Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor

Größe: px
Ab Seite anzeigen:

Download "Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor"

Transkript

1 1.6 Tensoren Tensor vom Typ (k,l) = multilineare Abb. nach R x bedeutet kartesisches Produkt (geordnetes Paar) Multilinear heißt: linear in jedem Argument: Beispiel (1,1) Tensor Skalar: Type (0,0) Vektor: Type (1,0) Dualvektor: Type (0,1) Tensoren vom Type (k,l) bilden Vektoraum (Tensoren können addiert werden und mit reellen Zahlen multipliziert werden) Um Basis zu konstruieren brauchen wir neue Operation: Tensorprodukt

2 Tensorprodukt : Sei T ein (k,l) Tensor und S ein (m,n) Tensor definiere (k+m,l+n) Tensor durch Beachte, dass das Tensorprodukt nicht kommutiert: Konstruiere Basis durch alle Tensorprodukte der Basisvektoren und Basisdualvektoren In der vier-dimensionalen Raumzeit sind dies 4 k+l Basistensoren! bel. Tensor Alternative: betrachte Wirkung der Basisvektoren und dualen Basisvektoren:

3 Wirkung eines Tensor auf Satz von Vektoren und dualen Vektoren: Lorentz Trafo folgt aus dem Trafoverhalten der Vektoren und dualen Vektoren wichtiges Beispiel eines (0,2) Tensors: Metrik (inneres Produkt, Skalarprodukt) Norm: (anders als für Euklidischen Raum) Anderes Beispiel: Kronecker delta vom Type (1,1): bildet Vektoren in Vektoren und duale Vektoren in duale Vektoren ab. inverse Metrik :

4 Levi-Civita Symbol: (0,4) Tensor und sind nicht typisch: Komponenten gleich in allen Koordinatensystemen Typischer Tensor: elektromagnetischer Feldstärketensor E-dynamik Vorlesung: ist das korrekte Lorentz-invariante Objekt 1.7 Tensormanipulationen Kontraktion: Achtung:

5 Metrik: heben von Indizes inverse Metrik: senken von Indizes und damit Vorsicht: Euklidisch: Komponenten von Vektoren und Dualvektoren identisch (daher kann Gradient auch als Vektor gesehen werden) Lorentz: hier nicht!!! Symmetrien: symmetrisch in den ersten beiden Argumenten: symmetrisch in allen drei Argumenten:

6 Antisymmetrisch im ersten und dritten Argument: Vollständig (anti)symmetrisch: (anti)symmetrisch in allen Indizes (Anti)symmetrisierung: Beispiel: Symmetrisierung von nicht direkten Nachbarindizes: Übungsaufgabe:

7 Für 2 Indizes: allgemein: Normierung 1/n! so gewählt, dass Spur: und für (0,2) Tensor Spur der Metrik ist nicht = 2, sondern im Minkowski-Raum: partielle Ableitung (k,l) Tensor! (k,l+1) Tensor ist anständiger Tensor (transformiert korrekt unter Lorentztrafos), aber dies gilt nicht mehr für allgemeinere Raumzeit (mit Krümmung)! kovariante Ableitung Ausnahme: Gradient ist auf beliebigen Mannigfaltigkeit ok!

8 1.8 Maxwellsche Gleichungen bekannte Notation (19. Jahrhundert): elektrisches Feld E magnetisches Feld B Stromdichte j Ladungsdichte im flachen dreidimensionalen Raum ist die Metrik (also, ob Indizes oben oder unten stehen ist egal) Komponentenschreibweise Definiere 4-Stromvektor plus Definition von

9 Übungsaufgaben: aus wird bzw. ganz analog: aus wird bzw. Tensorgleichung: transformiert korrekt unter Lorentztrafos (kovariante Formulierung)

10 1.9 Energie und Impuls Weltlinie eines Teilchens gegeben durch Abb. R " M, M Mannigfaltigkeit (Raumzeit) parametrisierte Kurve: Eigenzeit:!!! Tangentialvektor = Vierergeschwindigkeit Vierergeschwindigkeit automatisch normiert, da verwandte Größe: Viererimpulsvektor m = Ruhemasse (unabhängig vom Inertialsystem)

11 Energie: im Ruhesystem des Teilchens (c = 1)! im bewegten System: Lorentztrafo für Teilchen mit dreier-geschwindigkeit mit kleine Geschwindigkeiten: und allg. gilt: #! mit Newton: SRT: Beispiel Lorentzkraft!"mm$t&i$n)sc,&-n.$n)/012ic,.$it$n)st3&.)$in)444

12 Das war ein einzelnes Teilchen. Nun viele Teilchen: Fluidbeschreibung!Energie-Impuls Tensor: T!" (symmetrischer (0,2) Tensor) T!" p! x " # const allg. Definition von : Fluss von Viererimpuls durch Fläche mit (später genauer: Ableitung nach der Metrik) Suchen also rel. Verallgemeinerung von Erhaltungsgrößen % t$ &'(! $ v " # 0 % t$ v &'(! $ vv &" p" # 0 (ideale Flüssigkeit) Ruhesystem: 00 T = Energiedichte $ Staub, Materie: Ansammlung von Teilchen, die relativ zueinander in Ruhe sind Geschwindigkeit dieser 526ssi1.$it7 ist U!! x" $ # mn n m = Geschwindigkeit jedes Teilchens Energiedichte im Ruhesystem, und sind 0-Komponenten eines Vektors!!! N # nu #! n$0$0$0"$ p #! m$0$0$0" Tensor p ) N : T # p N # mnu U # $ U U!"! "! "! " dust

13 ideale Flüssigkeit: Ruheenergie und isotroper Druck! im Ruhesystem rel. Verallgemeinerung: Erhaltungsgröße:

14 1.10 Klassische Feldtheorie Klassische Mechanik: kritische Punkte der Wirkung S: Lagrange-Funktion, typisch L)9):); < Euler-Lagrange Gln. L! q$ q! " Beispiel:! Feldtheorie: ersetze Wirkung nun Funktional dieser Felder: durch Raumzeit-abhängige Felder natürliche Einheiten:

15 Euler-Lagrange: Wirkung konstant unter kleinen Variationen Lagrangian Wirkung partielle Integration Randbedingungen

16 Also mit Definition der Funktionalableitung!Euler-Lagrange Beispiel: skalares Feld (Spin 0, z.b. neutrales "-Meson) und nicht Lorentzinvariant, aber Kombination

17 und damit harmonischer Oszillator (Klein-Gordon Gln.) Noch ein Beispiel: Elektromagnetismus Vektorpotential A! mit 0 * + $ * A! B # ', A" A A i Eich-Trafo invariant

18 Lagrangian Euler-Lagrange erster Term zweiter Term mit rechnen:

19 also und damit Die homogene Gln. folgt aus Symmetrie: Warum Lagrangian? Ableiten der Wirkung nach der Metrik! Energie-Impuls Tensor Skalares Feld: Maxwell: allgemeinere Fälle: speziell rel. Feldtheorien! 6. Etage Süd

20 2. Mannigfaltigkeiten 2.1 Äquivalenzprinzip Newton: und Weak Equivalence Principle (WEP): andere Form des WEP: Beschleunigung = Gravitation Die Bewegung eines frei-fallenden Körpers sind identisch in einem Gravitationsfeld und in einem gleichförmig beschleunigten Bezugssystem lokal, kleine Körper, kleine Testmassen (Selbstwechselwirkung) Einstein Equivalence Principle (EEP): Man kann die Existenz eines Gravitationsfeldes nicht durch lokale Experimente feststellen (Experimente umfassen Gravitation nicht). EEP WEP, EEP Feinstrukturkonstante und Massenverhältnis Protonen/Elektronen ist konstant

21 Strong Equivalence Principle (SEP): Wie EEP + Experimente umfassen Gravitation Gravitationskonstante ist konstant Info: EEP: Gravitation ist unausweichlich, keine gravitativ-neutralen Körper, daher definiere: nicht-beschleunigt = frei fallend Saturday Morning gekrümmte Raumzeit Mannigfaltigkeiten 2.2 Was ist eine Mannigfaltigkeit n-dim Mannigfaltigkeit sieht lokal aus wie Beispiele:, klar n- Sphäre, fester Radius in

22 n-torus: Riemannsche Fläche vom Geschlecht g Jede kompakte orientierbare randlose 2-dim. Mannigfaltigkeit ist Riemannsche Fläche

23 LieGruppe: Mannigfaltigkeit mit Gruppenstruktur Beispiel: SO(2) identisch zu S 1 direktes Produkt zweier Mannigfaltigkeiten M und M Mannigfaltigkeiten der Dimensionen n und n neue Mannigfaltigkeit M x M bestehend aus geordnetem Paar (p,p ) mit p M und p M Was ist keine Mannigfaltigkeit? Ein Punkt, der nicht lokal wie 2 R aussieht.

24 nicht glatt genug Mannigfaltigkeit mit Rand Abbildungen: zwei Mengen M,N, Abbildung genau ein Element aus N zuordnet. Verknüpfung: mit :M N, die jedem Element aus M

25 injektiv: surjektiv: jedes Element aus N hat höchstens ein Urbild jedes Element aus N hat mindestens ein Urbild Menge M: Gebiet von, Gebiet: (N), Urbild: -1 (N) Wenn Abbildung injektiv und surjektiv ist, dann existiert inverser Abb. Stetigkeit bekannt für Abb. : R Komponentenfunktionen stetig Funktion heißt C p, wenn p-te Ableitung existiert und stetig ist. C Abb.: unendlich oft differenzierbar, glatt m R n ( x) x 3 Beispiel:, unendlich of diff.bar bis auf x=0, dort nur zweimal, also C 2

26 offene Kugel: Menge aller Punkte offene Menge: Vereinigung offener Kugeln, n V R y V n n x R, x y rfürfestes y R, r R also: ist offen, wenn für jedes eine offene Kugel um y existiert, die vollständig in V liegt. Eine Karte (oder Koordinatensystem) besteht aus einer Untermenge n und einer injektiven Abb. : U R, so dass ( U ) n offen in R ist. Damit ist U offen in M. U M

27 Ein C Atlas ist eine Vereinigung von Karten 1. Die Vereinigung U M, die folgende 2 Bed. erfüllen: 2. Übergangsabb. sind C 1 : Sei U U 0. Dann bildet die Abb. Punkte in n n ( U U ) R auf eine offene Menge ( U U ) R ab, und zwar C für alle,. U, Eine C n-dim. Mannigfaltigkeit ist eine Menge M mit einem maximalen Atlas, der alle kompatiblen Karten enthält. Analog wird eine C p Mannigfaltigkeit definiert.

28 Beispiele: 1. Kreis S 1 benötige zwei Karten 2. S 2 : stereographische Projektion vom Nordpol vom Südpol Übergangsabb. für -1 < x 3 < +1

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

2. Mannigfaltigkeiten

2. Mannigfaltigkeiten 2. Mannigfaltigkeiten 2.1 Äquivalenzprinzip Newton: und Weak Equivalence Principle (WEP): andere Form des WEP: Beschleunigung = Gravitation Die Bewegung eines frei-fallenden Körpers sind identisch in einem

Mehr

I. Das Weltbild der Gravitation vor Einstein Die Keplerschen Gesetze 25

I. Das Weltbild der Gravitation vor Einstein Die Keplerschen Gesetze 25 Inhaltsverzeichnis I. Das Weltbild der Gravitation vor Einstein 21 1. Die Keplerschen Gesetze 25 2. Fallgesetze 33 2.1. Bewegung in einer Dimension 33 2.1.1. Geschwindigkeit 34 2.1.2. Beschleunigung 42

Mehr

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Holger Göbel Gravitation und Relativität Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Vorwort V Liste der verwendeten Symbole XV 1 Newton'sche Mechanik 1 1.1 Die Grundgleichungen der

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Ein konzeptioneller Einblick Von Jan Kaprolat Gliederung Einleitung Übergang SRT -> ART Grundlegende Fragestellungen der ART Kurzer Einblick: Tensoralgebra Einsteinsche Feldgleichungen

Mehr

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3 Inhaltsverzeichnis Teil I Grundlagen 1 Einleitung 3 1.1 Was wir nicht herleiten können... 3 1.2 Überblick über das Buch... 5 1.3 Elementarteilchen und fundamentale Wechselwirkungen 8 2 Die Spezielle Relativitätstheorie

Mehr

Theoretische Elektrotechnik

Theoretische Elektrotechnik Theoretische Elektrotechnik Band 1: Variationstechnik und Maxwellsche Gleichungen von Dr. Roland Süße und Prof. Dr. Bernd Marx Technische Universität Ilmenau Wissenschaftsverlag Mannheim Leipzig Wien Zürich

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Relativistische Punktmechanik

Relativistische Punktmechanik KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen

Mehr

Gravitation und Krümmung der Raum-Zeit - Teil 1

Gravitation und Krümmung der Raum-Zeit - Teil 1 Gravitation und Krümmung der Raum-Zeit - Teil 1 Gauß hat gezeigt, daß es Möglichkeiten gibt, die Krümmung von Flächen durch inhärente Messungen auf der Fläche selbst zu bestimmen Gauß sches Krümmungsmaß

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Inhaltsverzeichnis. Vorwort. Liste der verw endeten Sym bole. 1 N ew ton sche Mechanik 1. 2 Spezielle R elativitätstheorie 15 CM CO ^

