Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2

Größe: px
Ab Seite anzeigen:

Download "Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2"

Transkript

1 Abtasttheorem

2 Abtastung xn [ ] = xnt ( ) = Acos( ωnt+ ϕ) = Acos( ωˆ n+ ϕ) s s Normalisierte Kreisfrequenz ωˆ = ωt s DSP_9-Abtasttheorem 2

3 Normalisierte Kreisfrequenz ω hat die Einheit rad/sec, ω ˆ = ωt hat die Einheit rad, d.h. ω ˆ ist eine dimensionslose Größe! Nachdem x(t) abgetastet wurde, geht die Zeitachse verloren. Das zeitdiskrete Signal ist lediglich eine Folge von Zahlen, diese Folge hat keine Information über die Abtastperiode. Zur Rekonstruktion in den Zeitbereich muß die Abtastfrequenz bekannt sein! In anderen Worten: Eine unendliche Anzahl von kontinuierlichen Sinussignalen kann in die identische diskrete Sinusdarstellung transformiert werden. DSP_9-Abtasttheorem 3

4 Amplitude Amplitude Amplitude Anzahl der Abtastpunkte Zeit t Index Index DSP_9-Abtasttheorem 4

5 Darstellung der Abtastung Signals f(t) wird einer Folge von Einheitsimpulsen δ T (t) im Abstand von T Sekunden (dem Abtastabstand) multipliziert. fs() t = f() t δt() t = f( kt)( δ t kt) Die Impulsfolge ist eine periodische Funktion und kann daher in eine Fourierreihe zerlegt werden. k 1 δt() t = [1+ 2cosωst + 2cos2ωst + 2cos3 ωst +... T DSP_9-Abtasttheorem cos kω t] ( k ) s

6 1 Ts /2 jkωst Dk = δ () Ts /2 T t e dt = T s 1 T 1 jkω 2 st π δt( t) = e ωs = T T s k = 1 δt( t) = [1 + 2cosωst+ 2cos 2ωst+ 2cos3 ωst kcos kωst] T s (reelle Darstellung!) ( k ) s s 1 x 1/T s.5 komplexe Darstellung! DSP_9-Abtasttheorem 6

7 Abgetastetes Signal f = δ = 1 S() t ft () T() t [ ft () + 2 ft ()cosωst+ 2 ft ()cos2 ωst+...] T cos( ωt)cos( ω = 1 st) cos( ωs + ω) t + cos( ωs ω) t 2 [ ] ( ω ± ω ) Aus jeder Spektralkomponente entsteht! s DSP_9-Abtasttheorem 7

8 1 fs() t = f() t δt() t = [ f()cos t t+ 2 f()cos t ωst+ 2 f()cos2 t ωst+...] T z.b. : f () t = cos ω t 1 cos( ωt) cos( ωst) = cos( s ω) + cos( ωs + ω) 2 [ ω t t] ω ω DSP_9-Abtasttheorem 8

9 Spektrum des abgetasteten Signals f() t F( ω) 1 f()cos t ωst [ F( ω ωs) + F( ω+ ωs)] 2 F( ω); F( ω 2 ω ), F( ω+ 2 ω ); F( ω 3 ω ), F( ω+ 3 ω );... 1 Fs( ω) = F( ω nωs) T s n= s s s s Das Spektrum des abgetasteten Signals setzt sich periodisch im Abstand DSP_9-Abtasttheorem ω 9 s fort.

10 Das Spektrum des Orginalsignals f(t) ist im Spektrum des abgetasteten Signals f s (t) enthalten und kann aus F s (ω) durch "Herausschneiden" mit einem idealen Tiefpassfilter fehlerfrei wieder hergestellt werden. DSP_9-Abtasttheorem 1

11 Abstand der Spektren hängt von der Abtastfrequenz ab. DSP_9-Abtasttheorem 11

12 Shannon Sampling Theorem Ein kontinuierliches Zeitsignal x(t) mit Frequenzen f max kann exakt von den Abtastwerten x[n] = x(nts) rekonstruiert werden, wenn die Abtastrate f s = 1/T s größer als 2 f max ist. DSP_9-Abtasttheorem 12

13 Spektrum der abgetasteten Sinusfunktion Abtastfrequenz = 9 Hz -1 Hz periodisch fortgesetzt 1 Hz periodisch fortgesetzt f = 1 Hz! Aliasing DSP_9-Abtasttheorem 13

