Aufgaben. Übungsblatt 04-C: Textaufgaben, die auf quadratische Gleichungen führen

Größe: px
Ab Seite anzeigen:

Download "Aufgaben. Übungsblatt 04-C: Textaufgaben, die auf quadratische Gleichungen führen"

Transkript

1 Übungsblatt 04-C: Textaufgaben, die auf quadratische Gleichungen führen Aufgaben Für alle mit einem Stern * bezeichneten Aufgaben sind in den Lösungen ausführliche Lösungswege angeführt! Für die restlichen Aufgaben sind nur die Lösungen zur Kontrolle zu finden! Mit einem Plus + versehene Aufgaben sind schwieriger zu lösen, sollten aber auch bewältigt werden können. Eventuell die anderen zuerst machen und wenn das funktioniert, sich an die schwierigeren heranwagen!

2 Löse die Textaufgaben nach folgenden Schritten: 1. Schritt: Lies die Aufgabe durch, lies sie noch einmal durch so lange, bis du den Inhalt völlig verstehst! 2. Schritt: Festlegen der Variablen (schau dir dazu insbesondere die Fragestellung an! Das kluge Festlegen der Variablen kann das Aufstellen der Gleichung und das Lösen der Aufgabe sehr erleichtern!) 3. Schritt: Aufstellen der Gleichung (geh schrittweise vor!) 4. Schritt: Lösen der Gleichung (das hat jetzt mit der Textaufgabe selber nichts mehr zu tun; jetzt ist nur mehr Umformen von Termen, Lösen von linearen oder quadratischen Gleichungen etc. nötig) 5. Schritt: Antwortsatz und Interpretation der Lösungen (nicht immer macht jede Lösung für die Textaufgabe Sinn, insbesondere sind oft negative Lösungen bei quadratischen Gleichungen als Lösung der Textaufgabe sinnlos!) 6. Schritt: Überprüfe die Lösung (geh den Text der Aufgabe noch einmal durch, indem du deine Lösung einsetzt; nur die erhaltene Gleichung zu überprüfen reicht nicht aus, denn du könntest ja eine falsche Gleichung aufgestellt haben. Dann kann die Gleichung zwar richtig gelöst sein, trotzdem ist die Textaufgabe falsch!) 7. Schritt: Hab Spaß daran, Textaufgaben zu lösen! Sie bereichern dein Leben! Unter den Textaufgaben sind einige einfache, aber auch einige kniffligere. Es ist aber nicht gesagt, dass am Anfang die einfachen und am Ende die schwierigen stehen, diese sind bunt gemischt! Es sollen aber keine Ergebnisse geraten oder durch Ausprobieren gefunden werden, sondern die Aufgaben sollen durch Aufstellen von Gleichungen gelöst werden!!

3 (1) Das Produkt zweier benachbarten, natürlichen Zahlen ist Berechne die beiden Zahlen! (2) Die Seitenlänge eines Quadrats wird um 12 m verlängert. Der Flächeninhalt des neuen Quadrats ist dabei um 3916 m 2 kleiner als der fünffache Flächeninhalt des ursprünglichen Quadrats. Berechne die Seitenlänge des ursprünglichen Quadrats! (3) Die Seitenlänge eines Quadrats beträgt 50 dm. Verlängert man alle Seiten um denselben Betrag, dann verachtfacht sich der Flächeninhalt. Berechne die neue Seitenlänge des Quadrats! (4) Die Längen eines Rechtecks a und b sind zusammen 4,2 m lang. Der Flächeninhalt beträgt 3,92 m 2. Berechne die Seitenlängen des Rechtecks! (5) Ein Vater ist 60 Jahre alt, sein Sohn 15 Jahre. Vor n Jahren war der Vater n-mal so alt wie der Sohn. Vor wie vielen Jahren war das der Fall? Gibt es nur eine Lösung? (6) Ein Vater ist 40 Jahre alt, seine Tochter 15 Jahre. In n Jahren wird der Vater n-mal so alt sein wie seine Tochter vor n Jahren gewesen ist. In wie vielen Jahren wird das der Fall sein? (7) Das Produkt einer Zahl mit der um 20 vergrößerten Zahl beträgt Berechne die beiden Zahlen! (8) Frau Kaiser legt Euro auf ein Sparbuch. Nach einem Jahr hebt sie 5250 Euro ab. Nach einem weiteren Jahr hat sie 13215,30 Euro auf ihrem Sparbuch. Berechne den jährlichen Zinssatz p%! (9) Herr König legt Euro auf ein Sparbuch. Nach einem Jahr zahlt er weitere Euro ein. Nach einem weiteren Jahr hebt er Euro ab und es befindet sich dann noch 24513,53 Euro auf dem Sparbuch. Berechne den jährlichen Zinssatz p%! (10) Die Längen der Katheten eines rechtwinkeligen Dreiecks unterscheiden sich um 22,5 cm. Die Hypotenuse ist um 45 cm länger als die kürzere Kathete. Berechne die Seitenlängen des Dreiecks! (11) Der Radius eines Kreises wird um 21 cm verkleinert. Der dreifache Flächeninhalt des neuen Kreises ist dabei um 117 cm 2 kleiner als der Flächeninhalt des ursprünglichen Kreises. Berechne die Radien der beiden Kreise! (12) Der innere Radius eines Kreisrings beträgt 10 m. Wie breit ist der Kreisring, wenn sein Flächeninhalt 150 m 2 beträgt? (13) Für den Anhalteweg eines Autos, das mit der Geschwindigkeit v 0 fährt, gilt folgende 2 v0 v0 Näherungsformel: s Dabei bedeuten s den Anhalteweg in m und v0 die Ausgangsgeschwindigkeit in km/h. Bei einem Unfall wird ein Anhalteweg von 140 m ermittelt. Ermittle die Geschwindigkeit, mit der der Unfalllenker gefahren ist!