Inhaltsverzeichnis. Vorwort. Liste der verw endeten Sym bole. 1 N ew ton sche Mechanik 1. 2 Spezielle R elativitätstheorie 15 CM CO ^ Inhaltsverzeichnis Vorwort Liste der verw endeten Sym bole V X V 1 N ew ton sche Mechanik 1 1.1 Die Grundgleichungen der Newton schen Mechanik... 1 1.1.1 Gravitationspotential und K raft... 1 1.1.2 Bewegungsgleichung

Mehr

Einführung in die Astronomie und Astrophysik II

Einführung in die Astronomie und Astrophysik II Einführung in die Astronomie und Astrophysik II Teil 8 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Quiz: Wo und was in aller Welt ist das? Themen Sternentstehung Sternentwicklung Das

Mehr

2.10 Normierung der Dirac-Spinoren

2.10 Normierung der Dirac-Spinoren 2.10 Normierung der Dirac-Spinoren In der schwachen Wechselwirkung, die die Parität verletzt, werden auch Axial-Vektoren eine große Rolle spielen, da der Strom eines linkshändigen Spin-1/2 Teilchens ū

Mehr

IX. Relativistische Formulierung der Elektrodynamik

IX. Relativistische Formulierung der Elektrodynamik Kurzer Rückblick auf klass. relativ. Mechanik 1 IX. Relativistische Formulierung der Elektrodynamik Die Aufteilung des elektromagnetischen Felds (auch von Strom und Ladungsdichte) in elektrisches und magnetisches

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

I.2.3 Minkowski-Raum. ~r x 3 benutzt.

I.2.3 Minkowski-Raum. ~r x 3 benutzt. I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer

Mehr

Rechenmethoden für Studierende der Physik im ersten Jahr

Rechenmethoden für Studierende der Physik im ersten Jahr Markus Otto Rechenmethoden für Studierende der Physik im ersten Jahr Spektrum k-/jl AKADEMISCHER VERLAG Vorwort v 1 Vektorrechnung 1 1.1 Grundlagen der Vektorrechnung 1 1.1.1 Richtung und Betrag 1 1.1.2

Mehr

2.1 Das Ereignisintervall, die Eigenzeit

2.1 Das Ereignisintervall, die Eigenzeit Kapitel 2 Begriffe und Konzepte 2.1 Das Ereignisintervall, die Eigenzeit Wir wollen nun im Prinzip die Bewegung eines Körpers unter Einwirkung der Schwerkraft untersuchen und suchen deshalb in der Raumzeit

Mehr

5. Krümmung Der Riemann sche Krümmungstensor

5. Krümmung Der Riemann sche Krümmungstensor 5 Krümmung 51 Der Riemann sche Krümmungstensor Gegeben sei eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D Der Riemann sche Krümmungstensor von M bezüglich D ist die Abbildung

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Kaluza Klein Theorie. Forschungsseminar Quantenfeldtheorie Montag, Jens Langelage

Kaluza Klein Theorie. Forschungsseminar Quantenfeldtheorie Montag, Jens Langelage Kaluza Klein Theorie Forschungsseminar Quantenfeldtheorie Montag, 22.05.2006 Jens Langelage Inhalt 1.) Gravitation und Elektromagnetismus in höheren Dimensionen 2.) Kaluza Klein Miracle 1.) Elektromagnetismus

Mehr

Theoretische Physik 3

Theoretische Physik 3 Theoretische Physik 3 Klassische Feldtheorie: Von Elektrodynamik, nicht-abelschen Eichtheorien und Gravitation Bearbeitet von Florian Scheck 4. Auflage 2017. Buch. XVI, 437 S. Softcover ISBN 978 3 662

Mehr

Mehr von PLARTHIN gibt's im Internet auf http://plarthin.wordpress.com Literatur: - [1] deutsche, englische Wikipedia (Literaturverweise hierauf gekennzeichnet mit [1, de]; [1, en]) - [2] Spacetime and

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu Klassische Elektrodynamik 1 Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astrono mie Auf de m Hügel 71 kbasu@astro.uni-bonn.de

Mehr

Das Konzept der Symmetrie (Hermann Weyl)

Das Konzept der Symmetrie (Hermann Weyl) Das Konzept der Symmetrie (Hermann Weyl) Werkzeugkiste: Transformationsgruppen Dreieck Drehung Dreieck R.P. Feynman: Ein Objekt heißt symmetrisch, wenn man mit ihm etwas anstellen kann, ohne es am Ende,

Mehr

Tensoren auf einem Vektorraum

Tensoren auf einem Vektorraum ANHANG A Tensoren auf einem Vektorraum In diesem Anhang werden einige Definitionen und Ergebnisse betreffend Tensoren ohne Anspruch auf mathematische Strenge zusammengestellt. Das Ziel ist, den modernen

Mehr

Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren.

Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren. Was fehlt derzeit im Internet? Sicherlich eine verständliche Einführung in Tensoren. Mehr von PLARTHIN gibt's im Internet auf http://plarthin.wordpress.com Literatur: - deutsche Wikipedia - Spacetime and

Mehr

Formelsammlung Klassische Feldtheorie

Formelsammlung Klassische Feldtheorie Formelsammlung Klassische Feldtheorie 6 (Pseudo-)Orthogonale Gruppen 1. Definition Gruppe: Menge G mit einer Operation (g 1,g 2 ) G G g 1 g 2 G (Multiplikation) (1) die folgende Bedingungen erfüllt: Assoziativität:

Mehr

Schnellkurs ART: Metrik in der SRT und ART, Äquivalenzprinzip

Schnellkurs ART: Metrik in der SRT und ART, Äquivalenzprinzip Schnellkurs ART: Metrik in der SRT und ART, Äquivalenzprinzip Space tells matter how to move, matter tells space how to curve. 1 1 Misner, Thorne, Wheeler Grundlegende Frage Mit welchen mathematischen

Mehr

Dieses Buch enthält eine kurze Einführung in die relativistische

Dieses Buch enthält eine kurze Einführung in die relativistische Vorwort Dieses Buch enthält eine kurze Einführung in die relativistische Mechanik. Dabei stehen die Bewegungsgleichungen für ein Masseteilchen im Mittelpunkt. Es richtet sich an Studenten, die bereits

Mehr

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation

Mehr

5.3.3 Die Lorentz-Transformationen

5.3.3 Die Lorentz-Transformationen 5.3. EINSTEINS SPEZIELLE RELATIVITÄTSTHEORIE 135 Wir kennen bereits die Transformationen zwischen Inertialsystemen der Potentiale der Elektrodynamik. So sind ϕ und A für eine gleichmäßig, geradlinig bewegte

Mehr

Tensoren. Oliver Jin, Florian Stöttinger, Christoph Tietz. January 24, 2012

Tensoren. Oliver Jin, Florian Stöttinger, Christoph Tietz. January 24, 2012 Tensoren Oliver Jin, Florian Stöttinger, Christoph Tietz January 24, 2012 Inhaltsverzeichnis Einleitung Einstein sche Summenkonvention Ko- und Kontravariant Stufen Transformationsverhalten Symmetrie Tensoralgebra

Mehr

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10.

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10. 10 Äquivalenzprinzip Die physikalische Grundlage der Allgemeinen Relativitätstheorie (ART) ist das von Einstein postulierte Äquivalenzprinzip 1. Dieses Prinzip besagt, dass Gravitationskräfte äquivalent

Mehr

Analysis für Physiker Zusätze

Analysis für Physiker Zusätze Analysis für Physiker Zusätze nach den Vorlesungen von Prof. Dr. Werner Timmermann (Sommersemester 2007, Wintersemester 2007/08) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stand: 23.

Mehr

9 Der Riemann sche Krümmungstensor

9 Der Riemann sche Krümmungstensor 9 Der Riemann sche Krümmungstensor Bevor wir weitere physikalische Ergebnisse der ART wie Gravitationswellen oder die Verwirbelung der Raumzeit durch rotierende Massen diskutieren, wollen wir uns in den

Mehr

Analysis 3, Woche 11. Mannigfaltigkeiten II Immersionen

Analysis 3, Woche 11. Mannigfaltigkeiten II Immersionen Analysis 3, Woche Mannigfaltigkeiten II. Immersionen Definition. Sei m n N und X R m offen. Eine Abbildung f C X; R n heißt Immersion, wenn für jedes x X die Matrix fx injektiv ist. Bemerkung.. Man hat

Mehr

Sechste Vorlesung: Gravitation II

Sechste Vorlesung: Gravitation II Sechste Vorlesung: Gravitation II 6.1 Das Einstein-Hilbert-Funktional 6.2 Relativistische Elektrodynamik 6.3 Spurfreiheit des Energie-Impuls-Tensors T αβ em * 6.1 Das Einstein-Hilbert-Funktional Wir wollen

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg Geometrie der Maxwell-Theorie Max Camenzind Senioren Uni Würzburg Die Themen Die Geometrisierung der Speziellen Relativität durch Hermann Minkowski im Jahre 1908. Die kausale Struktur der RaumZeit. Die

Mehr

Fey nman-vo rles u n ge n über Physik 1

Fey nman-vo rles u n ge n über Physik 1 Richard P. Matthew Sands Feynman, Robert B. Leighton, Fey nman-vo rles u n ge n über Physik 1 Mechanik New Millennium-Edition DE GRUYTER Inhaltsverzeichnis 1 Atome in Bewegung 1 1.1 Einleitung 1 1.2 Materie

Mehr

24 Minkowskis vierdimensionale Raumzeit

24 Minkowskis vierdimensionale Raumzeit 24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten

Mehr

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Prof Dr-Ing Ch Tsakmakis Dipl-Ing J Frischmann FB 13, FG Kontinuumsmechanik Aufgabe 1 (Klausuraufgabe) Seien drei Vektoren u, v, w

Mehr

Fragen zur Klausurvorbereitung

Fragen zur Klausurvorbereitung PD. Dr. R. Klesse, Prof. Dr. A. Schadschneider S. Bittihn, C. von Krüchten Wintersemester 2016/2017 Theoretische Physik in 2 Semestern I Fragen zur Klausurvorbereitung www.thp.uni-koeln.de/ rk/tpi 16.html

Mehr

Allgemeine Relativitätstheorie Ausarbeitung. Von Jan Kaprolat

Allgemeine Relativitätstheorie Ausarbeitung. Von Jan Kaprolat Allgemeine Relativitätstheorie Ausarbeitung Von Jan Kaprolat Grundlegende Motivation zur ART Die Allgemeine Relativitätstheorie (ART) ist die Erweiterung der speziellen Relativitätstheorie (SRT). Sie bezieht

Mehr

Die Einsteinsche Feldgleichung

Die Einsteinsche Feldgleichung Die Einsteinsche Feldgleichung Volker Perlick ZARM, Univ. Bremen, Germany Eisenbahnfriedhof Uyuni, Bolivien Heraeus-Seminar 100 Jahre Allgemeine Relativitätstheorie Potsdam, 11 März 2015 Newton Einstein

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Kontrollfragen Allgemeine Relativitätstheorie Stephan Mertens Wintersemester 2009 UE R ICKE UNI VERSITÄT MAG G N VO D O TT O EBURG 1 Einführung und Motivation 1. Warum kann das Newton sche Gravitationsgesetz

Mehr

Mannigfaltigkeiten und Integration I

Mannigfaltigkeiten und Integration I und Integration I Martin Jochum 16. Dezember 2008 und Integration I 16. Dezember 2008 1 / 28 Gliederung Definition Folgerungen Tangentialvektoren Differentialformen Euklidische Simplizes Definition Motivation

Mehr

Über teleparallele Gravitationstheorien

Über teleparallele Gravitationstheorien Diplomkolloquium Über teleparallele Gravitationstheorien Uwe Münch 24. September 1997 Übersicht: Geometrische Größen Gravitation als Eichtheorie der Translationen: Teleparallelismus-Theorien Alternative

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Klein-Gordon-Gleichung

Klein-Gordon-Gleichung Seminar zur Theorie der Atome, Kerne und kondensierten Matierie Klein-Gordon-Gleichung Judith Beier 17.12.2014 1 Inhaltsverzeichnis 1 Einblick in die Geschichte der relativistischen Quantenmechanik 3 2

Mehr

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS P. K. RASCHEWSKI RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS 2. unveränderte Auflage mit 32 Abbildungen VERLAG HARRI DEUTSCH INHALTSVERZEICHNIS L Tensoren im dreidimensionalen euklidischen Baum 1. Einstufige

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 12. November 2013 Kurzzusammenfassung Vorlesung 8 vom 12.11.2013 2.4 Das Hamiltonsche Prinzip ( Prinzip der kleinsten Wirkung Wir zeigen,

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Kapitel 4. Lorentz-Tensoren

Kapitel 4. Lorentz-Tensoren Kapitel 4 Lorentz-Tensoren Nach Möglichkeit versucht man, die Gesetze der Physik so aufzustellen, dass sie in allen Inertialsystemen die gleiche Form haben, also forminvariant unter Translationen und Rotationen

Mehr

Mathematische Physik: Vektoranalysis und Differentialgeometrie

Mathematische Physik: Vektoranalysis und Differentialgeometrie Mathematische Physik: Vektoranalysis und Differentialgeometrie September 2006 April 2007 Markus Penz Stichwörter. Mannigfaltigkeit, Karte, Atlas, Tangentialraum, Tangentialbündel, Dualraum (Kovektorraum),

Mehr

Eichinvarianz in der Quantenmechanik. abgeleitet aus der Maxwell-Theorie

Eichinvarianz in der Quantenmechanik. abgeleitet aus der Maxwell-Theorie Eichinvarianz in der Quantenmechanik abgeleitet aus der Maxwell-Theorie Seminarvortrag Quantenelektrodynamik 1. Teil: Schrödingergleichung Motivation: Eichtheorien sind ein inhaltsreicher Gedankenkomplex

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen Prof. C. Greiner, Dr. H. van Hees Wintersemester 13/14 Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 1 Präsenzübungen (P7) Viererimpuls und relativistisches Electron im Plattenkondensator (a) Es

Mehr

Eichtransformationen. i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf.

Eichtransformationen. i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf. Eichtransformationen i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf. Beweis: Wirkung S ist unabhängig von Parametrisierung für gegebene physikalische Bahnkurve; folglich haben

Mehr

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse Kapitel 1 PUNKTMECHANIK LERNZIELE Definition der physikalischen Begriffe Körper, Masse, Ort, Geschwindigkeit, Beschleunigung, Kraft. Newtons Axiome Die Benutzung eines Bezugssystems / Koordinatensystems.

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit: C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Vorlesung: Klassische Theoretische Physik I

Vorlesung: Klassische Theoretische Physik I Vorlesung: Klassische Theoretische Physik I M. Zirnbauer Institut für Theoretische Physik Universität zu Köln Sommersemester 2015 Contents 1 Newtonsche Mechanik 3 1.1 Affine und Euklidische Räume.............................

Mehr

Holomorphe Funktionen

Holomorphe Funktionen 1 Kapitel 1 Holomorphe Funktionen 1 Komplexe Differenzierbarkeit Ist z = (z 1,..., z n ) ein Element des C n und z ν = x ν + i y ν, so können wir auch schreiben: z = x + i y, mit x = (x 1,..., x n ) und

Mehr

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr

Elektromagnetische Felder

Elektromagnetische Felder К. Meetz W L Engl Elektromagnetische Felder Mathematische und physikalische Grundlagen Anwendungen in Physik und Technik Mit 192 Abbildungen Springer-Verlag Berlin Heidelberg New York 1980 Inhaltsverzeichnis

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Eine Einführung in die Differentialgeometrie

Eine Einführung in die Differentialgeometrie Eine Einführung in die Differentialgeometrie Nach einer Vorlesung von Prof. Helga Baum 1 Getippt haben Luise Fehlinger und Carsten Falk 4. Mai 2006 1 Der Inhalt dieses Skriptes beruht auf den Vorlesungen

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

Multilineare Algebra

Multilineare Algebra Multilineare Algebra Handout zur Vorlesung Differentialgeometrie Dr. Bernd Ammann, Prof. Chr. Bär Literatur Frank Warner, Foundations of differentiable manifolds and Lie groups, Kapitel 2 1 Tensoren Motivation.

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

Inhaltsverzeichnis. Vorwort. Einführung in die Thematik

Inhaltsverzeichnis. Vorwort. Einführung in die Thematik Inhaltsverzeichnis Vorwort Einführung in die Thematik i iii 1. Theorie der Tensoren im n-dimensionalen Raum 1 1.1. TensorenalsgeometrischeObjekte... 1 1.1.1. n-dimensionalerraum... 1 1.1.2. EigenschaftenvonTensoren...

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Beispiel: Rollender Reifen mit

Beispiel: Rollender Reifen mit Beispiel: Rollender Reifen mit Kinetische Energie: Trägheitsmoment Potenzielle Energie: Zwangsbedingung: konstant nicht-gleitendes Rollen, holonome ZB Erweiterte Lagrange-Fkt.: t-abhängig: Interpretation:

Mehr

Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Galileo Galilei

Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Galileo Galilei TO Rechenmethoden Wise 2012-2013 Jan von Delft 16.10.2012 http://homepages.physik.uni-muenchen.de/~vondelft/lehre/12t0/ Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Galileo Galilei Das

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie (ART) c 1 /4h by sphere, 2014-07-17 powered by LAT E X was soll das alles überhaupt? was soll das alles überhaupt? ˆ damals : Newton-Mechanik was soll das alles überhaupt?

