piiq oder p 8, aq, p 8, as, pa, `8q, ra, `8q mit einer reellen Zahl a; piiiq oder p 8, `8q R. [6 Punkte] Achtung: Denken Sie auch an den Fall I!

Größe: px
Ab Seite anzeigen:

Download "piiq oder p 8, aq, p 8, as, pa, `8q, ra, `8q mit einer reellen Zahl a; piiiq oder p 8, `8q R. [6 Punkte] Achtung: Denken Sie auch an den Fall I!"

Transkript

1 Analysis I Wintersemester 2015/16 9. Übungsblatt, Lösungsbeispiele Jun. Prof. Dr. Christian Reiher, Pascal Gollin Alexander Block, Hendrik Niehaus, Jakob Kneip, Jakob Schnitzer Aufgabe 5 Es sei I Ď R eine Menge mit der Eigenschaft, dass für alle reellen Zahlen x ă y ă z mit x, z P I auch y P I Man beweise, dass I ein Intervall ist, d.h. von einer der folgenden Formen ist: piq pa, bq, ra, bq, pa, bs oder ra, bs mit reellen Zahlen a ď b; piiq oder p 8, aq, p 8, as, pa, `8q, ra, `8q mit einer reellen Zahl a; piiiq oder p 8, `8q R. Achtung: Denken Sie auch an den Fall I! Lösung. Wir unterscheiden vier Fälle. [6 Punkte] Fall 1: Die Menge I ist nach oben und nach unten beschränkt. Wir zeigen, dass eine der vier Möglichkeiten aus piq eintritt. Falls I, dann gilt I p0, 0q. Ab jetzt nehmen wir daher an, dass I nichtleer ist. Setze a infpiq und b suppiq. Falls a b, dann ist I ra, bs, also nehme man ab jetzt a ă b an. Offenbar ist I Ď ra, bs und um den Fall abzuschließen genügt es zu beweisen, dass auch pa, bq Ď I (1) Man betrachte dazu eine beliebige Zahl x P pa, bq. Da a das Infimum von I ist, kann x keine untere Schranke von I sein und demnach gibt es ein a 1 P I mit a 1 ă I. Ebenso folgt aus der Definition von b als Supremum von I, dass es ein b 1 P I mit x ă b 1 geben muss. Insgesamt haben wir nun a 1 ă x ă b 1 und a 1, b 1 P I. Aus der Voraussetzung über I folgt nun x P I. Damit ist (1) gezeigt. Jenachdem, ob die Aussagen a P I und b P I wahr oder falsch sind, können vier Fälle auftreten, die den vier in piq genannten Intervalltypen entsprechen. Fall 2: Die Menge I ist nach oben beschränkt und nach unten unbeschränkt. Insbesondere ist I H und es existiert die Zahl a suppiq. Nun ist I Ď p 8, as und wie wir gleich sehen werden, gilt auch p 8, aq Ď I. (2) Sobald dies gezeigt ist, kann man die Fälle a P I und a R I unterscheiden, was auf I p 8, as beziehungsweise I p 8, aq führt. Zum Beweis von (2) sei x ă a beliebig. Da x keine obere Schranke von I ist, gibt es ein a 1 P I mit x ă a 1. Außerdem gibt es ein y P I mit y ă x, denn I ist ja nach unten unbeschränkt. Aus y ă x ă a 1 und der Voraussetzung über I folgt nun wie gewünscht x P I. Fall 3: Die Menge I ist nach oben unbeschränkt und nach unten beschränkt. Setze a infpiq und arbeite wie im zweiten Fall. Dies zeigt, dass I pa, 8q oder I ra, 8q Fall 4: : Die Menge I ist in beide Richtungen unbeschränkt. In diesem Fall gilt I R. Denn ist x P R beliebig, so gibt es infolge der Beschreibung von Fall 4 zwei reelle Zahlen r und s mit r ă x ă s und r, s P I. Aus der Voraussetzung über I folgt also x P I. Damit sind alle Fälle durchdiskutiert. 1 l