4 (14) Die Summe der Quadrate zweier aufeinander folgender natürlicher Zahlen ist um 243 größer als das Doppelte der kleineren Zahl. Berechne die beiden Zahlen! (15) Die Breite eines Quaders ist um 5 cm größer als seine Länge und die Höhe um 20 cm größer als seine Länge. Die Oberfläche des Quaders beträgt cm 2. Berechne die Länge, Breite und Höhe des Quaders! (16) Die Seitenlängen eines Quaders stehen im Verhältnis 4:3: 7. Die Oberfläche des Quaders beträgt 98,82 m 2. Berechne die Seitenlängen! (17) Subtrahiert man vom Produkt zweier Zahlen, die sich um 2 unterscheiden, das Doppelte der kleineren Zahl, so erhält man 529. Berechne die beiden Zahlen! (18) In ein graues Quadrat mit der Seitenlänge 1 soll ein weißes Kreuz so eingezeichnet werden, dass der Flächeninhalt des Kreuzes gleich groß ist wie der Flächeninhalt des Hintergrundes. Wie breit muss das Kreuz gezeichnet werden? (19) Eine zweiziffrige Zahl hat die Zehnerziffer 8. Subtrahiert man von ihrem Quadrat das Quadrat der durch Umstellen ihrer Ziffern entstehende Zahl, so erhält man um 45 mehr als das 600-fache Quadrat ihrer Einerziffer. Wie lautet die Zahl? (20) Von einem Quader mit quadratischer Grundfläche, dessen Höhe doppelt so lang ist wie die Seitenlänge der Grundfläche beträgt die Oberfläche 7290 cm 2. Berechne die Seitenlänge der Grundfläche und die Höhe des Quaders! (21) Drei aufeinander folgende Zahlen bilden die Seitenlängen eines rechtwinkeligen Dreiecks. Wie lang sind die Dreiecksseiten? (22) Um welche Zahl müssen zwei gegenüberliegende Seiten eines Quadrats vergrößert werden, damit die Diagonale des entstehenden Rechtecks 5 Mal so lang ist wie die Diagonale des Quadrats? (23) Eine zweiziffrige Zahl hat die Einerziffer 2. Ihr Quadrat ist um 4455 größer als das Quadrat der mit umgekehrten Ziffern geschriebenen Zahl. Wie lautet die Zahl? (24) Wenn man die Seite eines Quadrats um 5 cm verlängert und die andere Seite um 5 cm verkürzt, so erhält man ein Rechteck mit dem Flächeninhalt 600 cm 2. Berechne die Länge der Seiten des Quadrats! (25) Welche rationale Zahl(en) hat (haben) folgende Eigenschaft? Das Produkt der um 1 kleineren Zahl und der um 1 größeren Zahl ist um 31 größer als das halbe Quadrat der gesuchten Zahl.

5 (26) In einem Rechteck ist die Länge um 4 cm größer als die Breite. Wenn man die Breite um 4 cm verkürzt und die Länge unverändert lässt, so erhält man ein Rechteck mit dem Flächeninhalt 768 cm 2. Berechne die Seitenlängen des ursprünglichen Rechtecks! (27) Die Summe der Quadrate von vier aufeinander folgenden natürlichen Zahlen beträgt Wie lauten die 4 Zahlen? (28) Die Zehnerziffer einer zweiziffrigen Zahl ist um 95 kleiner als das 14-fache der Einerziffer. Durch Umstellen der Ziffern der Zahl entsteht eine neue Zahl. Die Summe der Quadrate ergibt um 147 weniger als das 185-fache der ersten Zahl. Wie lautet die Zahl? (29) Die Zehnerziffer einer dreiziffrigen Zahl ist um 1 kleiner als die Hunderterziffer. Die Einerziffer ist um 1 größer als das Doppelte der Hunderterziffer. Das Quadrat der Zahl ist um kleiner als das Quadrat der Zahl, die entsteht, wenn man von der ursprünglichen Zahl die Einer- und Hunderterziffer vertauscht und die Zehnerziffer unverändert lässt. Berechne die ursprüngliche Zahl! (30) Bei einer 3-ziffrigen Zahl ist die Zehnerziffer um 4 größer als die Einerziffer und die Zahl ist gleich wie ihre Spiegelzahl. Dividiert man die Zahl durch diejenige zweistellige Zahl, die aus der ursprünglichen Zahl durch Streichen der Zehnerziffer hervorgeht, so erhält man um 5 weniger als die Quersumme der ursprünglichen Zahl beträgt. Wie lautet die ursprüngliche Zahl? (31) Die Kantenlänge eines Würfels wird um 1 cm vergrößert, dabei wächst sein Volumen um 271 cm 3. Wie groß war die ursprüngliche Kantenlänge des Würfels? (32) Der Zähler eines Bruchs ist um 3 kleiner als sein Nenner. Vermehrt man den Zähler als auch den Nenner um 2, so erhält man einen neuen Bruch, der um 9 kleiner ist als der Kehrwert 10 des ursprünglichen Bruchs. Wie lautet der Bruch? (33) Ein Garten hat die Form eines Rechtecks und grenzt mit einer Seite an eine Hauswand, wie in der Abbildung ersichtlich. Der Garten wird eingezäunt, wobei die Seite, die an die Mauer grenzt, natürlich ohne Zaun bleibt. Wie groß sind die Länge und die Breite des Zauns, wenn die gesamte Länge des Zauns 60 m und die Fläche des Gartens 288 m 2 beträgt?

6 (34) Ein Garten hat die Form eines rechtwinkeligen Dreiecks und grenzt mit der Hypotenuse an eine Hauswand, wie in der Abbildung ersichtlich. Der Garten wird eingezäunt, wobei die Seite, die an die Mauer grenzt, natürlich ohne Zaun bleibt. Wie groß sind die beiden Seiten des Zauns, wenn die gesamte Länge des Zauns 45 m und die Fläche des Gartens 225 m 2 beträgt? (35) Berechne die Flugdauer und die mittlere Geschwindigkeit eines Flugzeugs, das für eine Strecke von 1500 km eine Stunde Flugzeug länger benötigen würde, wenn die Geschwindigkeit um 50 km/h verringert wird! (36) Verlängert man eine Seite eines Quadrats um 12 cm und die dazu orthogonale Seite um 7 cm, so entsteht ein Rechteck, dessen Flächeninhalt um 24 cm 2 größer ist als der dreifache Flächeninhalt des Quadrats. Berechne die Seitenlängen von Quadrat und Rechteck. (orthogonal bedeutet dasselbe wie normal oder rechtwinkelig) (37) Wie lang sind die Seiten eines rechteckigen Grundstücks mit dem Flächeninhalt 2 A 1000m und dem Umfang U 280m? (38) In einem Park soll eine 8-er-förmige Skaterbahn gebaut werden, siehe in der Abbildung. Die Skaterbahn soll um zwei ungleich große Kreise geführt werden, wobei die Kreisflächen innerhalb der Skaterbahn als Parkanlage mit Sitzbänken und Spielplätzen genutzt werden sollen. Es werden an die Baufirma folgende Vorgaben gemacht: Die Skaterbahn soll insgesamt eine Gesamtlänge von 1500 m haben und die Parkanlage innerhalb der beiden Kreise soll einen Flächeninhalt von m 2 besitzen. Mit welchen beiden Radien müssen die beiden Skaterbahnkreise gebaut werden, um die Vorgaben zu erfüllen?

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

Quadratische Gleichungen

Quadratische Gleichungen 1 Quadratische Gleichungen ax 2 + bx + c = 0 1. Löse folgende Gleichungen: a) x 2 + 2x 15 = 0 b) x 2 6x + 7 = 0 c) x 2 + 15x + 54 = 0 d) x 2 + 12x 64 = 0 e) x 2 34x + 64 = 0 f) x 2 + 15x 54 = 0 g) x 2

Mehr

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Lineare Gleichungen Teil Klasse 8 Lineare Gleichungen mit einer Variablen Datei Nr. 40 Friedrich W. Buckel Dezember 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 40 Grundlagen und ein

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Aufgabe: Gesucht sind Zahlen mit folgenden Eigenschaften:.) Subtrahiert man vom Dreifachen der ersten Zahl 8, so erhält man die zweite Zahl..) Subtrahiert man von der zweiten

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Teil 1: Trainingsheft für Klasse 7 und 8 DEMO. Lineare Gleichungen mit einer Variablen. Datei Nr Friedrich W. Buckel. Stand 5.

Teil 1: Trainingsheft für Klasse 7 und 8 DEMO. Lineare Gleichungen mit einer Variablen. Datei Nr Friedrich W. Buckel. Stand 5. ALGEBRA Lineare Gleichungen Teil 1: Trainingsheft für Klasse 7 und 8 Lineare Gleichungen mit einer Variablen Datei Nr. 1140 Friedrich W. Buckel Stand 5. Januar 018 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Aufgaben zu quadratischen Gleichungen. 1. x² = x² = 0, x² = x² = ax² = b. ax² c = --- b d. 7.

Aufgaben zu quadratischen Gleichungen. 1. x² = x² = 0, x² = x² = ax² = b. ax² c = --- b d. 7. Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu quadratischen Gleichungen 1. x² =

Mehr

Repetition Mathematik 8. Klasse

Repetition Mathematik 8. Klasse Repetition Mathematik 8. Klasse. Berechne schrittweise mit einem korrekten Lösungsweg: + 3 3 4 : 3. Berechne schrittweise mit einem korrekten Lösungsweg: 0 + 0 b.) 3 4 + 3 5 c.) 9 8 8 9 5 3. Berechne schrittweise

Mehr

Serie W1 Klasse 8 RS. 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3

Serie W1 Klasse 8 RS. 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3 Serie W1 Klasse 8 RS 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3 3 c = 4 2a - b; a + b; b : c 4. 36:0,4 = 5. Vergleiche. 30+2 10+5 30+2 (10+5) 6. Kürze 12 44 7. Berechne a 8a - 28

Mehr

1 Mein Wissen aus der 3. Klasse

1 Mein Wissen aus der 3. Klasse 1 Mein Wissen aus der 3. Klasse Check-in C1 Ich kann mit gegebenen Seiten den Satz des Pythagoras formulieren. Formuliere mit den gegebenen Seiten den Satz des Pythagoras! C2 Ich kann Verhältnisse vereinfachen.

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN 3 MATHEMATIK 3 ALGEBRA GLEICHUNGEN REPETITIONEN 4 TEXTGLEICHUNGEN MATHEMATIK

TG TECHNOLOGISCHE GRUNDLAGEN 3 MATHEMATIK 3 ALGEBRA GLEICHUNGEN REPETITIONEN 4 TEXTGLEICHUNGEN MATHEMATIK 1 Die Differenz zweier Zahlen beträgt 27. Multipliziert man die erste Zahl mit 2 und die zweite mit 3, so wird die Differenz gleich 41. Wie heissen die Zahlen? x = 40 y = 13 2 Zwei Zahlen verhalten sich

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Einführung 2. Hinweis: In der elektronischen Version sind die Seiten verlinkt.

Einführung 2. Hinweis: In der elektronischen Version sind die Seiten verlinkt. Inhaltsverzeichnis Einführung 2 Aufgaben Lösungen A1 Zahlverständnis (Natürliche Zahlen)... 3 27 A1* Zahlverständnis (Natürliche Zahlen)... 4 28 A2 Rechnen (Natürliche Zahlen)... 5 29 A2* Rechnen (Natürliche

Mehr

Gleichungen -- Textaufgaben Seite 1

Gleichungen -- Textaufgaben Seite 1 Gleichungen -- Textaufgaben Seite 1 Beim Lösen von Textaufgaben dieser Art ist es sehr wichtig, den Textinhalt der Aufgabe richtig in Terme zu übersetzen. Teilweise ist es hilfreich, sich eine Skizze oder

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Korrekturanleitung. Kandidatennummer: Summe: Geburtsdatum: Note:

St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Korrekturanleitung. Kandidatennummer: Summe: Geburtsdatum: Note: St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Korrekturanleitung Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10

Mehr

Fit für den Mathematik-Lehrgang? Teste dich selbst!

Fit für den Mathematik-Lehrgang? Teste dich selbst! Fit für den Mathematik-Lehrgang? Teste dich selbst Erlaubte Hilfsmittel: Die offizielle Formelsammlung für den Vorkurs (siehe Homepage der ISME, Vorkurs + EP PH/Dokumente) eventuell ein einfacher Taschenrechner

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte

St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 Punkte Löse

Mehr

Ganze und rationale Zahlen:

Ganze und rationale Zahlen: Ganze und rationale Zahlen: 1.1 Beantworte die Fragen. Welche Temperatur wird angezeigt? -2 C 2 C -0,2 C - C Um wieviel müsste es wärmer werden, damit es 10 C hat? 2 C 7 C 12 C 18 C Die Temperatur steigt

Mehr

Der Satz des Pythagoras

Der Satz des Pythagoras Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen

Mehr

(Tip zu g): Die Ziffern bestehen aus aufeinanderfolgenden Quadratzahlen).

(Tip zu g): Die Ziffern bestehen aus aufeinanderfolgenden Quadratzahlen). Aufgabenblatt Funktionen. Entscheide für die folgenden Zahlen, zu welcher der Mengen N, Z, Q, R sie gehören? a), b).87, c) 8, d) π, e) 0..., f) 8 g) 0.4965649648... (Tip zu g): Die Ziffern bestehen aus

Mehr

HS Pians St. Margarethen. Alles Gute!

HS Pians St. Margarethen. Alles Gute! Vorübungen auf die 6. M-Schularbeit KL, KV 01 Ich habe mich bemüht, dir möglichst wieder früh Unterlagen zur Verfügung zu stellen, die Pfingstferien klopfen an die Türe, HS Pians St. Margarethen Alles

Mehr

Die Formelsammlung: Meine Mathematische Werkzeugkiste Formel, Skizze BESCHREIBUNG ergibt Beispiel(e) Alle Summanden addieren bestimmt den... einer...

Die Formelsammlung: Meine Mathematische Werkzeugkiste Formel, Skizze BESCHREIBUNG ergibt Beispiel(e) Alle Summanden addieren bestimmt den... einer... 1. Rechenvorteile, Rechengesetze Summand 12 plus Summand 4 ist gleich dem Wert der Summe: 46. Minuend 10 minus Subtrahend 7 ist gleich dem Wert der Differenz: Dividend 10 geteilt durch Divisor 4 ist gleich

Mehr

9x x + 7 = 10a 6 a b 14,5 = ordnen 9x 5x = 10a 12a 6 14,5 + 7b = zusammenfassen 4x a 20,5 + 7b

9x x + 7 = 10a 6 a b 14,5 = ordnen 9x 5x = 10a 12a 6 14,5 + 7b = zusammenfassen 4x a 20,5 + 7b D Gleichungen 1 Terme umformen Terme sind Rechenausdrücke mit verschiedenen/mehreren Rechenzeichen, Zahlen und Variablen (Platzhaltern), z. B. 3 1 2 + 2x 6 4 0,8x. Erst wenn Zahlen für die Variablen eingesetzt

Mehr

1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75)

1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75) Lineare Gleichungs und Ungleichungssysteme 1 1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75) 2. Ergänzen Sie die fehlende Zahl, sodass sich eine Lösung

Mehr

Lineare Gleichungen PRÜFUNG 06. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Ausgabe: 23. Mai Klassenschnitt/ Maximalnote :

Lineare Gleichungen PRÜFUNG 06. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Ausgabe: 23. Mai Klassenschnitt/ Maximalnote : MATHEMATIK PRÜFUNGSVORBEREITUNG Lineare Gleichungen PRÜFUNG 06 Name: Klasse: Datum: : Note: Ausgabe: 23. Mai 2011 Klassenschnitt/ Maximalnote : / Selbsteinschätzung: (freiwillig) Für alle Berechnungsaufgaben

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

LÖSEN VON TEXTAUFGABEN

LÖSEN VON TEXTAUFGABEN Schule Bundesgymnasium für Berufstätige Salzburg Thema Personen Mathematik 1 -Arbeitsblatt 1: LÖSEN VON TEXTAUFGABEN 1F Wintersemester 01/01 Unterlagen: LehrerInnenteam GFB LÖSEN VON TEXTAUFGABEN Beispiel:

Mehr

AG 2.1 Einfache Terme und Formeln aufstellen, umformen und im Kontext deuten können

AG 2.1 Einfache Terme und Formeln aufstellen, umformen und im Kontext deuten können AG 2.1 Einfache Terme und Formeln aufstellen, umformen und im Kontext deuten können Beispiel 2.1.a: Kreuze die richtige Aussage an! Welcher Term modelliert folgenden Satz: Die Hälfte der Quadratwurzel

Mehr

Känguru der Mathematik 2001 LÖSUNGEN

Känguru der Mathematik 2001 LÖSUNGEN Känguru der Mathematik 200 LÖSUNGEN GRUPPE BENJAMIN ) Josef hat 7 Stücke Schnur. Er schneidet eines entzwei. Wie viele Stücke hat er jetzt? (A) 5 (B) 6 (C) 7 (D) 8 (E) 9 6 Stücke Schnur bleiben unversehrt,

Mehr

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens.

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens. 1 Reelle Zahlen - Quadratwurzeln Wir kennen den Flächeninhalt A = 49 m 2 eines Quadrats und möchten seine Seitenlänge x berechnen Es ist also jene Zahl x zu ermitteln, die mit sich selbst multipliziert

Mehr

Wiederholung aus der 3. Klasse Seite Ganze Zahlen ( 3, 2, 1, 0, +1, + 2, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner.

Wiederholung aus der 3. Klasse Seite Ganze Zahlen ( 3, 2, 1, 0, +1, + 2, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner. Wiederholung aus der 3. Klasse Seite 1 1. Ganze Zahlen ( 3, 2, 1, 0, +1, + 2, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner. Setze ein: >,

Mehr

MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500

MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 MATHEMATIK-STAFFEL 2013 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 1 (20 Punkte) Eine lange Zahl Es werden die Jahreszahlen von 1 bis 2013 hintereinander (ohne Leerzeichen,

Mehr

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen Mathematik -Intensivierung * Jahrgangsstufe Lösung von Gleichungen durch Äquivalenzumformungen Musterbeispiel: 5 ( x - ) + x = ( 5 - x ) (Vereinfachen!) 5 x - 0 + x = 0-6 x (Vereinfachen!) 8 x - 0 = 0-6

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total

Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total Maximale Punktzahl Erreichte Punktzahl 3 3 3 3 3 3 18 Note Die Prüfung Algebra 2 umfasst 6 Aufgaben. Als Hilfsmittel ist ein nicht algebrafähiger und nicht

Mehr

1-Punkt-Aufgaben. 1) Berechne! 99, ,9 + 9, ,9999 =? 2) Berechne! A) B) 7 C) D) E) 3) Subtrahiere von! A) B) C) D) E) ~ 5 ~

1-Punkt-Aufgaben. 1) Berechne! 99, ,9 + 9, ,9999 =? 2) Berechne! A) B) 7 C) D) E) 3) Subtrahiere von! A) B) C) D) E) ~ 5 ~ 1-Punkt-Aufgaben 1) Berechne! 99,99 + 999,9 + 9,999 + 0,9999 =? A) 1020,8979 B) 1110,8889 C) 1200,8790 D)2010,7989 E) 10109,9889 2) Berechne! A) B) 7 C) D) E) 3) Subtrahiere von! A) B) C) D) E) ~ 5 ~ 2-Punkte-Aufgaben

Mehr

Kapitel 7: Gleichungen

Kapitel 7: Gleichungen 1. Allgemeines Gleichungen Setzt man zwischen zwei Terme T 1 und T 2 ein Gleichheitszeichen (=), so entsteht eine Gleichung! Ungleichung Setzt man zwischen zwei Terme T 1 und T 2 ein Ungleichheitszeichen

Mehr

2 Ein Sitzelement hat die Form eines Viertelkreises. Berechne die Sitzfläche, wenn das Element eine Seitenkante von 65 cm aufweist.

2 Ein Sitzelement hat die Form eines Viertelkreises. Berechne die Sitzfläche, wenn das Element eine Seitenkante von 65 cm aufweist. I Körper II 33. Umfang und Flächeninhalt eines Kreises Lösungen Ein Blumenbeet hat die Form eines Viertelkreises mit gegebenem Radius. Fertige eine Skizze an. Berechne den Umfang des Beetes. a) r = 3,9

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Probeseiten. Exponentialfunktion. Klassenarbeit 4.1. Klassenarbeit 4.2. Klassenarbeit 4.3. Klassenarbeit 4.4. Trigonometrie. Klassenarbeit 5.

Probeseiten. Exponentialfunktion. Klassenarbeit 4.1. Klassenarbeit 4.2. Klassenarbeit 4.3. Klassenarbeit 4.4. Trigonometrie. Klassenarbeit 5. Dein Arbeitsplan In der untenstehenden Tabelle kannst du eintragen, wann du die jeweilige Klassenarbeit bearbeitet hast, wie viele Verrechnungspunkte du dabei erreichen konntest und welcher Note dies entsprechen

Mehr

Schularbeitsstoff zur 2. Schularbeit am

Schularbeitsstoff zur 2. Schularbeit am Schularbeitsstoff zur. Schularbeit am 19.1.016 Flächeninhalt 8 Flächeninhalt 1 9 Flächeninhalt 1 14 Flächeninhalt Bruchzahlen 10 Bruchzahlen Potenzen Potenzen 11 Potenzen 1 Potenzen Variable und Funktionen

Mehr

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski 02.12.2010 Aufgabe 1: Basiswissen a) Prozentrechnung (7 P.) a) b) c) d) Prozentzahl Bruch Dezimalzahl 30% 3 10 O,3 25% 25 1 = 100 4 0,25 50% 1 50 = 2 100 0,5 75 % 75 100 0,75 b) Zuordnungen (6 P.) Frau

Mehr

Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen?

Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Information zur Aufnahmeprüfung WO Mathematik Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Musterprüfung: Lösen von linearen Gleichungen Aufgabe 1 Lösen von quadratischen Gleichungen

Mehr

Lösungen. ga47ua Lösungen. ga47ua. Name: Klasse: Datum:

Lösungen. ga47ua Lösungen. ga47ua. Name: Klasse: Datum: Lösungen Lösungen Name: Klasse: Datum: 1) Bringe die Arbeitsschritte bei der Konstruktion eines Rechtecks in die richtige Reihenfolge. 2) Entscheide, ob folgende Aussagen wahr oder falsch sind. wahr falsch

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 007 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h)

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h) Serie 1 Klasse 9 RS 1. 1 1 2. -15 (- + 5) 4. 4% von 600 4.,5 h = min 5. 5³ 6. Runde auf Tausender. 56608 7. Vergleiche (). 1 und 1 4 8. Stelle die Formel nach der Größe in der Klammer um. V = A

Mehr

Wiederholung aus der 3. Klasse Seite Ganze Zahlen ( 3, 2, 1, 0, +1, + 2, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner.

Wiederholung aus der 3. Klasse Seite Ganze Zahlen ( 3, 2, 1, 0, +1, + 2, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner. Wiederholung aus der 3. Klasse Seite 1 1. Ganze Zahlen ( 3,, 1, 0, +1, +, + 3 ) und rationale Zahlen. Arbeite ohne Taschenrechner. Setze ein: >,

Mehr

BMT A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN PUNKTE: / 21 NOTE:

BMT A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN PUNKTE: / 21 NOTE: BMT8 2009-1 - A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN NAME: KLASSE: PUNKTE: 1 NOTE: Aufgabe 1 Ein Würfel der Kantenlänge 2 cm wird, wie in der Abbildung dargestellt, durch

Mehr

Kompetenztest. Wiederholung aus der 1. Klasse. Kompetenztest. Testen und Fördern. Wiederholung aus der 1. Klasse. Name: Klasse: Datum:

Kompetenztest. Wiederholung aus der 1. Klasse. Kompetenztest. Testen und Fördern. Wiederholung aus der 1. Klasse. Name: Klasse: Datum: Name: Klasse: Datum: 1) Grundrechenoperationen. Berechne und wähle das richtige Ergebnis aus. a) 2,6 + 7,9 = 105 1,05 10,5 b) 20,1 8,7 = 1,14 11,4 11,04 c) 1,38 5 = 6,9 6,09 69 d) 14,8 : 5 = 29,6 0,296

Mehr

6. Klasse. 1. Zahlen 1.1. Brüche und Bruchteile

6. Klasse. 1. Zahlen 1.1. Brüche und Bruchteile 1. Zahlen 1.1. Brüche und Bruchteile 1.2.Die Menge der rationalen Zahlen => Die Menge aller Brüche, wobei die Zähler eine beliebige ganze Zahl und die Nenner eine ganze Zahl außer Null sein dürfen nennt

Mehr

18 Gleichungen 1. Grades mit mehreren Unbekannten

18 Gleichungen 1. Grades mit mehreren Unbekannten Mathematik PM Gleichungen. Grades mit mehreren Unbekannten 8 Gleichungen. Grades mit mehreren Unbekannten 8. Einführung Gegeben ist die Gleichung 3x 2. Dies ist eine Gleichung. Grades mit zwei Variablen.

Mehr

Interstaatliche Maturitätsschule für Erwachsene St.Gallen/Sargans

Interstaatliche Maturitätsschule für Erwachsene St.Gallen/Sargans Interstaatliche Maturitätsschule für Erwachsene St.Gallen/Sargans Einstufungstest Mathematik für den Vorkurs PH an der ISME Erlaubte Hilfsmittel: Formelsammlung für den Vorkurs PH, Taschenrechner ohne

Mehr

Aufnahmetest (90 Minuten)

Aufnahmetest (90 Minuten) FACHMITTELSCHULE GLARUS AUFNAHMETEST MÄRZ 2015 Aufnahmetest (90 Minuten) 1. Teil: Mathematik-Basis-Test (45 Minuten) 2. Teil: Anwendungsaufgaben (45 Minuten) Hinweise: Beide Tests erhalten bei der Benotung

Mehr

Repetition für JZK. F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n Term q n = Anz. Quadrate der Figur

Repetition für JZK. F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n Term q n = Anz. Quadrate der Figur Repetition für JZK Aufgabe 1 a) Zeichne die Figur F 4! F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n 1 2 3 4 5 6 7 Term q n = Anz. Quadrate der Figur F n u n = äusserer

Mehr

VORSCHAU. zur Vollversion. Warm-up Herr Rechtien benötigt für die Gestaltung seines Gartens groben Zierkies. a) 3 m 3 4,5 t

VORSCHAU. zur Vollversion. Warm-up Herr Rechtien benötigt für die Gestaltung seines Gartens groben Zierkies. a) 3 m 3 4,5 t Diagramm Winkel Warm-up 5. Herr Rechtien benötigt für die Gestaltung seines Gartens groben Zierkies. 7,0 6,5 6,0 5,5 5,0,5,0,5,0 2,5 2,0,5,0 a) Lies ab, wie schwer m, 2 m und,5 m Kies sind. b) Auf seinem

Mehr

Aufnahmeprüfung: Mathematik

Aufnahmeprüfung: Mathematik Aufnahmeprüfung: Mathematik Alle Fragen orientieren sich am Lehrplan für die Unterstufe bzw. Neue Mittelschule. Beispiele für mögliche Fragestellungen (mit Lösungen) Zahlen und Maße Vorrangregeln Bruchrechnen

Mehr

Textaufgaben, die auf quadratische Gleichungen führen

Textaufgaben, die auf quadratische Gleichungen führen Tetaufgaben, die auf quadratische Gleichungen führen 1 Geizige und Snobs beim Einkaufen Zur Münchner Sportmesse FITSAMA werden k 0 = 100000 Besucher erwartet Der Autor Mike Velo stellt sein neues Buch

Mehr

Gleichungen lösen Löse die Gleichungen. 302 Löse die folgenden Gleichungen. 303 Löse die Gleichungen. Was stellst du fest?

Gleichungen lösen Löse die Gleichungen. 302 Löse die folgenden Gleichungen. 303 Löse die Gleichungen. Was stellst du fest? D511-01 1 2 mathbuch 3+ LU 11 Arbeitsheft+ weitere Aufgaben «Grundanforderungen» (Lösungen) 301 Löse die Gleichungen. 7 A 3x 8(x + 2) = 5(4 3x) 1 x = 2 11 B 6(2x 3) + 9(x + 4) 8(3x + 1) = 1 x = 3 C (3x

Mehr

Serie W1 Klasse 9 RS. 3. 5% von ,5 h = min. 1 und. 8. Stelle die Formel nach der Größe in der Klammer um. V = A G h (A g )

Serie W1 Klasse 9 RS. 3. 5% von ,5 h = min. 1 und. 8. Stelle die Formel nach der Größe in der Klammer um. V = A G h (A g ) Serie W1 Klasse 9 RS 1. 1 1 + 2. -14(-3 + 5) 3 5 3. 5% von 600 4. 4,5 h = min 5. 4³ 6. Runde auf Tausender. 56508 7. Vergleiche (). 1 und 5 1 4 8. Stelle die Formel nach der Größe in der Klammer

Mehr

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.

Mehr

Känguru der Mathematik 2018 Gruppe Junior (9./10. Schulstufe) Österreich

Känguru der Mathematik 2018 Gruppe Junior (9./10. Schulstufe) Österreich Känguru der Mathematik 2018 Gruppe Junior (9./10. Schulstufe) Österreich 15..2018 - Punkte Beispiele - 1. In meiner Familie hat jedes Kind mindestens zwei Brüder und mindestens eine Schwester. Wie viele

Mehr

1. Binomische Formel. Hilfe 1.1. Seite Binomische Formel: (a + b)² = a² + 2ab + b²= a a + 2 a b + b b

1. Binomische Formel. Hilfe 1.1. Seite Binomische Formel: (a + b)² = a² + 2ab + b²= a a + 2 a b + b b Hilfe 1.1 1. Binomische Formel 1. Binomische Formel: (a + b)² = a² + 2ab + b²= a a + 2 a b + b b 1. Binomische Formel (Formel mit einem + ): (a + b)² = a a + 2 a b + b b = a² + 2ab + b² In der binomischen

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

Mathematik Aufnahmeprüfung Teil 1

Mathematik Aufnahmeprüfung Teil 1 Berufsmaturitätsschulen St.Gallen, Buchs, Rapperswil, Uzwil 2010 Mathematik Aufnahmeprüfung Teil 1 Technische Richtung Name, Vorname:... Zeit: 60 Minuten Erlaubte Hilfsmittel: Massstab, Zirkel, kein Rechner,

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

1-Punkt-Aufgaben =? A) 351 B) 400 C) 449 D) 450 E) 451 A) 67 B) 77 C) 100 D) 167 E) 200

1-Punkt-Aufgaben =? A) 351 B) 400 C) 449 D) 450 E) 451 A) 67 B) 77 C) 100 D) 167 E) 200 1-Punkt-Aufgaben 1) Berechne! 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 =? A) 351 B) 400 C) 449 D) 450 E) 451 2) Berechne! 133 33 2 =? A) 67 B) 77 C) 100 D) 167 E) 200 3) Was erhältst du, wenn du viertausendzweihundertfünf

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn

Mehr

Thema aus dem Bereich Algebra lineare Gleichungen und Ungleichungen

Thema aus dem Bereich Algebra lineare Gleichungen und Ungleichungen Thema aus dem Bereich Algebra - 1.1 lineare Gleichungen und Ungleichungen Inhaltsverzeichnis 1 allgemeine Gleichungen 2 2 lineare Gleichungen mit einer Variabeln 2 3 allgemeingültige und nichterfüllbare

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 3. Semester ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 3. Semester ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN Prinzipiell kennen wir die Vorgangsweise beim Lösen von Textaufgaben bereits. Neu ist hingegen, dass wir nun immer zwei Variable

Mehr

ESA Mathematik 2016 KORREKTURANWEISUNG (c) MSB. Zentrale Abschlussarbeit Korrekturanweisung Erster allgemeinbildender Schulabschluss

ESA Mathematik 2016 KORREKTURANWEISUNG (c) MSB. Zentrale Abschlussarbeit Korrekturanweisung Erster allgemeinbildender Schulabschluss Zentrale Abschlussarbeit 2016 Korrekturanweisung Erster allgemeinbildender Schulabschluss Herausgeber Ministerium für Schule und Berufsbildung des Landes Schleswig-Holstein Jensendamm 5, 24103 Kiel Aufgabenentwicklung

Mehr

Figuren und Körper Lösungen

Figuren und Körper Lösungen 1) Bringe die Arbeitsschritte bei der Konstruktion eines Rechtecks in die richtige Reihenfolge. 2 3 4 1 2) Entscheide, ob folgende Aussagen wahr oder falsch sind. wahr falsch Ein Rechteck hat einen Umkreis.

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn

Mehr

M5 Die Teilbarkeitsregeln 1

M5 Die Teilbarkeitsregeln 1 M5 Die Teilbarkeitsregeln 1 Eine Zahl ist nur dann ohne Rest teilbar durch 2, wenn ihre Einerziffer 0, 2, 4, 6 oder 8 ist. durch 5, wenn ihre Einerziffer 0 oder 5 ist. durch 10, wenn ihre Einerziffer 0

Mehr

Lösungen Umfang und Flächeninhalt

Lösungen Umfang und Flächeninhalt Lösungen Umfang und Flächeninhalt Aufgabe U a b 00 30 b zusammenfassen 00 60 b 60 40 b : b 0m Die andere Seite des Grundstücks besitzt eine Länge von 0 Meter. Aufgabe U a b U 40 60 U 00m Anzahl der Pfosten

Mehr

Station A * * 1-4 ca. 16 min

Station A * * 1-4 ca. 16 min Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt

Mehr

Zahlensystem und Grundrechnen Gleichungen und Formeln umstellen

Zahlensystem und Grundrechnen Gleichungen und Formeln umstellen Seite 1 M 1.11 Das Gleichheitszeichen wird in der nicht nur benutzt, um ein Ergebnis auszudrücken. Mathematische Ausdrücke mit einem Gleichheitszeichen nennt man auch Gleichung. Eine Gleichung besteht

Mehr

Repetition Mathematik 7. Klasse

Repetition Mathematik 7. Klasse Repetition Mathematik 7. Klasse 1. Ein neugeborenes Kätzchen wiegt bei der Geburt durchschnittlich 100g. Es nimmt in den ersten 8 Wochen pro Woche 60g zu. Wie viel beträgt nachher die Gewichtszunahme pro

Mehr

Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E2 Basierend auf dem Lehrmittel Mathematik Hohl Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer: Hilfsmittel:

Mehr

Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich

Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 006 Serie B Teil Fach: Teil Zeit: 45 Minuten Hilfsmittel: - Geometriewerkzeuge, kein Taschenrechner Vorschriften: - Der Lösungsvorgang muss vollständig ersichtlich sein. - Ungültiges ist

Mehr

1. a) Vereinfache den Term so weit wie möglich. 4a a 6 a 3 3. b) Vereinfache den Term so weit wie möglich. (3a)2 + 16a 2 : 15.

1. a) Vereinfache den Term so weit wie möglich. 4a a 6 a 3 3. b) Vereinfache den Term so weit wie möglich. (3a)2 + 16a 2 : 15. 1. a) Vereinfache den Term so weit wie möglich. 4a + 8 4 + 2a 6 a 3 3 b) Vereinfache den Term so weit wie möglich. (3a)2 + 16a 2 : 15 2a 2 4a 2 von 15 2. a) Löse die Gleichung nach x auf. 7x 3(5x 16) =

Mehr

3x 5 7x Die folgenden Zahlenpaare gehören zu einer indirekten Proportionalität. Bestimme und ergänze die fehlenden Werte.

3x 5 7x Die folgenden Zahlenpaare gehören zu einer indirekten Proportionalität. Bestimme und ergänze die fehlenden Werte. JAHRGANGSSTUFENTEST 2013 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 8 DER REALSCHULEN IN BAYERN WAHLPFLICHTFÄCHERGRUPPE I (ARBEITSZEIT: 45 MINUTEN) NAME: KLASSE: 8 PUNKTE: / 21 NOTE: 1 Bestimme die Lösungsmenge

Mehr

Arbeitsblatt Lösen von Problemen mit Gleichungen

Arbeitsblatt Lösen von Problemen mit Gleichungen Arbeitsblatt Lösen von Problemen mit Gleichungen 203 L Die Summe von zwei aufeinander folgenden ganzen Zahlen ist a) 35, b) 50. Berechne die beiden Zahlen. 204 L Das 10fache einer Zahl ist um a) 32, b)

Mehr

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn Deutsch Deutsch Plural a hoch 3 a zum Quadrat acht achtzig Addition, die Ar, das Basis, die Betrag von a, der Binom, das Bruch, der Bruchstrich, der Deckfläche, die Dekagramm, das Deltoid, das Dezimalbruch,

Mehr

min km/h

min km/h Proportionalität 1. Gegeben sind die folgenden Zuordnungen: 1) x - 3-1 0 0,5 4 y 9 3 0-1,5-6 -1 y : x - 3-3 ) km/h 30 45 60 70 85 100 min 45 30,5 13,5 min km/h 1350 1350 1350 3) s -,5 3,3 7, 8 9,1 4) t

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Bayerischer Mathematiktest an Realschulen 2005

Bayerischer Mathematiktest an Realschulen 2005 Jgst. 6 Aufgabe: 1.1 Gemeinsame Aufgabe mit HS Subtraktion in IN 1.0 Berechne: 1.1 7230 476 2489 = 4265 Aufgabe 1.1 68,5% 31,5% Jgst. 6 Aufgabe: 1.2 Gemeinsame Aufgabe mit HS Division in IN 1.0 Berechne:

Mehr

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: B1 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»

Mehr

Prüfung zum mittleren Bildungsabschluss 2005

Prüfung zum mittleren Bildungsabschluss 2005 Prüfung zum mittleren Bildungsabschluss 2005 Pflichtaufgaben Mathematik x+3 45 Name: Vorname: Klasse: Die Aufgabenblätter und die mit ausgegebene Formelsammlung sind Bestandteil der Prüfungsarbeit und

Mehr

Welche reelle Zahl ergibt, wenn man sie mit sich selbst multipliziert, die Zahl 13?

Welche reelle Zahl ergibt, wenn man sie mit sich selbst multipliziert, die Zahl 13? 1 Welche reelle Zahl ergibt, wenn man sie mit sich selbst multipliziert, die Zahl 13? 2 Sanya und Thomas sollen die Quadratwurzel aus 625 durch Probieren ermitteln. Sanya hat die Aufgabe ziemlich schnell

Mehr

DOWNLOAD VORSCHAU. Vertretungsstunden Mathematik 24. zur Vollversion. 9. Klasse: Quadratische Gleichungen. Vertretungsstunden Mathematik 9./10.

DOWNLOAD VORSCHAU. Vertretungsstunden Mathematik 24. zur Vollversion. 9. Klasse: Quadratische Gleichungen. Vertretungsstunden Mathematik 9./10. DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunden Mathematik 9. Klasse: Bergedorfer Unterrichtsideen Marco Bettner/Erik Dinges Downloadauszug aus dem Originaltitel: Vertretungsstunden Mathematik 9./0.

Mehr

6,5 34,5 24,375 46,75

6,5 34,5 24,375 46,75 Teste dich! - (/5) Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (0 km; x km) Fahrt als Term dar. 2,5 +,6

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und

Mehr

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 6 6 4 5 4 6 31 Die Prüfung dauert 45 Minuten.

Mehr