14 Abtastfrequenz = 11 Hz 1 Hz periodisch fortgesetzt -1 Hz periodisch fortgesetzt f = 1 Hz! Folding DSP_9-Abtasttheorem 14

15 Abtastfrequenz = 25 Hz 1 Hz periodisch fortgesetzt -1 Hz periodisch fortgesetzt f = 1 Hz Selektivität des Filters DSP_9-Abtasttheorem 15

16 Abtastfrequenz = 35 Hz 1 Hz periodisch fortgesetzt -1 Hz Selektivität des Filters kann geringer sein. DSP_9-Abtasttheorem 16

17 Aliasing (1) xt ( ) = Acos(2 πft+ φ) liefert das abgetastete Signal xn [ ] = xnt ( ) = Acos(2 πft+ φ) s Wir betrachten eine zweite cos-funktion mit der selben Amplitude und Phase, aber mit der Frequenz f + lf l s ist eine Ganzzahl und f = 1/ T yt () = Acos(2 π( f + lf) t+ φ) bzw. yn [ ] = ynt ( ) = Acos(2 π( f + lf) nt+ φ) s s s s = Acos(2πf T + 2 πlf T + φ) = Acos(2πf T + 2 πl+ φ) = Acos(2π f T + φ ) = xn [ ] s s s s s s DSP_9-Abtasttheorem 17 s

18 Aliasing (2) y[ n] hat dieselben Abtastwerte wie x[ n] und ist daher von xn [ ] nicht unterscheidbar! l ist eine beliebige ganze Zahl, es gibt daher eine unendliche Zahl von Kosinusfunktionen, die alle dieselbe Folge haben wie x[ n]. Die Frequenzen f + lf nennt man Aliasfrequenzen von f für die Abtastfrequenz f. s o s o DSP_9-Abtasttheorem 18

19 Folding Die zeite Ursache für Aliassignale kommt von negativen Frequenzkomponenten f + lf : wt () = Acos(2 π( f + lf) t φ) bzw. wn [ ] = wnt ( ) = Acos(2 π( f + lf) nt φ) s s s s = Acos( 2πf T + 2 πlf T + φ) s s s s = Acos( 2πf T + 2 πl φ) = Acos(2 πf T + φ) = x[ n] s s DSP_9-Abtasttheorem 19

20 Rekonstruktion/Interpolation Umsetzung diskret => kontinuierlich yt () = ynpt [ ] ( nts ) n= pt ( ) charakteristische Impulsform des Konverters. DSP_9-Abtasttheorem 2

21 Interpolation im Zeitbereich konstant linear interpoliert DSP_9-Abtasttheorem 21

22 1 x 4 x DSP_9-Abtasttheorem 22

23 Interpolation im Frequenzbereich DSP_9-Abtasttheorem 23

24 Ideale Filterung Um das Orginalsignal aus dem periodischen Spektrum zu rekonstruieren, bedarf es eines Filters mit exakt rechteckigem Frequenzgang (ideales Filter) Das Eingangssignal des idealen Filters ist die Impulsfolge des abgetasteten Signals. Das Ausgangssignal ist die Überlagerung der zeitversetzten, gewichteten Impulsantworten. DSP_9-Abtasttheorem 24

25 h(t) Impulsantwort ideales Filter 1 ω < 2πB H ( ω) = ω 2πB 1 2π B jωt h() t = e dω 2 BT sinc 2 Bt 2π = 2π B T ( π ) H(ω) -2 πb ω 2πB 1-4/2B -3/2B -2/2B -1/2B Zeit t 1/2B 2/2B 3/2B 4/2B DSP_9-Abtasttheorem 25

26 Das Ausgangssignal ist die Überlagerung der zeitversetzten, gewichteten Impulsantworten. f() t f( kt) h( t kt ) f( kt)sinc 2π Bt kπ = = k k ( ) DSP_9-Abtasttheorem 26

27 Während die Rekonstruktion des Signal durch Rechteck- und Dreiecksimpulse nur eine ungenaue Wiedergewinnung des Signal ermöglichte, stellt die Rekonstruktion durch überlagerte und gewichtete sinc-pulse das Signal fehlerfrei her. Wie wir sehen, ist die Impulsantwort eines idealen Filters nicht-kausal, d.h. das Filter antwortet bereits vor dem Anlegen des Impulses. Nichtkausale Filter sind nicht realisierbar! DSP_9-Abtasttheorem 27

28 Interpolationsfilter (1) Ideale (analoge) Tiefpass-Filter sind nicht-kausal und daher nicht realisierbar. Eine praktische Lösung dieses Problems wird dadurch gefunden, dass das Signal mit Abtast-frequenzen größer als der Nyquist-Frequenz abgetastet wird. Damit entstehen Lücken im periodisch fortgesetzten Spektrum und die Anforderungen an die Flankensteilheit des Filters werden geringer. DSP_9-Abtasttheorem 28

29 Interpolationsfilter (2) Man kann zwar steilflankige analoge Filter mit hoher Dämpfung im Sperrbereich bauen, es ist aber nicht möglich Filter zu realisieren, die die Signale im gesamten Sperrbereich vollständig unterdrücken. Man erreicht eine praktisch ausreichende Unterdrückung, aber nie die theoretische geforderte vollständige Ausblendung des Sperrbereichs. Jedes praktische Signal ist von endlicher Länge. Wie wir von der Fourier-Transformation wissen, hat ein Signal endlicher Länge eine unendlich breites Spektrum. DSP_9-Abtasttheorem 29

30 Kein Signal kann gleichzeitig zeitbegrenzt und bandbegrenzt sein! Ist das Signal zeitbegrenzt (hat es also eine endliche Dauer ), dann erstreckt sich das Spektrum von bis (ist also nicht bandbegrenzt). Ist das Signal bandbegrenzt, dann muss sich das Signal über eine unendliche Dauer im Zeitbereich erstrecken, ist also nicht zeitbegrenzt. DSP_9-Abtasttheorem 3

31 Überlappende Spektren DSP_9-Abtasttheorem 31

32 Antialiasing-Filter Um das Überlappen von Spektren zu vermeiden wird die Bandbreite von Signalen mit Antialiasing- Filtern begrenzt. DSP_9-Abtasttheorem 32

33 Digitalisierung Die Auflösung des Analog-/Digital- Wandler wird nach Qualitätskriterien ausgewählt. Für Sprachsignale reicht eine Auflösung von 8 bit aus, bei Musiksignalen auf einer Audio CD beträgt die Auflösung 16 bit. Je geringer die Auflösung des A/D- Wandlers ist, desto stärker weicht das digitale Signal vom analogen Signal ab. DSP_9-Abtasttheorem 33

34 Δ F(t) F(t) f(t) f(t) Quantisierungsfehler Zeit t Zeit t Zeit t Fehler: Δ = f(t) - F(t) Zeit t Zeit t 5 x 1-1 Fehler: Δ = f(t) - F(t) Zeit t ΔQuantisierungs- rauschen DSP_9-Abtasttheorem 34

35 Quantisierungsrauschen (1) Quantisierungsfehler Δ 1 2 LSB Bei gleichwahrscheinlichen Signalamplituden ist die mittlere Leistung des Fehlersignals (Rauschen) e e 1 Δ = s ds = Δ 12 Δ LSB = = ~.29LSB Δ /2 2 2 eff Δ/2 eff 8 bit: 1/9 12 bit: 1/ bit: 1/226. des Wertebereichs DSP_9-Abtasttheorem 35

36 Quantisierungsrauschen (2) [y,fs,nbits]=wavread('file.wav') sound(y,fs,6) % Abspielen mit 6 bit wavwrite(a,fs,nbits,'wavefile.wav') nbits = 8, 16, 32 o. 64 DSP_9-Abtasttheorem 36

37 Abtastung im Frequenzbereich Abtastung im Zeitbereich: bandbegrenzte Signale Abtastung im Frequenzbereich: zeitbegrenzte Signale DSP_9-Abtasttheorem 37

38 DSP_9-Abtasttheorem 38

39 Diskrete Fourier-Transformation (DFT) Für die Berechnung der DFT gehen wir von zeitbegrenzten Signalen f(t) der Länge τ aus (a). Zeitbegrenzte Signale haben ein Spektrum F(ω) das nicht bandbegrenzt ist (b). Aus dem zeitbegrenzten Signal gewinnen wir das diskrete Signal f s (t) durch Abtastung von f(t) im Abstand T=1/F s (c). Durch die Abtastung wird das Spektrum periodisch mit der Periodendauer F s =1/T, wir erhalten das Spektrum F s (ω) (d). Die Abtastung des Spektrum im Abstand F =1/T (f) führt zur periodischen Fortsetzung des abgetasteten Zeitsignals, mit der Periode T (e). DSP_9-Abtasttheorem 39