2 Aufgabe 6 Es sei f : r0, 1s ÝÑ r0, 1s eine stetige Funktion. Man beweise, dass es ein x P r0, 1s mit fpxq x gibt. Lösung. Es sei f : r0, 1s ÝÑ R die durch f pxq fpxq x für alle x P r0, 1s definierte Funktion. Als Summe stetiger Funktionen ist f stetig. Die Behauptung ist dazu äquivalent, dass f eine Nullstelle im Intervall r0, 1s hat. Nun ist f p0q fp0q ě 0 und f p1q fp1q 1 ď 0. Falls in einer der beiden Abschätzungen Gleichheit gilt, ist x 0 oder x 1 eine solche Nullstelle. Andernfalls ist f p0q ą 0 ą f p1q und f hat nach Zwischenwertsatz (Satz 11.3) eine Nullstelle. Aufgabe 7 Es seien a ă b zwei reelle Zahlen, I ra, bs und f : I ÝÑ R eine beschränkte Funktion. Man beweise, dass es eine reelle Zahl x P I derart gibt, dass sup`fris sup`fri X U ε pxqs für alle ε ą 0 Hinweise: Es wird wirklich nichts darüber vorausgesetzt, ob f stetig ist. Was passiert, wenn Sie versuchen, den Beweis von Satz 11.7 anzupassen? Lösung. Da f beschränkt ist, existiert M suppfrisq. Man betrachte eine Folge px n q von Zahlen aus I mit der Eigenschaft, dass die Folge `fpx n q gegen M konvergiert. Da das Intervall I abgeschlossen und beschränkt ist, besitzt die Folge px n q nach Satz von Bolzano und Weierstraß (Folgerung 5.18 aus der Vorlesung) eine konvergente Teilfolge px nk q. Setze x lim kñ8 x nk. Offenbar ist x P I und wir wollen nun zeigen, dass x die verlangte Eigenschaft besitzt. Sei dazu ε ą 0 beliebig. Dann liegt die Folge x nk ab einem gewissen Folgenindex komplett in der ε-umgebung von x. Damit bildet ist die Folge fpx nk q ab diesem Index eine in fri X U ε pxqs liegende, gegen M konvergente Folge und es gilt M ď sup pfri X U ε pxqsq ď suppfrisq M, was wie gewünscht M sup pfri X U ε pxqsq impliziert.

3 Es sei n P N. Aufgabe 8 (a) Man beweise, dass für alle reellen Zahlen x, y ě 0 die Ungleichung n? x n? y ď na x y (b) Man beweise, dass die Funktion n? : r0, 8q ÝÑ r0, 8q gleichmäßig stetig ist. Lösung. [4+2 Punkte] (a) Da die zu beweisende Aussage in x und y symmetrisch ist, dürfen wir o.b.d.a. y ą x annehmen. Nach dem binomischen Lehrsatz (Satz 1.10) gilt ` n?? n 1 ÿ x ` n y x n x ` k 1 ˆn k und somit, da die n-te Wurzel monoton steigend ist, a n xk py xq n k ` py xq ě x ` py xq y, n? x ` n a y x ě n? y, d.h. a? n y x ě n y n? x n? y n? x. (b) Es sei ε ą 0 beliebig. Setze δ ε n. Für alle x, y P r0, 8q mit x y ă δ gilt nun nach Teilaufgabe (a), dass n? x n? y ď na x y ă n? δ ε. Also ist die n-te Wurzel in der Tat gleichmäßig stetig. Aufgabe 9 Es sei α ą 0 eine reelle Zahl. Man bestimme den Grenzwert lim x α e? x. Antwort. Der gesuchte Grenzwert ist 0. Beweis. Wähle eine natürliche Zahl n mit n ą α ` 1. Für jede positive reelle Zahl x gilt und somit e?x 8ÿ? k x k! k 0 8ÿ k 0 x α e? ď xα p2nq! x x α`1 x k{2 k! ě p2nq! x xn xα`1 p2nq! ě p2nq!, ÝÑ 0.

