lorentzgruppe

Seminarvortrag. Spinoren der Lorentzgruppe Seminarvortrag Spinoren der Lorentzgruppe Juli 2003 Inhaltsverzeichnis 1 Grundbegriffe 3 1.1 Tensoren und Spinoren........................ 3 1.2 Lorentzgruppe............................ 3 2 Spinoren 4

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu Klassische Elektrodynamik 1 Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astrono mie Auf de m Hügel 71 kbasu@astro.uni-bonn.de

Mehr

Tensoren und Relativität

Tensoren und Relativität Tensoren und Relativität Johannes Fahrner Proseminar Lineare Algebra WS2016/2017 Universität Konstanz Zusammenfassung In dieser Ausarbeitung wollen wir uns mit Tensoren beschäftigen und uns ansehen, inwiefern

Mehr

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10.

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10. 10 Äquivalenzprinzip Die physikalische Grundlage der Allgemeinen Relativitätstheorie (ART) ist das von Einstein postulierte Äquivalenzprinzip 1. Dieses Prinzip besagt, dass Gravitationskräfte äquivalent

Mehr

Einführung in die Spezielle Relativitätstheorie

Einführung in die Spezielle Relativitätstheorie Einführung in die Spezielle Relativitätstheorie Lara Kuhn 12.06.15 Dies ist eine Zusammenfassung des Vortrags, den ich in dem Semiar zur Elektrodynamik und Speziellen Relativitätstheorie von Professor

Mehr

Allgemeine Relativitätstheorie Ausarbeitung. Von Jan Kaprolat

Allgemeine Relativitätstheorie Ausarbeitung. Von Jan Kaprolat Allgemeine Relativitätstheorie Ausarbeitung Von Jan Kaprolat Grundlegende Motivation zur ART Die Allgemeine Relativitätstheorie (ART) ist die Erweiterung der speziellen Relativitätstheorie (SRT). Sie bezieht

Mehr

Theoretische Physik III: Elektrodynamik

Theoretische Physik III: Elektrodynamik Theoretische Physik III: Elektrodynamik Dirk H. Rischke Wintersemester 200/20 Inhaltsverzeichnis Grundlagen der Elektrodynamik. Lagrange-Formalismus für Felder....................... 2.. Lagrange-Mechanik

Mehr

Übung 8 : Spezielle Relativitätstheorie

Übung 8 : Spezielle Relativitätstheorie Universität Potsdam Institut für Physik Vorlesung Theoretische Physik I LA) WS 13/14 M. Rosenblum Übung 8 : Spezielle Relativitätstheorie Besprechung am Montag, dem 03.0.014) Aufgabe 8.1 Zeigen Sie die

Mehr

Theoretische Physik II

Theoretische Physik II Peter Reineker, Michael Schulz und Beatrix M. Schulz Theoretische Physik II Elektrodynamik mit Aufgaben in Maple WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Vorwort XV 1 Einleitung 1

Mehr

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg Geometrie der Maxwell-Theorie Max Camenzind Senioren Uni Würzburg Die Themen Die Geometrisierung der Speziellen Relativität durch Hermann Minkowski im Jahre 1908. Die kausale Struktur der RaumZeit. Die

Mehr

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13.

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13. 13. Makroskopische Felder Teil VI Das elektromagnetische Feld in Materie Im Prinzip erlauben die Maxwell-Gleichungen von Teil III das elektromagnetische Feld beliebiger Materieanordnungen zu berechnen,

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/201 Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12 (P0) Das Garagen-Paradoxon Präsenzübungen Es kann selbstverständlich mit der Beschreibung

Mehr

IX.2 Multipolentwicklung

IX.2 Multipolentwicklung IX. Multipolentwicklung 153 IX. Multipolentwicklung Ähnlich der in Abschn. III.3 studierten Entwicklung des elektrostatischen Skalarpotentials Φ( r) einer Ladungsverteilung ρ el. als Summe der Potentiale

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 4 Thema: Elektromagnetische Schwingungen, elektromagnetische Wellen und Spezielle Relativitätstheorie Technische Universität München 1 Fakultät für

Mehr

Elektromagnetische Feldtheorie

Elektromagnetische Feldtheorie Harald Klingbeil Elektromagnetische Feldtheorie Ein Lehr-und Übungsbuch 2., überarbeitete und erweiterte Auflage STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Grundlagen 1 1.1 Mathematische Grundlagen 1

Mehr

Otto Rang. Vektoralgebra. Mit 94 Abbildungen und 66 Übungsaufgaben mit Lösungen. Dr. Dietrich Steinkopff Verlag Darmstadt

Otto Rang. Vektoralgebra. Mit 94 Abbildungen und 66 Übungsaufgaben mit Lösungen. Dr. Dietrich Steinkopff Verlag Darmstadt Otto Rang Vektoralgebra Mit 94 Abbildungen und 66 Übungsaufgaben mit Lösungen Dr. Dietrich Steinkopff Verlag Darmstadt Vorwort Inhaltsverzeichnis 1. Die Vektordefinition und einfachere Gesetzmäßigkeiten

Mehr

Theoretische Elektrodynamik

Theoretische Elektrodynamik Theoretische Elektrodynamik Literatur: 1. Joos: Lehrbuch der Theoretische Physik 2. Jackson: Klassische Elektrodynamik 3. Nolting: Grundkurs Theoretische Physik zusätzlich: Sommerfeld: Landau/Lifschitz:

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie Skript zur Vorlesung JW Goethe Universität Frankfurt Hans Jürgen Lüdde Thorsten Rühl Institut für Theoretische Physik der J.W. Goethe Universität Max-von-Laue-Straße 1 60438

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Hubert Goenner Spezielle Relativitätstheorie und die klassische Feldtheorie SPEKTRUM AKADEMISCHER I n ha I tsverzeic h n is 1. Relativitätsprinzip und Lorentz-Transformation 1 1.1 Relativitätsprinzip in

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche

Mehr

Konsequenzen der Konstanz der Lichtgeschwindigkeit

Konsequenzen der Konstanz der Lichtgeschwindigkeit Konsequenzen der Konstanz der Lichtgeschwindigkeit Wir beginnen mit einer kurzen Zusammenfassung einiger Dinge, die am Ende des vorigen Semesters behandelt wurden. Neben dem Relativitätspostulat Die Gesetze

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

Einsteins Relativitätstheorie

Einsteins Relativitätstheorie Dr. Michael Seniuch Astronomiefreunde 2000 Waghäusel e.v. Einsteins Relativitätstheorie 16. April 2010 Inhalt: I. Raum, Zeit und Geschwindigkeit im Alltag II. Die Spezielle Relativitätstheorie III. Die

Mehr

Relativistische Beziehungen Hochfrequenzgrundlagen

Relativistische Beziehungen Hochfrequenzgrundlagen Hochfrequenzgrundlagen Prof. Dr. H. Podlech 1 Klassische Mechanik Im Rahmen der klassischen Mechanik gelten folgende Beziehungen Masse: m=konstant Impuls: Kinetische Energie: Geschwindigkeit: Prof. Dr.

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Relativistisch kovariante Formulierung der Elektrodynamik

Relativistisch kovariante Formulierung der Elektrodynamik KAPITEL III Relativistish kovariante Formulierung der Elektrodynamik Die Spezielle Relativitätstheorie wurde gerade entwikelt, um die Konstanz der Lihtgeshwindigkeit im Vakuum in allen Inertialsystemen

Mehr

Darstellungstheorie. der. Lorentzgruppe

Darstellungstheorie. der. Lorentzgruppe Darstellungstheorie der Lorentzgruppe 1.) Lorentztransformationen: Die zwei grundlegenden Postulate der Speziellen Relativitätstheorie sind das Relativitätsprinzip, welches besagt, dass alle Naturgesetze

Mehr

Minkowski-Geometrie in der Schule. Michael Bürker

Minkowski-Geometrie in der Schule. Michael Bürker Minkowski-Geometrie in der Schule Michael Bürker buerker@online.de Gliederung Weg-Zeit-Diagramme Grundprinzipien der speziellen Relativitätstheorie Drei Symmetrieprinzipien Der relativistische Faktor Lorentz-Kontraktion

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Leisi, Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 05. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 06.

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 16. Nov. Spezielle Relativitätstheorie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Newtonsche Mechanik ist invariant unter Gallilei-

Mehr

Über Tensoren, Matrizen und Pseudovektoren

Über Tensoren, Matrizen und Pseudovektoren Üer Tensoren, Matrizen und Pseudovektoren von Mike Georg Bernhardt 14. August 2009 Der folgende Text ehandelt die Transformationseigenschaften von Tensoren und Matrizen, den Unterschied zwischen Tensoren

Mehr

3 Bewegte Bezugssysteme

3 Bewegte Bezugssysteme 3 Bewegte Bezugssysteme 3.1 Inertialsysteme 3.2 Beschleunigte Bezugssysteme 3.2.1 Geradlinige Beschleunigung 3.2.2 Rotierende Bezugssysteme 3.3 Spezielle Relativitätstheorie Caren Hagner / PHYSIK 1 / Sommersemester

Mehr

6. Spezielle Relativitätstheorie

6. Spezielle Relativitätstheorie 6. Spezielle Relativitätstheorie 6.1. Inertialsysteme und Gallilei-Transformation Newton: Es gibt einen absolut ruhenden Raum Weltäther Es gibt eine absolute (universelle) Zeit Gleichförmig im Weltäther

Mehr

Spezielle Relativitätstheorie. Nicolas Borghini

Spezielle Relativitätstheorie. Nicolas Borghini Spezielle Relativitätstheorie Nicolas Borghini Version vom 7. Mai 2017 Nicolas Borghini Universität Bielefeld, Fakultät für Physik Homepage: http://www.physik.uni-bielefeld.de/~borghini/ Email: borghini

Mehr

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Prof Dr-Ing Ch Tsakmakis Dipl-Ing J Frischmann FB 13, FG Kontinuumsmechanik Aufgabe 1 (Klausuraufgabe) Seien drei Vektoren u, v, w

Mehr

Die Spezielle Relativitätstheorie

Die Spezielle Relativitätstheorie 2 Die Spezielle Relativitätstheorie Mithilfe des berühmten Michelson-Morley-Experiments wurde entdeckt, dass die Geschwindigkeit des Lichts in allen Inertialsystemen den gleichen Wert hat. 1 Einstein war

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Eine Einführung in die Theorie des Gravitationsfeldes von Hans Stephani 4. Auflage Mit 54 Abbildungen / j.* i v, V r ' ''% Щ r \. ', Deutscher Verlag der Wissenschaften Berlin

Mehr

8. Relativistische Mechanik

8. Relativistische Mechanik 8. Relativistische Mechanik 8.1 Einleitung Einige experimentelle Tatsachen zeigen, dass die Galileiinvariante Mechanik nur begrenzte Gültigkeit haben kann. Konstanz der Lichtgeschwindigkeit Die Invarianz

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Bearbeitet von Torsten Fließbach 1. Auflage 212. Buch. x, 382 S. Hardcover ISBN 978 3 8274 331 1 Format (B x L): 16,8 x 24 cm Gewicht: 823 g Weitere Fachgebiete > Physik,

Mehr

Elektrodynamik. Rainer Hauser. Januar 2015

Elektrodynamik. Rainer Hauser. Januar 2015 Elektrodynamik Rainer Hauser Januar 2015 1 Einleitung 1.1 Vektorfelder Wenn man jedem Punkt im Raum eine physikalische Grösse zuordnen kann, spricht man von einem Feld. Die Temperatur ist ein skalares

Mehr