40 Diskrete Fourier-Transformation 1 n= 1 1 f[ n] = F[ k] e N N N k = Fk [ ] = f[ ne ] jkω jkω n n DFT IDFT o T 2 N DSP_9-Abtasttheorem 4

41 Zeitbereich Frequenzbereich FR: FT: DFT: + 1 ( t) [ k] [ k] ( t) T jkωt jkωt f = F e F = f e dt k = 1 jωt jωt f ( t) = F( ω) e dω F( ω) = f( t) e dt 2π 1 f n F k e F N N 1 N 1 jk ˆ ωn jk ˆ ω [ ] = [ ] [ ] = [ ] k = n= k T f n e n ˆ ω = ωt = 2π N DSP_9-Abtasttheorem 41

42 Spektrallinien der DFT Bei der DFT können die Spektrallinien nur im Raster der Abtastung im Frequenzbereich auftreten. T f 1 = = ; z.b.: = 1 Samples:, 1, 2,..., 9 Hz 1 s N T s f Es können keine Spektrallinien außerhalb des Rasters, z.b. 15 Hz auftreten. Der DFT-Algorithmus muss die Komponente 15 Hz aus anderen Spektralkomponenten zusammensetzen! DSP_9-Abtasttheorem 42

43 j ( ˆ ω n+ ϕ) xn e n N [ ] = =,1,2,..., 1 Die N-Punkt DFT von xn [ ] ist N-1 ( ˆ ω + ϕ ) ( 2 π / ) X[k]= e e... n= j n e j N kn ( 2 π / ˆ ω ) j k N N = = jϕ 1 e = e = j( 2 πk/ N ˆ ω ) 1 e ( ˆ ) j( 2 k/ N ˆ )( N 1 )/2 sin 2 k/ N N / 2 jϕ π ω π ω = e e sin ( 2 πk/ N ˆ ω ) / 2 X[k] besteht also aus Proben der Dirichlet schen Funktion. DSP_9-Abtasttheorem 43

44 1 Time-Domain (f = 3, T = 1, f s = 8, N = 8).5 x(t) t Frequency-Domain 4 3 X(f) f Bei der Abtastung von f = 3 liefert die Dirichlet sche Funktion nur bei dieser Frequenz einen Wert. Die Kosinusfunktion DSP_9-Abtasttheoremist periodisch fortgesetzt. 44

45 1 Time-Domain (f = 2.2, T = 1, f s = 8, N = 8).5 x(t) t Frequency-Domain 4 3 X(f) f Die Frequenz f = 2.2 liegt nicht im Raster und muss daher aus anderen Frequenzen zusammengesetzt werden! Die Dirichlet sche Funktion liefert mehrere Werte. Beachten Sie die periodische Fortsetzung der Kosinusfunktion. DSP_9-Abtasttheorem 45

46 In der vorigen Darstellung haben wir das Spektrum von ( n + ) j ˆ xn [ ] = e ω ϕ berechnet. Für ein reellwertiges Signal x[n] müssen wir aber das Spektrum von ( j( ˆ ω ) ( )) n+ ϕ j ˆ ω n+ ϕ xn [ ] = e + e berechnen, d.h. X [k] für addieren. ˆω DSP_9-Abtasttheorem 46

47 1 Time-Domain (f = 2.2, T = 1, f s = 8, N = 8).5 x(t) t Frequency-Domain 4 3 X(f) f DSP_9-Abtasttheorem 47

48 Es wird immer das Spektrum der periodischen Fortsetzung ermittelt! Die periodische Fortsetzung liefert aber nur dann eine Sinus-(Kosinus-)Funktion und damit eine einzelne Spektral- Linie, wenn die Periodendauer genau in das Abtastintervall passt, d.h. nur für Spektrallinien, die auf dem Frequenzraster liegen! DSP_9-Abtasttheorem 48

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h]

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h] Signalprozessoren Digital Signal Processors VO [2h] 182.082, LU 2 [2h] 182.084 http://ti.tuwien.ac.at/rts/teaching/courses/sigproz Herbert Grünbacher Institut für Technische Informatik (E182) Herbert.Gruenbacher@tuwien.ac.at

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2007/2008 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2010/2011 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Filterentwurf

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Fouriertransformationen DSP 1

Fouriertransformationen DSP 1 Fouriertransformationen DSP Fourierreihe periodisch kontinuierlich (t), diskret (ω) jk t jkt xt () Xke Xk xt () e dt T T k k " Anhalten",, T T Periodendauer DSP Fouriertransformation aperiodisch kontinuierlich

Mehr

Spektrum zeitdiskreter Signale

Spektrum zeitdiskreter Signale Spektrum zeitdiskreter Signale 1 Aufgabenstellung Mithilfe der Fouriertransformation können zeitkontinuierliche Signale in den Frequenzbereich transformiert werden, um die im Signal enthaltenen Frequenzanteile

Mehr

Lineare zeitinvariante Systeme

Lineare zeitinvariante Systeme Lineare zeitinvariante Systeme Signalflussgraphen Filter-Strukturen Fouriertransformation für zeitdiskrete Signale Diskrete Fouriertransformation (DFT) 1 Signalflussgraphen Nach z-transformation ist Verzögerung

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8 Fachhochschule Aachen Campus Aachen Hochfrequenztechnik Hauptstudium Wintersemester 2007/2008 Dozent: Prof. Dr. Heuermann Spektrumanalyse Erstellt von: Name: Mario Schnetger Inhalt I. Einleitung 2 II.

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Schnelle Fouriertransformation (FFT)

Schnelle Fouriertransformation (FFT) Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Integraltransformationen

Integraltransformationen Fourier-ransformation Integraltransformationen Fakultät Grundlagen Juli 00 Fakultät Grundlagen Integraltransformationen Übersicht Fourier-ransformation Fourier-ransformation Motivation Fakultät Grundlagen

Mehr

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 9. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Abtastung und Rekonstruktion Abtastung: Wandelt bandbegrenzte kontinuierliche

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

MusterModulprüfung. Anteil Transformationen

MusterModulprüfung. Anteil Transformationen MusterModulprüfung Anteil Transformationen Studiengang: Elektrotechnik oder Energiewirtschaft Datum: Prüfer: heute Prof. Dr. Felderhoff Version:.0 (vom 30.1.014) Name: Vorname: Matr.-Nr.: 1 Aufgabe 1 Fourier-Transformation

Mehr

Puls-Code-Modulation. Thema: PCM. Ziele

Puls-Code-Modulation. Thema: PCM. Ziele Puls-Code-Modulation Ziele Mit diesen rechnerischen und experimentellen Übungen wird die Vorgehensweise zur Abtastung und linearen Quantisierung eines analogen Signals erarbeitet. Bei der Abtastung werden

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 Gerrit Buhe, Inhalt 2 Aufbau DSP-System Digitalisierung und Abtasttheorem Beschreibung LTI-System Impulsantwort zu Übertragungsfunktion Werkzeuge

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 8: Leakage und Zero-Padding Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Betrag / db Einführung Ein über die DFT berechnetes Spektrum T A X n ist

Mehr

Musterlösung zur Klausur Signale und Systeme

Musterlösung zur Klausur Signale und Systeme Musterlösung zur Klausur Signale und Systeme Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum Herbst 005 Aufgabe : Kontinuierliche und diskrete Signale..a) y t ).b) y t ) -3T -T -T T T

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale Zeitsignale Je nach Zeitbasis und Wertemenge des Signals unterscheidet man zeit- und wertkontinuierliche Signale (analoge Signale); zeitdiskrete, aber wertkontinuierliche Signale (zeitdiskrete Signale);

Mehr

Computergraphik I. Das Abtasttheorem. Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1

Computergraphik I. Das Abtasttheorem. Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1 Das Abtasttheorem Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1 Problem bei zeitlicher Abtastung: Oliver Deussen Abtasttheorem 2 Darstellung auf Monitor Was geschieht eigentlich, wenn

Mehr

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse 23. Oktober 2017 Eigenschaften diskreter Signale Quantisierung Frequenzbereichsmethoden Anhang Wesentliches Thema heute: 1 Eigenschaften

Mehr

2 Signalabtastung und Rekonstruktion

2 Signalabtastung und Rekonstruktion Signalabtastung und Rekonstruktion Signalabtastung und Rekonstruktion In vielen praktischen Anwendungen werden analoge Signale mit digitalen Systemen wie z.b. Computern oder Mikro-Controllern erfasst und

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse 31. Oktober 2016 Eigenschaften diskreter Signale Quantisierung Frequenzbereichsmethoden Anhang Wesentliches Thema heute: 1 Eigenschaften

Mehr

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT) Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher

Mehr

x(nt x )g(t nt x ) Wenn das Abtasttheorem eingehalten wird (Bandbreite von x(t) ist kleiner als F s /2) und wir die Funktion

x(nt x )g(t nt x ) Wenn das Abtasttheorem eingehalten wird (Bandbreite von x(t) ist kleiner als F s /2) und wir die Funktion Kapitel 1 Multiraten DSP In unseren bisherigen Untersuchungen gab es nur Systeme, in denen die Abtastrate innerhalb eines Systems gleich war. In praktischen Anwendungen ist es aber häufig erforderlich,

Mehr

Kommunikationstechnik II Wintersemester 07/08

Kommunikationstechnik II Wintersemester 07/08 Kommunikationstechnik II Wintersemester 07/08 Prof. Dr. Stefan Weinzierl Musterlösung: 3. Aufgabenblatt. Aufgabe: Up-/Downsampling Die Abtastfolge x[n] wird mit dem Faktor M unter- und dem Faktor L überabgetastet.

Mehr

Zusammenfassung der 2. Vorlesung

Zusammenfassung der 2. Vorlesung Zusammenfassung der 2. Vorlesung Fourier-Transformation versus Laplace-Transformation Spektrum kontinuierlicher Signale Das Spektrum gibt an, welche Frequenzen in einem Signal vorkommen und welches Gewicht

Mehr

Runde 9, Beispiel 57

Runde 9, Beispiel 57 Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner Datenaquisition Sensor Verstärker Filter ADC Objekt Rechner Datenaquisition Verstärker: - linearer Arbeitsbereich - linearer Frequenzgang - Vorkehrungen gegen Übersteuerung (trends, shot noise) - Verstärkerrauschen

Mehr

Signalabtastung. Kapitel Vorteile digitaler Signale

Signalabtastung. Kapitel Vorteile digitaler Signale Kapitel Signalabtastung Mit Hilfe der analytischen Darstellung gewinnt man wichtige Einblicke in Signale und Systeme. Für numerische Untersuchungen in einem Rechner ist diese Darstelllung aber nicht geeignet,

Mehr

Labor SMV Versuch 1. Erläuterungen zum Aliasing. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor SMV Versuch 1. Erläuterungen zum Aliasing. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor SMV Versuch Erläuterungen zum Aliasing FB: EuI, Darmstadt, den 26.5 Elektrotechnik und Informationstechnik Rev., 9.5 Auf den folgenden Seiten sind einige typische Abtastsituationen zusammengestellt,

Mehr

Musterklausur 2 zu Signal- und Systemtheorie I 5. Januar 2013

Musterklausur 2 zu Signal- und Systemtheorie I 5. Januar 2013 Institut für Kommunikationstechnik Prof. Dr. Helmut Bölcskei Musterklausur 2 zu Signal- und Systemtheorie I 5. Januar 2013 Bitte beachten Sie: Prüfungsdauer: 180 Minuten Erreichbare Punkte: 100 Als Hilfsmittel

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A- Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling (Sigma-Delta

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Elektrotechnische Grundlagen

Elektrotechnische Grundlagen Elektrotechnische Grundlagen 1. Signale Komplexe Exponentialfunktion Komplexe Exponentialfunktion: Komplexe Amplitude: Komplexe Frequenz: s (t) = X e st X = Ae jφ s = σ + jω 3 Größen bestimmen einen Sinus:

Mehr

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält.

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält. Eingang System Ausgang - Sei r(x,y) Eingangsbild, dass nur (Quantenrauschen) enthält. - Das Bild enthalte keinerlei Information, d.h. das Spektrum ist weiß und es gibt keine Korrelationen zwischen den

Mehr

Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2

Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2 Leibniz Universität Hannover Institut für Kommunikationstechnik Prof. Dr. J. Peissig Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2 Universität Hannover, Institut für Kommunikationstechnik,

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe 4.2! Frequenzspektren, Fourier-Transformation 4.3! Abtasttheorem: Eine zweite Sicht 4.4! Filter! Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Lösungsblatt 2 Signalverarbeitung

Lösungsblatt 2 Signalverarbeitung Fakultät für nformatik Übung zu Kognitive Systeme Sommersemester 208 S. Constantin (stefan.constantin@kit.edu) T. Nguyen (thai.nguyen@kit.edu) Lösungsblatt 2 Signalverarbeitung Aufgabe : Faltung Abbildung

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. A. Dekorsy Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: BSc./Dipl.: Zeit: Ort: Umfang: 07.

Mehr

Übung 2. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017)

Übung 2. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T1 SS2017) Übung 2 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T2 / Fr-T SS27) Dennis Fischer dennis.fischer@tum.de http://home.in.tum.de/fischerd Institut für Informatik Technische Universität

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

ÜBUNG 4: ENTWURFSMETHODEN

ÜBUNG 4: ENTWURFSMETHODEN Dr. Emil Matus - Digitale Signalverarbeitungssysteme I/II - Übung ÜBUNG : ENTWURFSMETHODEN 5. AUFGABE: TIEFPASS-BANDPASS-TRANSFORMATION Entwerfen Sie ein nichtrekursives digitales Filter mit Bandpasscharakteristik!

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 SYS_A - ANALYSIEREN Statistik Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 Histogramm (Praxis) Realisierung Lage Streuung Zufallsvariable Dichte der Normalverteilung Verteilungsfunktion Fläche

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Signalverarbeitung 1

Signalverarbeitung 1 Signalverarbeitung 1 Skript zur Vorlesung an der Hochschule Heilbronn 1 (Stand: 24. Juni 2017) Prof. Dr. V. Stahl 1 Der Inhalt dieses Skripts ist teilweise wörtlich oder sinngemäß aus den im Literaturverzeichnis

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Digitale Signalverarbeitung, Vorlesung 11 - Kurzzeitfouriertransformation

Digitale Signalverarbeitung, Vorlesung 11 - Kurzzeitfouriertransformation Digitale Signalverarbeitung, Vorlesung 11 - Kurzzeitfouriertransformation 30. Januar 2017 Siehe Skript Digitale Signalverarbeitung, Abschnitte 11 und 12, Kammeyer & Kroschel (Absatz 8.4.1) Anwendungen

Mehr

x[n-1] x[n] x[n+1] y[n-1] y[n+1]

x[n-1] x[n] x[n+1] y[n-1] y[n+1] Systeme System Funtion f, die ein Eingangssignal x in ein Ausgangssignal y überführt. zeitdisretes System Ein- und Ausgangssignal sind nur für disrete Zeitpunte definiert y[n] = f (.., x[n-1], x[n], x[n+1],

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

2. Anordnung zur digitalen Signalverarbeitung

2. Anordnung zur digitalen Signalverarbeitung 2. Anordnung zur digitalen Signalverarbeitung Prof. Dr.-Ing. Dr. h.c. Norbert Höptner Prof. Dr.-Ing. Stefan Hillenbrand Ergänzende Informationen zur Vorlesung Signalverarbeitungssysteme Abschnitte 2.1-2.5.

Mehr

Klausur zu Signal- und Systemtheorie I 20. Januar 2015

Klausur zu Signal- und Systemtheorie I 20. Januar 2015 Institut für Kommunikationstechnik Prof. Dr. Helmut Bölcskei Klausur zu Signal- und Systemtheorie I 20. Januar 2015 Bitte beachten Sie: Prüfungsdauer: 180 Minuten Erreichbare Punkte: 100 Als Hilfsmittel

Mehr

Diskrete Folgen, z-ebene, einfache digitale Filter

Diskrete Folgen, z-ebene, einfache digitale Filter apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

Digitale Signalverarbeitung sehen, hören und verstehen

Digitale Signalverarbeitung sehen, hören und verstehen Digitale Signalverarbeitung sehen, hören und verstehen Hans-Günter Hirsch Hochschule Niederrhein, Krefeld email: hans-guenter.hirsch@hs-niederrhein.de http://dnt.kr.hs-niederrhein.de Folie 1 Gliederung

Mehr

Warum z-transformation?

Warum z-transformation? -Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von

Mehr

Spektralanalyse physiologischer Signale

Spektralanalyse physiologischer Signale Spektralanalyse physiologischer Signale Dr. rer. nat. Axel Hutt Vorlesung 1 - WS 2016/17 über mich Studium der Physik an U Stuttgart Promotion: Nichtlineare Dynamik in Gehirnsignalen Forschung in Neurowissenschaften

Mehr

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan Lösung zur Übung 4.5.1/1: 5 Mesut Civan x e t= x e [t t t 1 ] x a t=ht für x e t=t x a t= x e [ht ht t 1 ] x a t= x e [ht ht t 1 ] a) t 1 T e Da die Impulsdauer t 1 des Eingangsimpulses größer ist als

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X.

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X. Audiotechnik II 1.Übungstermin Prof. Dr. Stefan Weinzierl 21.1.21 1. Aufgabe: Amplitudenstatistik analoger Audiosignale a. Ein Signal x(t) hat die durch Abb. 1 gegebene Wahrscheinlichkeitsdichtefunktion

Mehr

A2.1: Gleichrichtung. Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie

A2.1: Gleichrichtung. Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie Abschnitt: 2.1 Allgemeine Beschreibung A2.1: Gleichrichtung Die Grafik zeigt das periodische Signal x(t). Legt man x(t) an den Eingang einer Nichtlinearität mit der Kennlinie so erhält man am Ausgang das

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 15: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Entwurfsmethoden für IIR-Filtern sind für Zeitbereich und Bildbereich bekannt Finite-Impulse-Response

Mehr

Technische Schwingungslehre, WS2009/10

Technische Schwingungslehre, WS2009/10 Institut für Technische Mechanik Prof. Dr.-Ing. C. Proppe Prof. Dr.-Ing. W. Seemann Technische Schwingungslehre, WS9/ Übungsblatt Nr. Thema: Darstellung von Schwingungen Formelsammlung: Grundbegriffe der

Mehr

Mathematik, Signale und moderne Kommunikation

Mathematik, Signale und moderne Kommunikation Natur ab 4 - PH Baden Mathematik, Signale und moderne Kommunikation 1 monika.doerfler@univie.ac.at 29.4.2009 1 NuHAG, Universität Wien monika.doerfler@univie.ac.at Mathematik, Signale und moderne Kommunikation

Mehr

Fouriertransformation, z-transformation, Differenzenglei- chung

Fouriertransformation, z-transformation, Differenzenglei- chung Kommunikationstechnik II 1.Übungstermin 31.10.2007 Fouriertransformation, z-transformation, Differenzenglei- Wiederholung: chung Als Ergänzung dieser sehr knapp gehaltenen Wiederholung wird empfohlen:

Mehr

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz

Mehr

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation Die Fourier-Transformation 1. Anwendungsbeispiele der Fourier-Transformation 2. Die kontinuierliche Fourier-Transformation 3. Die Fourier-Reihe 4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

Mehr

1 Diskrete Fourier Transformation. 2 Definition der Diskreten Fourier Transformation (DFT)

1 Diskrete Fourier Transformation. 2 Definition der Diskreten Fourier Transformation (DFT) Diskrete Fourier Transormation Das Ausgangssignal eines nachrichtentechnischen Systems oder Verarbeitungsblocks lässt sich im Zeitbereich bei Kenntnis der Impulsantwort h(n) mit Hile der diskreten Faltung

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Diskretisierung und Quantisierung (Teil ) Digitalisierung und Quantisierung Motivation Analoge Aufnahme von Sprache, Bildern, Digitale Speicherung durch Diskretisierung

Mehr

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme Inhaltsverzeichnis Daniel von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme ISBN (Buch): 978-3-446-44079-1 ISBN (E-Book): 978-3-446-43991-7 Weitere

Mehr

3. Informationsverarbeitung in Objekten

3. Informationsverarbeitung in Objekten 3. Informationsverarbeitung in Objekten 1 3.1. Abtastung von Signalen an der Schnittstelle 2 Falls System an einen Rechner angeschlossen ist wert- und zeit-diskrete Signale x * (t k ) = abstrakte Zahlen

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0.

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0. Aufgabe 1 Das periodische Signal x t) 0,5 sin(2 f t) 0,5 cos(2 f t) mit f 1000Hz und mit f 2000Hz ( 1 2 1 2 und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei

Mehr

Übungsaufgaben Digitale Signalverarbeitung

Übungsaufgaben Digitale Signalverarbeitung Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1 4. Signalverarbeitung 4.1 Grundbegrie 4.2 Frequenzspektren, Fourier-Transormation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterührende Literatur (z.b.): Beate Meert, Ola Hochmuth: Werkzeuge der

Mehr

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Diskretisierung und Quantisierung (Teil ) Digitalisierung und Quantisierung Motivation Analoge Aufnahme von Sprache, Bildern, Digitale Speicherung durch Diskretisierung

Mehr