Mehr

V.2.3 Folgerungen. V.2.4 Minkowski-Raum. V.2.3 a. Zeitdilatation V.2.3 b. Längenkontraktion Aufgabe 30 V.2.3 c

V.2.3 Folgerungen. V.2.4 Minkowski-Raum. V.2.3 a. Zeitdilatation V.2.3 b. Längenkontraktion Aufgabe 30 V.2.3 c 98 Mathematischer Apparat der Speziellen Relativitätstheorie V.2.3 Folgerungen V.2.3 a Zeitdilatation V.2.3 b Längenkontraktion Aufgabe 30 V.2.3 c Additionstheorem für Geschwindigkeiten Aufgabe 34 V.2.4

Mehr

Oft gebraucht man einfach nur das Wort Mannigfaltigkeit, und meint eine topologische Banachmannigfaltigkeit. Das kommt auf den Kontext an.

Oft gebraucht man einfach nur das Wort Mannigfaltigkeit, und meint eine topologische Banachmannigfaltigkeit. Das kommt auf den Kontext an. Mannigfaltigkeiten (Version 19.11. 14:30) Eine n-dimensionale topologische Mannigfaltigkeit ist ein topologischer Raum, der lokal homöomorph zum R n ist. Entsprechend könnten wir natürlich auch eine topologische

Mehr

HM II Tutorium 1. Lucas Kunz. 24. April 2018

HM II Tutorium 1. Lucas Kunz. 24. April 2018 HM II Tutorium 1 Lucas Kunz 24. April 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper...................................... 2 1.2 Gruppen..................................... 2 1.3 Vektorraum...................................

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Die allgemeine Relativitätstheorie - einfach erklärt

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Die allgemeine Relativitätstheorie - einfach erklärt Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Die allgemeine Relativitätstheorie - einfach erklärt Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT

Mehr

Quanten - Gravitation

Quanten - Gravitation Quanten - Gravitation Quantenmechanik und allgemeine Relativitätstheorie zwei Pfeiler im Gebäude der theoretischen Physik Passen sie zusammen? Oder brauchen wir ganz neue theoretische Konzepte? Quantenmechanik

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Eine Einführung in die Theorie des Gravitationsfeldes von Hans Stephani 4. Auflage Mit 54 Abbildungen / j.* i v, V r ' ''% Щ r \. ', Deutscher Verlag der Wissenschaften Berlin

Mehr

Doku Spezielle Relativität

Doku Spezielle Relativität Doku Spezielle Relativität Äther-Diskussion um 1900 Newton Mechanik ist Galilei-invariant Maxwell EM ist jedoch Lorentz-invariant Michelson-Morley Experiment Albert Michelson & Edward Morley Drehbarer

Mehr

Relativistische Beziehungen Hochfrequenzgrundlagen

Relativistische Beziehungen Hochfrequenzgrundlagen Hochfrequenzgrundlagen Prof. Dr. H. Podlech 1 Klassische Mechanik Im Rahmen der klassischen Mechanik gelten folgende Beziehungen Masse: m=konstant Impuls: Kinetische Energie: Geschwindigkeit: Prof. Dr.

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

Allgemeine Relativitätstheorie. Schwarzschildlösung und Anwendung

Allgemeine Relativitätstheorie. Schwarzschildlösung und Anwendung Allgemeine Relativitätstheorie Schwarzschildlösung und Anwendung Previously, on... Letztes Mal: Einsteingleichung und die Geodätengleichung Wir werden die Schwarzschild-Lösung der Einsteingleichung im

Mehr

Mustermann, Erika. Aufgabe 1. Zeichnen Sie die Spur des Weges c : [ π 2, π] R 2, der durch. 2cos(t) 2

Mustermann, Erika. Aufgabe 1. Zeichnen Sie die Spur des Weges c : [ π 2, π] R 2, der durch. 2cos(t) 2 Aufgabe. Zeichnen Sie die Spur des Weges c : [ π, π] R, der durch ct := cost sint + definiert ist, in das Koordinatensystem unten auf dieser Seite ein. Für die volle Punktzahl ist nur die korrekte Zeichnung

Mehr

Lagrange-Formalismus

Lagrange-Formalismus KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Kapitel 2. Mathematische Grundlagen. Koordinatensystem

Kapitel 2. Mathematische Grundlagen. Koordinatensystem Kapitel 2 Mathematische Grundlagen 2.1 Koordinatensystem Zumeist werden in diesem Buch rechtwinkelige kartesische Koordinatensysteme verwendet. Sie sind durch drei zueinander orthogonale Koordinatenachsen

Mehr

9. Spezielle Relativitätstheorie

9. Spezielle Relativitätstheorie 7. Relativistischer Impuls 9. Spezielle Relativitätstheorie (SRT) Inhalt 9. Spezielle Relativitätstheorie 9.1 Galilei-Transformation 9.2 Lorentz-Transformation 9.3 Transformation von Geschwindigkeiten

Mehr