4 Bonusaufgabe 10 Es sei f : p0, 8q ÝÑ R eine stetige Funktion mit der Eigenschaft, dass lim fpnxq 0 nñ8 für jede positive reelle Zahl x Man beweise, dass sogar lim fpxq 0 [10 Punkte] Strategie. Die erste Idee besteht darin, die Aufgabe indirekt anzugehen, d.h. anzunehmen lim fpxq 0 sei nicht der Fall. Sodann müssen wir die Existenz einer Zahl z nachweisen, für die lim nñ8 fpnzq 0 falsch ist. Dies wiederum bedeutet, dass es eine Folge n 1 ă n 2 ă... natürlicher Zahlen und eine Umgebung U von 0 derart geben muss, dass fpn k zq R U für alle k P N Nun kommt die nächste Idee ins Spiel: Wir geben z nicht sofort an, sondern konstruieren z gleichzeitig mit der Folge pn k q kpn. Genauer gesagt wird z der Schnittpunkt einer Intervallschachtelung pj k q kpn sein und wir definieren die Folgen pn k q und pj k q gleichzeitig. Im ersten Schritt setzen wir bloß n 1 und J 1 fest. In diesem Moment wissen wir über z noch nicht mehr als dass letztlich z P J 1 sein wird und wir kennen auch die Folge pn k q kě2 noch nicht. Um auf jeden möglichen Wert von z vorbereitet zu sein, ist es günstig, n 1 und J 1 so zu wählen, dass fpn 1 xq R U für alle x P J 1 gilt, denn dann können wir dies später insbesondere auf x z anwenden. Im zweiten Schritt wählen wir dann ein Intervall J 2 Ď J 1 und eine Zahl n 2 ą n 1 derart, dass fpn 2 xq R U für alle x P J 2 gilt, und so geht es immer weiter. Um die ganze Konstruktion am Laufen zu halten, brauchen wir als dritte Idee noch eine Tatsache über Intervalle, die wir unten als kleines Lemma festhalten werden. Lösung. Ist I ra, bs ein abgeschlossenes Intervall mit b ą a ą 0 und n P N, so schreiben wir n I für das Intervall rna, nbs. Zur Vorbereitung zeigen wir zuerst das folgende Lemma. Für jedes abgeschlossene Intervall I ra, bs mit b ą a ą 0 gibt es eine reelle Zahl C mit ď n I Ě rc, 8q. npn Beweis. Wir zeigen, dass C ab diese Eigenschaft hat. Um dies zu sehen, betrachten b a wir eine beliebige reelle Zahl x ě C. Wir müssen zeigen, dass es ein n P N mit x P n I gibt. Setze n t x u. Wegen a x a ě C a b b a ą 1 ist zumindest n P N. Außerdem ist na ď x und damit bleibt nb ě x zu zeigen. Wegen n ą x a 1 ě C a 1 b b a 1 a b a ist npb aq ě a und folglich nb ě pn ` 1qa. Außerdem folgt aus n ą x a 1 sofort pn ` 1qa ą x und insgesamt gilt daher in der Tat nb ě pn ` 1qa ě x. Nun kommen wir zur eigentlichen Aufgabe. Wenn die Behauptung falsch wäre, was wir von nun an annehmen wollen, gäbe es eine reelle Zahl ε ą 0 und eine bestimmt gegen 8 divergierende Folge px k q kpn positiver reeller Zahlen mit fpx k q ě ε für alle k P N. Da f stetig ist, kann man wie in Folgerung 11.2 zu jedem k P N ein δ k P p0, x k q derart finden, l

5 dass für alle x aus dem Intervall I k rx k δ k, x k ` δ k s zumindest noch fpxq ě ε 2 Wenn wir also U ` ε 2, ε 2 setzen, gilt fpxq R U für alle x P ď kpn I k. (3) Nun arbeiten wir darauf hinaus, eine Zahl z zu finden, deren Vielfache unendlich viele dieser Intervalle treffen. Dazu konstruieren wir gleichzeitig eine aufsteigende Folge pn k q natürlicher Zahlen und eine Intervallschachtelung pj k q. Die Konstruktion beginnt mit n 1 1 und J 1 I 1. Insbesondere gilt also fpn 1 xq R U für alle x P J 1. Wir nehmen nun an, für ein k P N seien n k und J k gerade so gewählt worden, dass fpn k xq R U für alle x P J k und diampj k q ď 2 k diampj 1 q Wendet man das obige Lemma auf das Intervall J k an, erhält man eine reelle Zahl C mit ď n J k Ě rc, 8q. npn Wegen lim nñ8 x n 8 existieren also zwei natürliche Zahlen n k`1 ą n k und N, für die das Intervall J n k`1 J k X I N nicht leer ist. Setzt man nun J k`1 1 n k`1 J k, so gilt nach (3) zumindest fpn k`1 xq R U für alle x P J k`1. Außerdem ist J k`1 Ď J k. Wählt man also ein abgeschlossenes Intervall J k`1 Ď J k mit diampj k`1 q ď 1diampJ 2 kq, so erfüllen n k`1 und J k`1 alle verlangten Eigenschaften. Nach Intervallschachtelungsprinzip (Folgerung 5.8) gibt es ein z P č kpn J k. Diese Zahl hat für alle k P N die Eigenschaft fpn k zq R U, d.h. fpn k zq ě ε 2. Dies ist ein Widerspruch zu lim nñ8 fpnzq 0 und damit ist die Aufgabe gelöst.

