Fixpunkt-Iterationen

Größe: px
Ab Seite anzeigen:

Download "Fixpunkt-Iterationen"

Transkript

1 Fixpunkt-Iterationen 2. Vorlesung Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 3. März 2016

2 Nichtlineare Gleichungen, Fixpunkt-Iterationen 1 Wiederholung Aufgabentypen Fixpunkt-Iteration 2 Aufgaben in R und R n Skalare und vektorielle Formulierung Beispiel Kepler-Gleichung Direkte Fixpunkt-Iteration Newton-Verfahren Sekantenmethode 3 Fixpunkt-Iteration: Theorie Konvergenzordnung Kontrahierende Abbildung Konvergenzbedingung 4 Graphische Veranschaulichung 5 Prüfungsfragen Clemens Brand und Erika Hausenblas 3. März / 39

3 Wiederholung, Fragenliste Nichtlineare Gleichungen in einer Variablen Was ist... Wie geht... Theorie Praxis eine lineare (nichtlineare, polynomiale, algebraische, transzendente) Gleichung? eine Nullstelle?... mehrfache Nullstelle? ein Fixpunkt? Intervallhalbierung?... Regula Falsi? Sekantenmethode?... Newton-Verfahren? Fixpunkt-Iteration? Wann, warum und wie schnell findet Intervallhalbierung garantiert eine Nullstelle? Begriffe Konvergenzordnung, lineare und quadratische Konvergenz Haben Sie die Aufgaben auf den letzten zwei Folien der vorigen Woche durchgerechnet?

4 Wiederholung: Aufgabentypen Gleichungen lassen sich in verschiedener Weise formulieren und lösen Die Problemstellung Gesucht ist ein x, für das gilt... g(x) = h(x), (Finden der Lösung einer Gleichung) f(x) = 0, (Finden einer Nullstelle der Funktion f ) x = f(x), (Finden eines Fixpunktes der Funktion f ) Definition Unter einer Nullstelle der Funktion f versteht man eine Lösung der Gleichung f(x) = 0. Unter einem Fixpunkt der Funktion f versteht man eine Lösung der Gleichung x = f(x).

5 Wiederholung: Fixpunkt-Iteration Formulierung für R R Gegeben eine Funktion φ: R R und ein Startwert x (0) R. Ergebnis Falls konvergent, liefert die Fixpunkt-Iteration einen Fixpunkt x von φ. Iterationsvorschrift für k = 0,1,2... x (k+1) = φ(x (k) ) Viele numerische Verfahren lassen sich als Fixpunkt-Iterationen formulieren. Die Theorie der Fixpunkt-Iteration ist daher von grundlegender Bedeutung.

6 Mehrere Gleichungen und Unbekannte Themenübersicht für heute Aufgaben im R n Vektoren, vektorwertige Funktionen Unbekannte zu einem Vektor zusammenfassen Gleichungssystem als vektorwertige Funktion schreiben Begriffe Nullstelle und Fixpunkt lassen sich direkt verallgemeinern Auch Fixpunkt-Iteration geht analog Bei geeigneter Schreibweise ändert sich fast nichts gegenüber dem Fall einer Gleichung und Unbekannten Clemens Brand und Erika Hausenblas 3. März / 39

7 Beispiel: zwei Unbekannte Nichtlineares Gleichungssystem in zwei Unbekannten 4x 1 x 2 +x 1 x 2 = 1 x 1 + 6x 2 = 2 log(x 1 x 2 ) Nullstelle einer vektorwertigen Funktion f : R 2 R 2 4x 1 x 2 +x 1 x 2 1 = 0 x 1 + 6x 2 + log(x 1 x 2 ) 2 = 0 f 1 (x 1,x 2 ) = 0 f 2 (x 1,x 2 ) = 0 f(x) = 0 Fixpunkt einer vektorwertigen Funktion Φ : R 2 R 2 x 1 = 1 4 (x 2 x 1 x 2 + 1) x 2 = 1 6 (x 1 log(x 1 x 2 )+2) x = Φ(x) Beispiel im Skriptum, ab S.17, durchgerechnet!

8 Skalare und vektorwertige Funktionen Schreibweise: Vektoren und vektorwertige Funktionen fett gedruckt Reellwertige Funktionen, Skalare: f : R R, y = f(x) Vektorwertige Funktionen, Vektoren: f : R n R n, y = f(x) Komponenten eines Vektors R n : x 1 x 2 x =. oder xt = [x 1,x 2,...,x n ] x n Normalerweise ist mit x ein Spalten-, mit x T ein Zeilenvektor gemeint. Iterationsindizes sind (um sie von Vektorkomponenten zu unterscheiden) in der Regel hochgestellt, in Klammern: x (k),k = 0,1,2...

9 Aufgabentypen im R n Gleichungen lassen sich auf verschiedene Weise formulieren und lösen Es seien f,g,h Funktionen R n R n und x R n Die Problemstellung Gesucht ist ein x, für das gilt... g(x) = h(x), (Finden der Lösung eines Gleichungssystems) f(x) = 0, (Finden einer Nullstelle der Funktion f) x = f(x), (Finden eines Fixpunktes der Funktion f)

10 Nullstellen und Fixpunkte im R n Definition Eine Nullstelle der Funktion f : R n R n ist ein Wert x, für den gilt: f(x) = 0. Definition Ein Fixpunkt der Abbildung f : R n R n ist einen Wert x, für den gilt: x = f(x). ( Funktion oder Abbildung meint in diesem Kontext dasselbe. In Fixpunkt-Gleichungen ist der typische Funktions-Name meist Φ statt f)

11 Fixpunkt-Iteration im R n Das Grundprinzip vieler iterativer Verfahren Gegeben eine Funktion Φ: R n R n und ein Startwert x (0) R n. Ergebnis Falls konvergent, liefert die Fixpunkt-Iteration einen Fixpunkt x von Φ. Iterationsvorschrift für k = 0,1,2... x (k+1) = Φ(x (k) ) Viele numerische Verfahren lassen sich als Fixpunkt-Iterationen formulieren. Die Theorie der Fixpunkt-Iteration ist daher von grundlegender Bedeutung.

12 Ein Beispiel x ǫ sinx = m Die Kepler-Gleichung setzt verschiedene Parameter einer elliptischen Umlaufbahn in Beziehung Angenommen, ǫ 1 und m 0 sind gegeben; x ist gesucht. Formulieren Sie selber Lösungswege graphische Darstellung: wo liegen überhaupt Lösungen? Durch Fixpunkt-Iteration Als Nullstellen-Aufgabe (hier lassen sich das Newtonsche Verfahren oder die Sekanten-Methode gut anwenden) Clemens Brand und Erika Hausenblas 3. März / 39

13 Fixpunkt-Verfahren für Kepler-Gleichung findet Fixpunkt von φ(x) = m+ǫ sinx Konkret für m = 2,ǫ = 0,1 und Startwert x (0) = 0 ergibt sich neue Näherung x (1) = φ(x (0) ) = 2, und weiter... x (2) = φ(x (1) ) = 2, x (3) = φ(x (2) ) = 2, x (4) = φ(x (3) ) = 2, x (5) = φ(x (4) ) = 2, x (6) = φ(x (5) ) = 2, x (7) = φ(x (6) ) = 2, Die Anzahl richtiger Stelle nimmt konstant zu (hier 1 2 pro Iteration)

14 Newton-Verfahren für Kepler-Gleichung findet Nullstelle von f(x) = x ǫ sinx m f(x) = x ǫ sinx m f (x) = 1 ǫ cosx x (n+1) = x (n) x(n) ǫ sinx (n) m 1 ǫ cosx (n) Funktion Ableitung Iterationsvorschrift Konkret für m = 2,ǫ = 0,1 und Startwert x (0) = 0 ergibt sich f(x (0) ) = 2 f (x (0) ) = 0,9 neue Näherung x (1) = 2, und weiter... x (2) = 2, x (3) = 2, x (4) = 2, x (5) = 2, Die Anzahl richtiger Stellen nimmt immer rascher zu

15 Newton-Verfahren in Fixpunkt-Form Auch das Newton-Verfahren ist ein Fixpunkt-Verfahren! Fixpunkt-Gleichung x = x f(x) f (x) x = φ(x) Bitte verwechseln Sie nicht Das Newton-Verfahren sucht eine Nullstelle der Funktion f(x). Iterativ bestimmt es einen Fixpunkt der Funktion φ(x) = x f(x)/f (x)

16 Sekantenmethode für Kepler-Gleichung berechnet aus zwei alten Werten den nächsten Wähle Startwerte x (0) = 0; x (1) = 2 Nächster Wert x (2) = x (1) f(x (1) x (1) x (0) ) f(x (1) ) f(x (0) ) neue Näherung x (2) = 2, und weiter... x (3) = 2, x (4) = 2, x (5) = 2, x (6) = 2, Die Anzahl richtiger Stellen nimmt auch hier rasch zu

17 Sekantenmethode Sekantenmethode ist zweidimensionale Fixpunkt-Iteration Die Sekantenmethode berechnet aus zwei Näherungen x (0),x (1) eine verbesserte Näherung, rechnet dann mit zwei neuen Näherungen weiter. Fasse die beiden Näherungen als Komponenten eines Vektors auf. Die Schreibweise [ ] [ ] x1 x 2 x =, Φ(x) = x x 2 f(x 2 ) 1 x 2 x 2 f(x 1 ) f(x 2 ) formuliert die Sekantenmethode als zweidimensionale Fixpunkt-Iteration x (k+1) = Φ(x (k) ) für k = 0,1,2...

18 Wichtige Themen zur Fixpunkt-Iteration Konvergenzordnung: wie rasch konvergiert eine Iteration Was ist eine kontrahierende Abbildung Wann konvergiert Fixpunktiteration anschaulich erklärt mathematisch exakte Konvergenzbedingung Was bedeutet lokale Konvergenz Anschauliche Bedeutung von Φ < 1 Clemens Brand und Erika Hausenblas 3. März / 39

19 Konvergenzordnung Angenommen, eine Iteration x (k+1) = Φ(x (k) ) für k = 0,1,2... konvergiert zu x, und die Fehlerschranke ǫ (k) schätzt den Fehler: x (k) x ǫ (k). Neue Fehlerschranke mindestens um Faktor C kleiner als alte Fehlerschranke: lineare Konvergenz (wenn C < 1), also ǫ (k+1) C ǫ (k)...das Quadrat des alten Fehlers: quadratische Konvergenz; typisch für Newton-Verfahren. ǫ (k+1) C(ǫ (k) ) 2...(allgemein) die p-te Potenz des alten Fehlers, p 1: Konvergenz p-ter Ordnung. Bei Sekanten-Verfahren ist p ǫ (k+1) C(ǫ (k) ) p

20 Konvergenzordnung gibt an, wie rasch die Genauigkeit zunimmt Faustregeln Lineare Konvergenz braucht eine fixe Anzahl von Schritten pro gültiger Stelle. Je kleiner C, desto rascher nimmt Genauigkeit zu. Quadratische Konvergenz verdoppelt pro Schritt (ungefähr) die Zahl der korrekten Dezimalstellen. Beispiel: Fehler ǫ (k) < 10 3 ǫ (k+1) < C (10 3 ) 2 = C 10 6 ǫ (k) < 10 6 ǫ (k+1) < C (10 6 ) 2 = C Sekanten-Regel: etwa 60% mehr korrekte Stellen pro Schritt. Die Faustregeln für Newton- und Sekantenverfahren gelten nur bei genügend kleinen Fehlern; umso besser, je mehr Stellen bereits korrekt sind.

21 Konvergenzordnung Definition Ein Iterationsverfahren x (k+1) = Φ(x (k) ) k = 0,1,2... mit Iterationsfunktion Φ: R n R n, Fixpunkt x R n und Fehlerschranken x (k) x ǫ k heißt lokal konvergent von (mindestens) p-ter Ordnung (p 1), wenn für alle Startwerte x (0), die genügend nahe an x liegen, gilt und C < 1, falls p = 1. ǫ (k+1) C [ǫ (k)] p

22 Konvergenzordnung: Lehrsatz Zusammenhang zwischen Ableitungen im Fixpunkt und Konvergenzordnung Ist φ(x) in einer Umgebung von ξ genügend oft differenzierbar und φ (ξ) = 0, φ (ξ) = 0,...,φ (p 1) (ξ) = 0, und φ (p) (ξ) 0, dann liegt für p = 2,3,... ein Verfahren p-ter Ordnung vor. Ein Verfahren erster Ordnung liegt vor, wenn zu p = 1 gilt: φ (ξ) < 1.

23 Kontrahierende Abbildung R R Locker formuliert: Wenn bei unterschiedlichen Eingaben x,y die Ergebnisse φ(x),φ(y) näher beisammen liegen: φ(x) φ(y) C x y, C < 1 Unterschiedliche Startwerte liegen nach Anwendung von φ näher beisammen Fortgesetzte Anwendung bringt Werte immer näher zusammen Schließlich ziehen sich alle Werte auf einen Fixpunkt zusammen Fixpunkt-Iteration konvergiert für kontrahierende Abbildungen.

24 Fixpunkt-Iteration konvergiert für kontrahierende Abbildungen Die Funktion φ: R R besitze einen Fixpunkt x, es gelte also φ(x ) = x. Sei ferner U eine Umgebung um den Fixpunkt x in der Form U = {x : x x < d}, sodass φ dort eine kontrahierende Abbildung ist, d.h.es gilt φ(x) φ(y) C x y, C < 1 für alle x,y U. Dann konvergiert die Fixpunkt-Iteration x (k+1) = φ(x (k) ) mindestens linear gegen x für alle Startwerte x (0) B.

25 Bemerkungen Die Formulierung des Satzes auf der vorigen Folie setzt die Existenz eines Fixpunktes voraus. Dadurch wird der Konvergenz-Beweis kurz und schmerzlos. Eine etwas allgemeinere Formulierung und ein technisch aufwändigerer Beweis zeigen, dass aus der Kontraktions-Eigenschaft auch schon die Existenz und Eindeutigkeit eines Fixpunktes folgen. Das ist der berühmte Fixpunktsatz von Banach.

26 Konvergenz des Fixpunktverfahrens für φ: R R Das Fixpunktverfahren konvergiert lokal, falls φ (x ) < 1. Ist φ(x) in einer Umgebung des Fixpunktes x stetig differenzierbar und φ (x ) < 1, so konvergiert die Fixpunkt-Iteration x (k+1) = φ(x (k) ) mindestens linear mit C φ (x ) gegen x für alle x (0) in der Nähe des Fixpunktes. Der Fehler nimmt um den Faktor C pro Iteration ab

27 Interpretation der Bedingung φ (x ) < 1. Locker gesagt: Fixpunkt-Iteration konvergiert, wenn φ(x) nicht wirklich stark von x abhängt. Ableitung φ misst, wie stark sich φ(x) ändert, wenn sich x ändert. Der Konvergenzsatz quantifiziert, wie stark φ von x abhängen darf, damit Iteration konvergiert. Bedingung φ (x ) < 1 bedeutet: φ ist kontrahierende Abbildung Clemens Brand und Erika Hausenblas 3. März / 39

28 Beispiel: φ(x) = 9 4 x(1 x) Zwei Fixpunkte: ξ 1 = 0,ξ 2 = 5 9. Einsetzen der Fixpunkte in φ (x) = 9 4 (1 2x) liefert φ (0) = 9 4 > 1 φ ( 5 9 ) = 1 4 < 1 Folgerungen: Für Startwerte in der Nähe von ξ 2 = 5 9 konvergiert die Fixpunkt-Iteration. φ(x) ändert sich dort nur etwa 1/4 so stark, wenn sich x-werte ändern. Ein Fehler im Eingabewert bewirkt einen 1/4 so großen Fehler im Resultat. Wiederholtes Einsetzen macht den Fehler immer kleiner

29 Fixpunkt-Iteration, graphisch interpretiert waagrecht zur Mediane, senkrecht zur Funktion Fixpunkt-Iteration 0.8 x = ax(1 x) graphisch veranschaulicht für a = 5/2 Startwert x = 1/

30 Fixpunkt-Iteration x = ax(1 x) für a = 3,15 Startwert x = 1/100 konvergiert zu Zyklus mit Periode 2 weitere Beispiele: Skriptum-Titelblatt

31 Ein Prüfungsbeispiel Die Funktion φ(x) = 18 30x + 23x2 4x 3 9 hat Fixpunkte für x = 3/4, 2 und 3. Überprüfen Sie mithilfe der Konvergenzsätze für die verschiedenen Fixpunkte: Konvergiert die Fixpunkt-Iteration x (k+1) = φ(x (k) ), und wenn ja, mit welcher Konvergenzordnung?

32 Prüfungsbeispiel Gegeben sei die Funktion φ(x) = ax(1 x) für ein a 0 1 Zeigen Sie: x = 0 und x = (a 1)/a sind Fixpunkte von φ. 2 In welchem Bereich muss a liegen, damit eine Fixpunkt-Iteration lokal zu x = 0 konvergiert? 3 In welchem Bereich muss a liegen, damit eine Fixpunkt-Iteration lokal nach x = (a 1)/a konvergiert? 4 Für welchen Wert von a folgt lokal quadratische Konvergenz zum Fixpunkt x = (a 1)/a?

33 Prüfungsbeispiel Gegeben sei die Funktion f(x) = x Wie lautet die reelle Nullstelle von f? 2 Zeigen Sie: Das Newton-Verfahren zur Nullstellenbestimmung führt auf die Iterationsvorschrift x = 1 3x 2 + 2x 3 3 Leiten Sie die Konvergenzordnung dieser Iteration her.

34 Newton-Verfahren für z 3 1 = 0 mit z C Die Formel des Newton-Verfahrens gilt auch für komplexen Zahlen. Fixpunkt-Gleichung z = 1 3z 2 + 2z 3 konvergiert für Startwerte aus den Bereichen rosa/ocker/cyan jeweils zu z = 1 z = i z = i

Fixpunkt-Iterationen

Fixpunkt-Iterationen Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. Februar 2014 Gliederung Wiederholung: Gleichungstypen, Lösungsverfahren Grundprinzip

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170004 Numerische Methoden I Clemens Brand 26. Februar 2009, Gliederung,, Gleichungen in einer Variablen Was ist... Wie geht... eine lineare (nichtlineare,

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten (MUL) 1. März 2012 1 / 37 Nichtlineare Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand MUL 1. März 2012 Gliederung 1 Wiederholung Begriffe, Verfahren

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten Nichtlineare Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. Februar 2010 Newton- Gliederung Newton-, ng Newton- , Fragenliste Nichtlineare Gleichungen

Mehr

Systeme nichtlinearer Gleichungen

Systeme nichtlinearer Gleichungen Systeme nichtlinearer Gleichungen 3. Vorlesung 170004 Numerische Methoden I Clemens Brand 5. März 2009 Gliederung en Wichtige Themen zur Wann konvergiert Fixpunktiteration anschaulich erklärt mathematisch

Mehr

Nichtlineare Gleichungen, mehrere Unbekannte

Nichtlineare Gleichungen, mehrere Unbekannte Dritte Vorlesung, 6. März 2008, Inhalt Aufarbeiten von Themen der letzten Vorlesung, und Nichtlineare Gleichungen, mehrere Unbekannte Systeme nichtlinearer Gleichungen Vektor- und Matrixnormen Fixpunkt-Iteration,

Mehr

Gleichungssysteme. 3. Vorlesung Numerische Methoden I. Clemens Brand und Erika Hausenblas. 10. März Montanuniversität Leoben

Gleichungssysteme. 3. Vorlesung Numerische Methoden I. Clemens Brand und Erika Hausenblas. 10. März Montanuniversität Leoben Gleichungssysteme 3. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 10. März 2016 Gleichungssysteme 1 Wiederholung: Vektoren, vektorwertige Funktionen

Mehr

Nichtlineare Gleichungen

Nichtlineare Gleichungen Nichtlineare Gleichungen Ein wichtiges Problem in der Praxis ist die Bestimmung einer Lösung ξ der Gleichung f(x) =, () d.h. das Aufsuchen einer Nullstelle ξ einer (nicht notwendig linearen) Funktion f.

Mehr

Nichtlineare Gleichungen in einer Unbekannten

Nichtlineare Gleichungen in einer Unbekannten Nichtlineare Gleichungen in einer Unbekannten 1. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 25. Februar 2016 Organisatorisches Die Termine der Übungsgruppen

Mehr

Newton-Verfahren für ein Skalarfunktion

Newton-Verfahren für ein Skalarfunktion Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren

Mehr

Mehrdimensionale Iterationen, Gleichungssysteme

Mehrdimensionale Iterationen, Gleichungssysteme Mehrdimensionale Iterationen, Gleichungssysteme 3. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 8. März 2018 Mehrdimensionale Iterationen, Gleichungssysteme

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 4. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 17. März 2016 Lineare Gleichungssysteme 1 Wiederholung: Normen, Jacobi-Matrix,

Mehr

Nichtlineare Gleichungen in einer Unbekannten

Nichtlineare Gleichungen in einer Unbekannten Nichtlineare Gleichungen in einer Unbekannten 1. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 20. Februar 2014 Clemens Brand und Erika Hausenblas

Mehr

Nichtlineare Gleichungen in einer Unbekannten

Nichtlineare Gleichungen in einer Unbekannten Nichtlineare Gleichungen in einer Unbekannten 1. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 22. Februar 2018 Organisatorisches Die Termine der Übungsgruppen

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

6. Iterationsverfahren. Fixpunktiteration. 6.Iterationsverfahren: Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16

6. Iterationsverfahren. Fixpunktiteration. 6.Iterationsverfahren: Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16 6. Iterationsverfahren Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16 Beispiel: Ausbreitung eines Grippevirus in einem Kindergarten Zeitpunkt t 0 t 1 t 2 t 3 t 4 t 5 Anteil kranker

Mehr

KAPITEL 5. Nichtlineare Gleichungssysteme

KAPITEL 5. Nichtlineare Gleichungssysteme KAPITEL 5. Nichtlineare Gleichungssysteme Beispiel 5.1. Gravitationskraft zwischen zwei Punktmassen m 1 und m 2 mit gegenseitigem Abstand r: F = G m 1m 2 r 2, wobei G = 6.67 10 11 Nm 2 /kg. Gravitationsfeld

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

Kapitel 6. Nichtlineare Gleichungen. 6.1 Einführung. