7 Integralrechnung für Funktionen einer Variablen

Größe: px
Ab Seite anzeigen:

Download "7 Integralrechnung für Funktionen einer Variablen"

Transkript

1 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare Funktion F : I R heißt eine Stammfunktion von f, falls gilt: F = f. Die Funktion f heißt dann integrierbar. Achtung: Nicht jede Funktion besitzt eine Stammfunktion.

2 Beispiel 7. (i) Sei f : R R gegeben durch f(x) = x n, n N 0. Dann ist F : R R mit F (x) = n + xn+ eine Stammfunktion von f. (ii) Sei f : R R gegeben durch f(x) = x 2 3x + 5. Dann ist F : R R gegeben durch F (x) = 3 x3 3 2 x2 + 5x eine Stammfunktion von f. Aber auch G : R R mit G(x) = 3 x3 3 2 x2 + 5x + 2 ist eine Stammfunktion von f. 2

3 Ist F (x) eine Stammfunktion von f(x), so ist auch F (x) + c eine Stammfunktion von f(x) (c ist hier eine Konstante). Weitere Stammfunktionen gibt es nicht, wie der folgende Satz zeigt: Satz 7. Sei f : I R eine reelle Funktion. Sind F, G Stammfunktionen von f, dann gibt es eine Konstante c R mit G(x) = F (x) + c für alle x I. Mit F (x) ist auch jede Funktion F (x) + c eine Stammfunktion von f(x). Es gilt also: Hat die Funktion f eine Stammfunktion F, dann ist die Menge {F + c c R} die Menge aller Stammfunktionen von f. 3

4 Der Begriff unbestimmtes Integral bedeutet nichts anderes als Stammfunktion : (Unbestimmtes Integral) Sei f : I R eine reelle Funktion, die eine Stammfunktion F besitzt. Dann bezeichnet das Symbol f(x) dx eine beliebige Stammfunktion von f, und es wird unbestimmtes Integral der Funktion f genannt. Sprechweise: Integral von f(x) dx. Manchmal wird auch f(x) dx = F (x) + c, geschrieben, wobei c R eine beliebige Konstante ist. Das unbestimmte Integral ist also nicht eindeutig bestimmt, sondern nur bis auf eine (additive) Konstante. 4

5 Es gilt also nach Definition für jede differenzierbare Funktion F : F (x) dx = F (x) + c. Beispiel 7.2 Es soll eine Funktion s(x) zur Berechnung der Einkommensteuer mit den folgenden Eigenschaften gefunden werden: (i) s : R 0 R 0 ist stetig. (ii) Das Existenzminimum ist steuerfrei: s(x) = 0 für x [0, 0000]. (iii) Der Grenzsteuersatz steigt linear bis zu einer gegebenen Einkommensgrenze: s (x) = x für x [0000, 20000]. (iv) Der Grenzsteuersatz ist für große Einkommen konstant: s (x) = 0.65 für x

6 Den Steuersatz für x [0000, 20000] erhalten wir als unbestimmtes Integral über den Grenzsteuersatz: ( x s(x) = ) dx = x x 20 + c. Aus der Stetigkeit von s(x) an der Stelle x = 0000 folgt, dass die Konstante als c = 750 zu wählen ist. Insbesondere ist dann s(20000) = Den Steuersatz für x erhalten wir ebenso als unbestimmtes Integral über den Grenzsteuersatz: s(x) = 0.65 dx = 0.65 x + c 2. Aus der Stetigkeit von s(x) an der Stelle x = folgt, dass die Konstante als c 2 = zu wählen ist. Die gesuchte Steuerfunk- 6

7 tion s(x) hat also die Form 0 für x [0, 0000] x s(x) = x 750 für x [0000, 20000] x für x

8 Wir haben erwähnt (siehe Seite ), dass nicht jede Funktion eine Stammfunktion haben muss. Es gilt aber: Satz 7.2 Ist f : I R stetig, dann besitzt f eine Stammfunktion. Da viele der von uns untersuchten Funktionen stetig sind, haben sie Stammfunktionen. Wir listen im folgenden einige auf, wobei wir stets auf die Angabe der Konstante c verzichten. D bezeichnet den maximalen Definitionsbereich. 8

9 f(x) D f(x) dx x n R n + xn+ n N 0 x α R + α + xα+ α R, α R \ {0} ln( x ) x e αx R α eαx α R, α 0 a x R ln(a) ax a > 0, a 9

10 f(x) D f(x) dx sin x R cos x cos x R sin x tan x R \ {(2k + ) π 2, k Z} ln( cos x ) cot x R \ {kπ, k Z} ln( sin x ) cos 2 x R \ {(2k + )π 2, k Z} tan x sin 2 R \ {kπ, k Z} x cot x 0

11 f(x) D f(x) dx x 2 x 2 (, ) arcsin x (, ) arccos x + x 2 R arctan x + x 2 R arccot x

12 Aus der Umkehrung von Differenziationsregeln ergeben sich nun Integrationsregeln, zum Beispiel Haben f, g : I R Stammfunktionen, dann gilt: λ f(x) dx = λ f(x) dx, für alle λ R (f(x) ± g(x)) dx = f(x) dx ± g(x) dx. Grundsätzlich kann man sagen, dass die Integration schwieriger ist als die Differenziation, die man doch sehr nach Kochrezept durchführen kann. 2

13 Wir geben hier die wichtigen Regeln der partiellen Integration, der Integration durch Substitution sowie (knapp) die Integration rationaler Funktionen an (jeweils mit Beispielen). Es sei aber fairerweise zugegeben, dass man heutzutage zum Integrieren fast immer Computeralgebrasysteme (CAS) benutzt. Wichtiger, als perfekte Integrierer zu werden, ist es zu verstehen, was das unbestimmte Integral ist (nämlich eine Stammfunktion), und dass es viele Stammfunktionen gibt, die sich aber alle nur durch eine additive Konstante unterscheiden. Wenn Ihnen das klar ist, dürfen Sie beim Integrieren ruhig dem Computer vertrauen. Partielle Integration. Seien f, g : I R differenzierbare Funktionen. Dann gilt f(x) g (x) dx = f(x) g(x) f (x) g(x) dx. 3

14 Beispiel 7.3 Gesucht ist ln x dx. Setze f(x) = ln x und g(x) = x. Dann ist g (x) =, und mit partieller Integration folgt: ln x dx = f(x) g (x) dx = f(x) g(x) f (x) g(x) dx = ln x x x x dx = ln x x dx = ln x x x + c = x (ln x ) + c, wobei c R, wie immer, eine beliebige Konstante ist. 4

15 Dieses Beispiel lässt sich verallgemeinern, um eine Stammfunktion zu ln x x n für n N 0 zu berechnen. Wir geben hier nur das Ergebnis an: ln x x n dx = xn+ n + Integration durch Substitution ( ln x ) n + + c. Es handelt sich hier um die Umkehrung der Kettenregel: Sei f : I R eine stetige Funktion mit Stammfunktion F : I R. Sei g : D I eine differenzierbare Funktion auf dem Intervall D. Dann gilt f (g(x)) g (x) dx = F (g(x)) + c, wobei c R eine beliebige Konstante ist. 5

16 Beispiel 7.4 Sei f : I R eine stetige Funktion mit Stammfunktion F, D ein Intervall und g : D I differenzierbar. Dann kann man mit der obigen Substitutionsregel die folgenden unbestimmten Integrale bestimmen (die Konstante c ist wieder weggelassen): (i) f(ax + b) dx = F (ax + b), a, b R, a 0. a (ii) (g(x)) n g (x) dx = n + (g(x))n+, n N 0. g (x) (iii) dx = ln ( g(x) ). g(x) g (x) (iv) (g(x)) n dx = (n ) (g(x)) n, n N, n 2. (v) g (x) e g(x) dx = e g(x). 6

17 2 Beispiel 7.5 (i) Gesucht ist 3x dx. Sei g(x) = 3x, dann ist g (x) = 3 und daher 2 3x dx = 2 g (x) 3 g(x) dx g (x) g(x) dx = 2 3 = 2 3 ln ( g(x) ) + c = 2 3 ln ( 3x ) + c = ln 3 (3x ) 2 + c. 7

18 (ii) Gesucht ist xe x2 dx. Sei f(x) = e x und g(x) = x 2, also g (x) = 2x und F (x) = e x. Dann ist xe x2 dx = f(g(x)) 2 g (x) dx = 2 F (g(x)) = 2 ex2 + c 8

19 Integration rationaler Funktionen Rationale Funktionen lassen sich mit Hilfe der Partialbruchzerlegung immer so umformen, dass sich eine Stammfunktion mit den bis jetzt bereitgestellten Verfahren ermitteln lässt. Wir betrachten also eine rationale Funktion f von der Form f(x) = P (x) Q(x) mit Polynomen P (x), Q(x), wobei grad(p ) < grad(q) gelte. Es sei hier der Fall betrachtet, dass das Nennerpolynom grad(q) reelle Nullstellen hat, also Q(x) = (x x ) m (x x k ) m k mit verschiedenen x,..., x k R. Dann hat die Partialbruchzerlegung die Form: m P (x) k i Q(x) = c ij (x x i ) j i= j= mit c ij R. Also treten als Summanden rechts nur Ausdrücke der b Form mit j N auf. (x a) j 9

20 Für j = ist Für j 2 ist b x a dx = b ln( x a ) + c. b (x a) dx = b j (j )(x a) + c j Wir illustrieren dies an einem Beispiel: Beispiel 7.6 Sei f(x) = x4 3x 2 + 5x + 4. Wir wollen f(x) dx x 3 3x + 2 bestimmen. Da das Nennerpolynom einen kleineren Grad als das Zählerpolynom hat, führen wir zunächst eine Division mit Rest durch; dies liefert: f(x) = x4 3x 2 + 5x + 4 x 3 3x = x + 3x + 4 x 3 3x + 2.

21 Das Nennerpolynom hat x = als Nullstelle mit Vielfachheit m = 2 und x 2 = 2 als Nullstelle mit Vielfachheit m 2 =. Also ist der Ansatz für die Partialbruchzerlegung 3x + 4 x 3 3x + 2 = 3x + 4 (x ) 2 (x + 2) = c x + c 2 (x ) 2 + c 2 x + 2 Nach Multiplikation mit dem Nennerpolynom Q(x) und Koeffizientenvergleich erhalten wir die Gleichungen 0 = c + c 2, 3 = c + c 2 2c 2, 4 = 2c + 2c 2 + c 2. Als Lösungen ergeben sich daraus: c = 2 9, c 2 = 7 3, c 2 =

22 Damit erhalten wir für das gesuchte Integral f(x) dx = = = x x + 4 x dx + x 3 3x + 2 dx ( ) x + 3 (x ) 9 2 x + 2 = x ln( x ) 7 3(x ) 2 ln( x + 2 ) + c 9 (x ) 2 = x (x ) + ln 9 + c x + 2 dx 22

23 7.2 Das bestimmte Integral Sei f : [a, b] R eine auf [a, b] definierte Funktion. Wenn F : [a, b] R eine Stammfunktion ist, d.h. F (x) = f(x) für alle x (a, b), dann heißt b a f(x)dx = F (b) F (a) das bestimmte Integral von f über dem Intervall [a, b]. Weiter heißt x die Integrationsvariable, f(x) der Integrand, und a, b heißen (untere und obere) Integrationsgrenzen. Wir sagen, die Funktion f ist auf dem Intervall [a, b] integrierbar. Wir benutzen im folgenden für F (b) F (a) auch die Bezeichnung F (x) b a 23

24 Ist f auf [a, b] und auf [b, c] integrierbar, so nennen wir f auch auf [a, c] integrierbar mit c a f(x)dx = b a f(x)dx + c b f(x)dx In diesem Fall muss die Funktion f auf [a, c] keine Stammfunktion haben! Warnung: Diese Definition stimmt nicht mit der in vielen Mathematikbüchern gegebenen Definition der Riemann-Integrierbarkeit überein. Für alle in der Ökonomie auftretenden Funktionen, insbesondere für alle stetigen Funktionen, stimmt unsere Definition aber mit der Definition der Riemann-Integrierbarkeit überein. 24

25 Die anschauliche Bedeutung des Integrals ist die einer Fläche. Wir nehmen f(x) 0 für alle x [a, b] an. Gesucht ist der Inhalt der Fläche, die durch den Graphen der Funktion und die x-achse begrenzt wird. Man kann zeigen, dass dieser Flächeninhalt für stetige Abbildungen f mit f(x) 0 für alle x [a, b] genau b a f(x)dx = F (b) F (a) ist. 25

26 Gilt f(x) 0 für alle x [a, b], dann ist das Integral b a f(x)dx 0 und der negative Wert des Integrals ist der Flächeninhalt. Ist f in einigen Bereichen negativ, so werden die entsprechenden Bereiche im Integral negativ gewichtet. Das Integral ist also die Summe der Flächeninhalte oberhalb der x-achse minus den Flächeninhalten unterhalb der x-achse. 26

27 Die Berechnung des bestimmten Integrals ist in allen uns interessierenden Fällen im Prinzip nicht schwieriger als die Berechnung unbestimmter Integrale: Es geht nur darum, Stammfunktionen zu bestimmen. Beispiel 7.7 (ii) (i) 0 x dx = 2 x2 0 = t + t dt = (ln(t ) + t2 2 ) 3 2 = ln 2 3, 2 (iii) Sei f(x) = ln x. Dann ist F (x) = x ln x x eine Stammfunktion von f. Also ist 2 ln x dx = F (x) = F (2) F () = 2 ln 2 0,

28 (iv) Sei f(x) = x. Dann ist e x dx = ln x e = ln e ln =. (v) Sei f(x) = sin(x), dann ist 2π 0 f(x) dx = cos(x) 2 π 0 = 0. (vi) Sei f(x) = cos(x), dann ist 3π/2 0 f(x) dx = sin(x) 3π/2 0 =. 28

29 Eigenschaften bestimmter Integrale: Sei f : [a, b] R eine integrierbare Funktion. a a f(x) dx = 0. Ist a > b, dann setzen wir b Für alle c R gilt: c a a f(x) dx + f(x) dx = b c a b f(x) dx = f(x) dx b a f(x) dx. Sei g : [a, b] R eine weitere integrierbare Funktion. Ist g(x) f(x) für alle x [a, b], dann gilt b a g(x) dx 29 b a f(x) dx

30 Es ist nicht ganz einfach, sich die Bedeutung des Integrals klarzumachen, wenn es nicht um eine Flächenberechnung geht. Es geht vielleicht so: Sie berechnen zu einem Zeitpunkt t = a einen Funktionswert F (a). Das kann z.b. die Anzahl Arbeiter sein, die ein Betrieb beschäftigt, aber auch die Menge des in einem Lager vorrätigen Erdöls. Wenn Sie nun zu jedem Zeitpunkt t [a, b] wissen, wie sich F ändert, wenn Sie also F (t) kennen, dann kann man sich fragen, was denn F (b) ist. Wir nennen F (t) = f(t). Anschaulich ist klar, dass man F (b) bestimmen kann, denn F (a) ist ja bekannt und die Änderungen sind auch bekannt! Mathematisch ist dies (im wesentlichen) das Integral, denn F (b) F (a) = b a f(t) dt. Das bestimmte Integral auf dem Intervall [a, b] der Grenzfunktion (Ableitung) einer Funktion F ist die Differenz F (b) F (a). 30

31 7.3 Uneigentliche Integrale Ist eine der Integrationsgrenzen unendlich oder ist die zu integrierende Funktion an den Integrationsgrenzen unbeschränkt, dann sprechen wir von uneigentlichen Integralen. Drei Fälle sind zu unterscheiden: Uneigentliche Integrale I Sei f : [a, ) R eine stetige Funktion. Falls der Grenzwert lim R existiert, so schreiben wir dafür Analog wird das Integral b R definiert. a R a f(x) dx = lim R f(x) dx R a f(x) dx. f(x) dx für eine Funktion f : (, b] 3

32 Beispiel 7.8 Gesucht ist, falls existent, Also erhalten wir R dx = x2 R x = R. x 2 dx =. dx. Es ist x2 32

33 Uneigentliche Integrale II Sei f : (a, b] R eine stetige Funktion. Falls der Grenzwert lim ɛ 0 b a+ɛ existiert, dann schreiben wir dafür b a f(x) dx = lim ɛ 0 f(x) dx b a+ɛ f(x) dx. Analog wird das Integral b a f(x) dx für eine Funktion f : [a, b) R definiert. 33

34 Beispiel 7.9 Gesucht ist, falls existent, 0 Also erhalten wir ɛ dx = 2x 2 = 2 ( ɛ ). x ɛ 0 x dx = 2. x dx. Es ist 34

35 Uneigentliche Integrale III Seien a, b R {± }, a < b, und sei f : (a, b) R eine stetige Funktion. Sei nun c (a, b). Falls die beiden Grenzwerte lim α a c existieren, dann schreiben wir α f(x) dx und lim β b β c f(x) dx b a f(x) dx = lim α a c α β f(x) dx + lim β b c f(x) dx. 35

36 Beispiel 7.0 Wir bestimmen Es ist lim α 0 α x 2 dx dx + lim β x 2 β 0 = lim α (arcsin(0) arcsin(α)) + lim β (arcsin(β) arcsin(0)) x 2 dx = lim α arcsin(α) + lim β arcsin(β) = ( π 2 ) + π 2 = π. 36

6.5 Determinanten. Satz 6.3 Ist A R (n,n), so gibt es eine Matrix A 1 R (n,n) mit. A 1 A = A A 1 = I n

6.5 Determinanten. Satz 6.3 Ist A R (n,n), so gibt es eine Matrix A 1 R (n,n) mit. A 1 A = A A 1 = I n wesentlichen Gleichungen geht genau ein Freiheitsgrad verloren. (Diese etwas vagen Formulierungen sind mathematisch eher unpräzise, sollen Ihnen aber helfen, ein Gefühl für die Bedeutung des Ranges einer

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8

Mehr

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2 Lösungsvorschläge zu Blatt 7: ) x ( ) 3 3 e + e ( ) ( ) ( )! x x + x + x x + x x x Wir haben hier also zwei verschiedene Darstellungen für einen Vektor, da zwei verschiedene Basen verwendet werden. b b

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

4.1 Stammfunktionen: das unbestimmte Integral

4.1 Stammfunktionen: das unbestimmte Integral Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS WS 0/0 Blatt 7. Bestimmen Sie eine Stammfunktion von sinx 4 und für alle n N π π sin nxdx. Lösung. Die Rekursionsformel lautet sinx n

Mehr

Kapitel 19 Partialbruchzerlegung

Kapitel 19 Partialbruchzerlegung Kapitel 19 Partialbruchzerlegung Mathematischer Vorkurs TU Dortmund Seite 1 / 15 Zur Erinnerung wiederholen wir Definition 4.5 [part] Es sei n N 0 und a 0, a 1,..., a n R mit a n 0. Dann heißt die Funktion

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2 SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Integration. Kapitel Stammfunktionen

Integration. Kapitel Stammfunktionen Kapitel 5 Integration 5. Stammfunktionen Definition: Eine auf dem Intervall I differenzierbare Funktion F ist eine Stammfunktion der Funktion f : I R, wenn F (x) = f(x) für alle x I. Fakt : Sind F und

Mehr

7. Integralrechnung. Literatur: [SH, Kapitel 9]

7. Integralrechnung. Literatur: [SH, Kapitel 9] 7. Integralrechnung Literatur: [SH, Kapitel 9] 7.. Was sind Integrale? 7.2. Unbestimmte Integrale 7.3. Flächen und bestimmte Integrale 7.4. Eigenschaften und bestimmte Integrale 7.5. Partielle Integration

Mehr

Integralrechnung. Petra Grell, WS 2004/05

Integralrechnung. Petra Grell, WS 2004/05 Integralrechnung Petra Grell, WS 2004/05 1 Einführung Bei den Rechenoperationen, die wir im Laufe der Zeit kennengelernt haben, kann man feststellen, dass es immer eine Umkehrung gibt: + : log a aˆ So

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 10. Februar 2016 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. G. Scheithauer Klausur Mathematik I für Studierende der Fakultät Maschinenwesen Name: Matrikelnummer:

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Die trigonometrischen Funktionen

Die trigonometrischen Funktionen Die trigonometrischen Funktionen Betrachte die Funktion f(x) = 1 x auf dem Intervall [ 1, 1]. Für x = 1 erhält man den Punkt P 1 = ( 1, ), für x = den Punkt P = (, 1) und für x = 1 den Punkt P 1 = (1,

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

13. WEITERE INTEGRATIONSMETHODEN

13. WEITERE INTEGRATIONSMETHODEN 06 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

Integralrechnung. integral12.pdf, Seite 1

Integralrechnung. integral12.pdf, Seite 1 Integralrechnung Beispiel Zusammenhang WegGeschwindigkeit: Ist F (t) der zur Zeit t zurückgelegte Weg und v(t) die Geschwindigkeit, so ist v(t) = F (t) Geometrisch: Steigung der Tangente an der Kurve y

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

Die Funktion f (x) = e ix

Die Funktion f (x) = e ix Die Funktion f (x) = e ix Wir wissen e ix = 1, liegt also auf dem Einheitskreis. Mit wachsendem x läuft e ix immer wieder um den Einheitskreis herum. Die Laufrichtung ist gegen den Uhrzeigersinn (mathematisch

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (0.09.03 0.09.03) Dr. Jörg Horst WS 03-04 Mathematischer Vorkurs TU Dortmund Seite / 5 Mathematischer Vorkurs TU Dortmund Seite 6 / 5 Schenkel Winkelbereich Scheitel S

Mehr

Hörsaalübung 3, Analysis II

Hörsaalübung 3, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 3, Analysis II SoSe 2016, 02/03. Mai Integration II: Partielle Integration Partialbruchzerlegung (PBZ) Die ins Netz gestellten

Mehr

FK03 Mathematik I: Übungsblatt 9 Lösungen

FK03 Mathematik I: Übungsblatt 9 Lösungen FK03 Mathematik I: Übungsblatt 9 Lösungen Verständnisfragen. Welche zwei Beispiele sind in der Vorlesung für die Anwendung von transzendenten Funktionen behandelt worden? Schnittpunktsbestimmung zwischen

Mehr

x ln(x) dx x 4 x 2 4x+3 dx Aufgabe 3 Konvergieren die folgenden uneigentlichen Integrale? Wenn ja, berechnen Sie den Wert des Integrals.

x ln(x) dx x 4 x 2 4x+3 dx Aufgabe 3 Konvergieren die folgenden uneigentlichen Integrale? Wenn ja, berechnen Sie den Wert des Integrals. Mathematik I für Naturwissenschaften Dr. Christine Zehrt 8..8 Übung 8 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 2. November 28 in den Übungsstunden Aufgabe Berechnen Sie die folgenden bestimmten

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 8. 7. 6, 8. -. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Folien zur Vorlesung Mathematik Plus: Ergänzugen Mathematik I

Folien zur Vorlesung Mathematik Plus: Ergänzugen Mathematik I Bachelor Informatik Mathematik Plus Titel Folien zur Vorlesung Mathematik Plus: Ergänzugen Mathematik I Hochschule Stralsund Fakultät Elektrotechnik und Informatik Prof. Dr. W. Kampowsky Bachelor Informatik

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

5.4 Uneigentliche Integrale

5.4 Uneigentliche Integrale 89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

13. WEITERE INTEGRATIONSMETHODEN

13. WEITERE INTEGRATIONSMETHODEN 22 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer

Mehr

ANALYSIS 2 VERSION 26. Juni 2018

ANALYSIS 2 VERSION 26. Juni 2018 ANALYSIS VERSION 6 Juni 018 LISIBACH ANDRÉ 6 Potenzreihenentwicklung 61 Einleitung Die Linearisierung einer Funktion f(x an der Stelle x ist die Funktion L(x f( + df dx ((x Die Linearisierung ist ein Polynom

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Aufgabe Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz:

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz: d-infk Lösung von Serie 4 FS 07 4.. Inhomogene Lineare Differentialgleichungen Das charakteristische Polynom der homogenen DGl y (4) + y + y = 0 ist λ 4 + λ + = (λ + ). Seine Wurzeln sind ±i und jede hat

Mehr

= 4 0 = 4. Hinweis: Dieses Ergebnis folgt auch aus der Punktsymmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ].

= 4 0 = 4. Hinweis: Dieses Ergebnis folgt auch aus der Punktsymmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ]. 73. a) dx = d x = [x] = = b) sin x dx = [ cos x] = cos + cos ( ) = ( ) + ( ) = Hinweis: Dieses Ergebnis folgt auch aus der Punktsmmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ]. e

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen 14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen E-Mail: klaus_messner@web.de, Internet: www.elearning-freiburg.de Einführung des Integrals 15

Mehr

Vergessen Sie nicht, sich zur Klausur anzumelden Anmeldeschluÿ am Freitag, den 20. Juli!!

Vergessen Sie nicht, sich zur Klausur anzumelden Anmeldeschluÿ am Freitag, den 20. Juli!! Vergessen Sie nicht, sich zur Klausur anzumelden Anmeldeschluÿ am Freitag, den 20. Juli!! Erst den Anmeldungszettel im Studienbüro holen Dann den Anmeldungszettel vor Zimmer 208. in den richtigen Kasten

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I (E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). September 7 (Hans-Georg Rück) Aufgabe (6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft Re(z) = und (z

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

Integrale. Mathematik Klasse 12. Fläche 1. Fläche 4. Fläche 2. Fläche 5 Fläche 3. Fläche 6. Ditmar Bachmann / Eurokolleg.

Integrale. Mathematik Klasse 12. Fläche 1. Fläche 4. Fläche 2. Fläche 5 Fläche 3. Fläche 6. Ditmar Bachmann / Eurokolleg. Fläche 1 Fläche 4 Fläche 2 Fläche 5 Fläche 3 Fläche 6 aus Google maps Begriff des Integrals Die Wurzeln zur Integralrechnung reichen bis ins Altertum zurück. Damals ist man auf das Problem gestoßen, Flächen

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 25.06.2018 20. Juni 2018 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler 20. Juni 2018 Konvergenz

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Präsenzaufgaen zum 8und 9 Lösungshinweise (onhe Garantie auf Fehlerfreiheit Sei f : D R mit D {(x, y R : x, y > } und f(x, y x sin(x y + xy (a

Mehr

Analysis I. Teil 1. Bayern Aufgabe 1. Abitur Mathematik Bayern Abitur Mathematik: Musterlösung. D f =] 3; + [ x = 1

Analysis I. Teil 1. Bayern Aufgabe 1. Abitur Mathematik Bayern Abitur Mathematik: Musterlösung. D f =] 3; + [ x = 1 Abitur Mathematik: Bayern 2012 Teil 1 Aufgabe 1 a) DEFINITIONSMENGE f(x) = ln(x + 3) x + 3 > 0 x > 3 D f =] 3; + [ ABLEITUNG Kettenregel liefert f (x) = 1 x + 3 1 = 1 x + 3 b) DEFINITIONSMENGE 3 g(x) =

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

$Id: integral.tex,v /05/05 13:36:42 hk Exp $

$Id: integral.tex,v /05/05 13:36:42 hk Exp $ $Id: integral.tex,v.5 07/05/05 3:36:4 hk Exp $ Integralrechnung.4 Integration rationaler Funktionen In diesem Abschnitt wollen wir die Integration rationaler Funktionen diskutieren. Es wird sich herausstellen

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya Mehrfachintegrale 1-E1 1-E2 Mehrfachintegrale c Die Erweiterung des Integralbegriffs führt zu den Mehrfachintegralen, die in den naturwissenschaftlich-technischen Anwendungen u.a. bei der Berechnung der

Mehr

Kapitel 5 Trigonometrie

Kapitel 5 Trigonometrie Mathematischer Vorkurs TU Dortmund Seite / 7 Schenkel Winkelbereich Scheitel S α Winkel werden in Grad oder im Bogenmaß (auch Rad) angegeben: 360 =. y cot α r = sin α α cos α tan α x Durch diese Betrachtungen

Mehr

Prüfungsteil B, Aufgabengruppe 1: Analysis. Bayern Aufgabe 1. BundesabiturMathematik: Musterlösung

Prüfungsteil B, Aufgabengruppe 1: Analysis. Bayern Aufgabe 1. BundesabiturMathematik: Musterlösung Abitur MathematikBayern 04 Prüfungsteil B, Aufgabengruppe BundesabiturMathematik: Prüfungsteil B, Aufgabengruppe : Bayern 04 Aufgabe a). SCHRITT: SCHNITTPUNKTE MIT DEN KOORDINATENACHSEN Die Koordinatenachsen

Mehr

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx.

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx. Prof. Dr. H. Brenner Osnabrück WS 23/24 Analysis I Arbeitsblatt 25 Übungsaufgaben Aufgabe 25.. Berechne das bestimmte Integral π x sin x 2 dx. In den folgenden Aufgaben, bei denen es um die Bestimmung

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

24 Partialbruchzerlegung und elementare Stammfunktionen

24 Partialbruchzerlegung und elementare Stammfunktionen 4 Partialbruchzerlegung und elementare Stammfunktionen 4 Partialbruchzerlegung und elementare Stammfunktionen Aufgabe: Versuchen Sie, 0 d und 4 0 d 6 und zu berechnen. 4. Rationale Funktionen. a) uotienten

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

Münchner Volkshochschule. Planung. Tag 10

Münchner Volkshochschule. Planung. Tag 10 Planung Tag 0 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 247 Konvergenz von Zahlenfolgen Def.: Konvergenz Eine reelle Zahlenfolge a n n N heißt konvergent gegen a R, falls Bemerkungen: ε > 0 N

Mehr

Analysis für Informatiker und Statistiker Nachklausur

Analysis für Informatiker und Statistiker Nachklausur Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................

Mehr

Merkblatt zur Integration (1)

Merkblatt zur Integration (1) Als erstes sollte man sich anschauen Merkblatt zur Integration () ) was die Integrationsvariable ist B.: ( y ) d y + C, da y eine KONSTANTE ist y Analog: ( y ) dy + C, da hier eine KONSTANTE ist ) ob es

Mehr

1 elementare Integration mit Vereinfachung

1 elementare Integration mit Vereinfachung Um einen Ausdruck integrieren zu können, bedarf es ein wenig Scharfblick, um die richtige Methode wählen zu können. Diese werden (in der Schule) grob in die vier unten beschriebenen Methoden unterteilt.

Mehr

3 a) Berechnen Sie die normierte Zeilenstufenform der Matrix A = normierte Zeilenstufenform:

3 a) Berechnen Sie die normierte Zeilenstufenform der Matrix A = normierte Zeilenstufenform: 1. Aufgabe (9 Punkte) In dieser Aufgabe müssen Sie Ihre Antwort nicht begründen. Es zählt nur das Ergebnis. Tragen Sie nur das Ergebnis auf diesem Blatt im jeweiligen Feld ein. 0 1 3 a) Berechnen Sie die

Mehr

Thema 5 Differentiation

Thema 5 Differentiation Thema 5 Differentiation Definition 1 Sei f : D R. Dann ist f im Punkt x 0 differenzierbar, falls f(x) f(x 0 ) x x 0 x x 0 auf der Menge D \ {x 0 } existiert. Der Limes ist dann die Ableitung von f im Punkt

Mehr