Analysis I. Vorlesung 7. Weitere Eigenschaften der reellen Zahlen

Analysis I. Vorlesung 7. Weitere Eigenschaften der reellen Zahlen Prof. Dr. H. Brenner Osnabrück WS 013/014 Analysis I Vorlesung 7 Weitere Eigenschaften der reellen Zahlen Korollar 7.1. Eine beschränkte und monotone Folge in R konvergiert. Beweis. Nach Voraussetzung

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VI vom

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VI vom Prof. Dr. Moritz Kaßmann Fakultät für Mathematik Wintersemester 04/05 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt VI vom 0..4 Aufgabe VI. (6 Punkte) Gegeben sind die Folgen (a n)

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

Kapitel IV. Folgen und Konvergenz

Kapitel IV. Folgen und Konvergenz Kapitel IV Folgen und Konvergenz Inhalt IV.1 Zahlenfolgen Motivation und Begriffsbestimmungen IV.2 Konvergente Folgen Konvergenz und Grenzwert einer Folge Rechenregeln konvergenter Folgen IV.3 Einige nützliche

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Lösungen 4.Übungsblatt

Lösungen 4.Übungsblatt Karlsruher Institut für Technology (KIT) WS 2011/2012 Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.techn. Rainer Mandel Lösungen 4.Übungsblatt Aufgabe 13 (K) Bestimmen Sie sämtliche Häufungswerte

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

die gewünschte Schranke gefunden, denn es gilt (trivialerweise) für n N

die gewünschte Schranke gefunden, denn es gilt (trivialerweise) für n N .5. VOLLSTÄNDIGKEIT VON R 37 Lemma.5. (Beschränktheit konvergenter Folgen) Konvergente Folgen in R sind beschränkt. Beweis. Angenommen die Folge a n n N konvergiert gegen A R. Zu ε > 0 existiert ein N

Mehr

Vorlesungen Analysis von B. Bank

Vorlesungen Analysis von B. Bank Vorlesungen Analysis von B. Bank vom 23.4.2002 und 26.4.2002 Zunächst noch zur Stetigkeit von Funktionen f : D(f) C, wobei D(f) C. (Der Text schliesst unmittelbar an die Vorlesung vom 19.4.2002 an.) Auf

Mehr

Proseminar Analysis Vollständigkeit der reellen Zahlen

Proseminar Analysis Vollständigkeit der reellen Zahlen Proseminar Analysis Vollständigkeit der reellen Zahlen Axel Wagner 18. Juli 2009 1 Voraussetzungen Zunächst wollen wir festhalten, was wir als bekannt voraussetzen: Es sei (Q, +, ) der Körper der rationalen

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen Kapitel V Folgen und Konvergenz V.1 Konvergenz von Zahlenfolgen Wir erinnern an den Begriff der Folge, den wir schon im Kapitel III verwenden. Eine Folge (a n ) n=1 AN in A ist eine Abbildung a ( ) : N

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2 9 DIE EXPONENTIALREIHE 48 absolut konvergent. Beweis. Wegen x n+ n! n + )!x n = x n + < 2 für n 2 x folgt dies aus dem Quotientenkriterium 8.9). Definition. Die Reihe x n heißt Exponentialreihe. Die durch

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 16 Der Zwischenwertsatz Wir interessieren uns dafür, was unter einer stetigen Abbildung f :R R mit einem Intervall passiert.

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

1 Häufungswerte von Folgen

1 Häufungswerte von Folgen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 0/..0 Höhere Mathemati I für die Fachrichtung Informati. Saalübung (..0) Häufungswerte von Folgen Oft

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit W und falsche Aussagen mit F. Es sind keine Begründungen

Mehr

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist.

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist. 8 Punktmengen Für die Menge M = { 1 n ; n N } ist 1 = max(m), denn 1 M und 1 n 1 für alle n N. Die Menge M besitzt aber kein Minimum, denn zu jeder Zahl x = 1 n M existiert ein y M mit y < x, etwa y =

Mehr

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018 Institut für Analysis Prof. Dr. Michael Plum M.Sc. Jonathan Wunderlich Lösungsvorschlag zum. Übungsblatt zur Vorlesung Analysis II im Sommersemester 08 3. Mai 08 Aufgabe 5 (K: Es seien n N und A R n eine

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

{, wenn n gerade ist,, wenn n ungerade ist.

{, wenn n gerade ist,, wenn n ungerade ist. 11 GRENZWERTE VON FUNKTIONEN UND STETIGKEIT 60 Mit anderen Worten, es ist lim f(x) = b lim f (, a)(x) = b, x a x a wobei f (, a) die Einschränkung von f auf (, a) ist. Entsprechendes gilt für lim x a.

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Gleichmäßige Stetigkeit Die Funktion f: R + R +, x 1/x, ist stetig. In jedem Punkt x R + gibt es zu jedem ǫ > 0 ein δ > 0 mit f(u (x,δ))

Mehr

Analysis I - Einige Lösungen und Ergänzungen

Analysis I - Einige Lösungen und Ergänzungen Christian-Albrechts-Universität zu Kiel Mathematisch-Naturwissenschaftliche Fakultät Mathematisches Seminar Analysis I - Einige Lösungen und Ergänzungen von Dipl.-Math. Joscha Prochno Dipl.-Math. Dennis

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 013/1 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 1. Übungsblatt Aufgabe

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 6 Einleitung Eventuell auftretende Fragen zum Übungsblatt sollen beantwortet werden. Dazu ist es erforderlich,

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k. Analysis, Woche 7 Reihen I 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n =

Mehr

Kapitel 3. Reihen und ihre Konvergenz

Kapitel 3. Reihen und ihre Konvergenz Kapitel 3 Reihen und ihre Konvergenz Abschnitt 3.1 Der Reihenbegri und erste Beispiele Denitionen zu Reihen, 1 Denition. Sei (a n ) n N0 eine Folge reeller Zahlen. Für n N 0 heiÿt dann die Zahl s n :=

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Oliver Matte Max Lein Zentralübung Mathematik für Physiker 2 Analysis ) Wintersemester 200/20 Lösungsblatt 5 2..200) 32. Häufungspunkte Sei a

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1 Musterlösung zum Weihnahchtsübungsblatt Teil von Martin Fabricius Aufgabe a) Diese Aufgabe kann z. B. durch ausmultiplizieren gelöst werden: (433) 7 = 4 7 3 +3 7 + 7 +3 7 0 = 4 343+3 49+ 7+3 = 37+47+4+3

Mehr

Lösungen zur Übungsserie 9

Lösungen zur Übungsserie 9 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag,? November Lösungen zur Übungsserie 9 Aufgaben 1,2,3,5,6,8,9,11 Aufgabe 1. Sei a R. Berechnen Sie die folgenden Grenzwerte, falls sie existieren.

Mehr

2.7. TEILMENGEN VON R 51

2.7. TEILMENGEN VON R 51 2.7. TEILMENGEN VON R 51 für M. Denn zu x M, x > K, gibt es ein b Q mit b (K, x), insbesondere b > K. Dann ist aber K nicht die reelle Zahl, die dem Dedekindschen Schnitt der Mengen A, B entspricht. Ist

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

3.3 Konvergenzkriterien für reelle Folgen

3.3 Konvergenzkriterien für reelle Folgen 3.3 Konvergenzkriterien für reelle Folgen Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge a n ) n N ist konvergent mit Grenzwert lim a n = sup{a n n N} Beweis: Sei a n ) n N nach oben

Mehr

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen Kapitel V Folgen und Konvergenz V.1 Konvergenz von Zahlenfolgen Wir erinnern an den Begriff der Folge, den wir schon im Kapitel III verwenden. Eine Folge (a n ) n=1 AN in A ist eine Abbildung a ( ) : N

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit Kapitel 6 Grenzwerte von Funktionen und Stetigkeit 225 Relle Funktionen Im Folgenden betrachten wir reelle Funktionen f : D R, mit D R. Wir suchen eine formale Definition für den folgenden Sachverhalt.

Mehr

Mathematik I. Vorlesung 22. Der Satz von Bolzano-Weierstraß. Karl Weierstraß ( )

Mathematik I. Vorlesung 22. Der Satz von Bolzano-Weierstraß. Karl Weierstraß ( ) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 22 Der Satz von Bolzano-Weierstraß Karl Weierstraß (1815-1897) Satz 22.1. (Bolzano-Weierstraß) Es sei (x n ) n N eine beschränkte Folge

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4 D-MATH, D-PHYS, D-CHAB Analysis I HS 017 Prof. Manfred Einsiedler Lösung 4 Hinweise 1. Zeigen Sie, dass inf X die kleinste obere Schranke von X ist.. Dass z 1, z Lösungen sind, kann man durch Einsetzen

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

4. Folgen. Folge in R 2 mit Grenzwert (1, 1 2 ).

4. Folgen. Folge in R 2 mit Grenzwert (1, 1 2 ). 8 4. Folgen Im Folgenden sei X = K n (oder ein K-Vektorraum) mit der Norm.(Eslangtvöllig,sichden Fall X = R 2 vorzustellen.) Auf R bzw. C verwenden wir als Norm stets den Betrag. 4.. Definition. Eine Folge

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 008/009 Übung am..008 Übung 4 Einleitung Zuerst soll auf den aktuellen Übungsblatt und Stoff der Vorlesung eingegangen

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

eine reelle (oder komplexe) Folge. Dann heißt l der Limes oder der Grenzwert dieser Folge, notiert als

eine reelle (oder komplexe) Folge. Dann heißt l der Limes oder der Grenzwert dieser Folge, notiert als Analysis, Woche 9 Stetigkeit I A 9. Grenzwerte bei Funktionen 9.. Der einfachste Fall Wir erinnern noch mal an den Grenzwert bei einer Folge. Sei {a n } n=0 eine reelle (oder komplexe) Folge. Dann heißt

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

ANALYSIS 1 Kapitel 6: Stetige Funktionen

ANALYSIS 1 Kapitel 6: Stetige Funktionen ANALYSIS 1 Kapitel 6: Stetige Funktionen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 6.1 Grundbegrie

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12 Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen Übungsaufgaben zur Vorlesung ANALYSIS I (WS 2/3) Lösungsvorschlag

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 2013/14 24.10.2013 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Mehr

3.2 Konvergenzkriterien für reelle Folgen

3.2 Konvergenzkriterien für reelle Folgen 3.2 Konvergenzkriterien für reelle Folgen Definition: Eine reelle Folge a n ) n N heißt monoton wachsend : n < m : a n a m streng monoton wachsend : n < m : a n < a m nach oben beschränkt : C R : n : a

Mehr

Höhere Mathematik I. G. Herzog, Ch. Schmoeger. Wintersemester 2018/19. Karlsruher Institut für Technologie

Höhere Mathematik I. G. Herzog, Ch. Schmoeger. Wintersemester 2018/19. Karlsruher Institut für Technologie Höhere Mathematik I G. Herzog, Ch. Schmoeger Wintersemester 208/9 Karlsruher Institut für Technologie Inhaltsverzeichnis Reelle Zahlen 2 2 Folgen und Konvergenz 2 3 Unendliche Reihen 3 4 Potenzreihen 45

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17

Lösung zur Übung für Analysis einer Variablen WS 2016/17 Blatt Nr. 3 Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 206/7 Aufgabe Das Guthaben G setzt sich zusammen aus der Summe aller bisherigen Einzahlungen multipliziert mit ( + p) k, wobei

Mehr

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012 Darstellungssatz von Riesz in vollständig regulären Räumen Carina Pöll 0726726 Wintersemester 2012 Inhaltsverzeichnis 1 Einleitung 1 2 Definitionen und Resultate aus der Topologie 1 3 Der Darstellungssatz

Mehr

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:

Mehr

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n) 2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 Rationale und reelle Zahlen 2.1 Körper Ein Körper ist eine Struktur der Form à = (K,0,1,+, mit einer Grundmenge K, zwei zweistelligen Operationen + und, für die die Körperaxiome gelten: (K1 (K, 0, +

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

Lösungen zum Übungsblatt 5

Lösungen zum Übungsblatt 5 Lösungen zum Übungsblatt 5 Mirko Getzin Universität Bielefeld Fakultät für Mathematik. Dezember 203 Ich gebe keine Gewähr auf eine vollständige Richtigkeit der Lösungen zu den Übungsaufgaben. Das Dokument

Mehr

Nachklausur Analysis I

Nachklausur Analysis I SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k. Analysis, Woche 7 Reihen I A 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n

Mehr

4. Folgen von (reellen und komplexen) Zahlen [Kö 5]

4. Folgen von (reellen und komplexen) Zahlen [Kö 5] 20 4. Folgen von (reellen und komplexen) Zahlen [Kö 5] 4.1 Grundbegriffe Definition 1. a) Eine Folge (reeller bzw. komplexer) Zahlen ist eine Abbildung a: Z k C mit einem k Z. Schreibweise: a(n) = a n

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 8.11.2016 Kapital 2. Konvergenz 1. Grenzwerte von Folgen Definition 1.1 (Folge) Eine Folge reeller Zahlen ist eine Abbildung N R, n a n. a n heißt das n-te Glied der Folge, die Folge

Mehr

1,2,3,4,5,... Dabei ist die Reihenfolge wichtig, jede Zahl hat also ihre feste Position. Die Folge 2,1,4,3,... ist eine andere als 1,2,3,4,...

1,2,3,4,5,... Dabei ist die Reihenfolge wichtig, jede Zahl hat also ihre feste Position. Die Folge 2,1,4,3,... ist eine andere als 1,2,3,4,... 9 Folgen Eine (unendliche) Folge im herkömmlichen Sinn entsteht durch Hintereinanderschreiben von Zahlen, z.b.: 1,2,3,4,5,... Dabei ist die Reihenfolge wichtig, jede Zahl hat also ihre feste Position.

Mehr

n A n = A ist nun folgendermaßen:

n A n = A ist nun folgendermaßen: Aufgabe 3. Sei (X, d) ein beschränkter metrischer Raum, d.h. es gibt ein c > 0 mit d(x, y) c für alle x, y X. Bezeichne T (X) die Menge aller abgeschlossenen nichtleeren Teilmengen von X. Für A, B T (X)

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

Mathematik I. Vorlesung 8. Cauchy-Folgen

Mathematik I. Vorlesung 8. Cauchy-Folgen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 8 Cauchy-Folgen Ein Problem des Konvergenzbegriffes ist, dass zur Formulierung der Grenzwert verwendet wird, den man unter Umständen noch

Mehr

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2013/2014. Arbeitsblatt 7. Übungsaufgaben. Aufgabe 7.1. Zeige, dass das Quadrieren

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2013/2014. Arbeitsblatt 7. Übungsaufgaben. Aufgabe 7.1. Zeige, dass das Quadrieren Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Arbeitsblatt 7 Übungsaufgaben Aufgabe 7.1. Zeige, dass das Quadrieren R 0 R 0, x x 2, eine wachsende Funktion ist. Man folgere daraus, dass auch die

Mehr

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008 Ferienkurs Analysis 1, SoSe 2008 Unendliche Reihen Florian Beye August 15, 2008 1 Reihen und deren Konvergenz Definition 1.1. Eine reelle bzw. komplexe Reihe ist eine unendliche Summe über die Glieder

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 1

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 015): Differential und Integralrechnung 1 1.1 (Frühjahr 00, Thema 3, Aufgabe ) Formulieren Sie das Prinzip der vollständigen Induktion und beweisen

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr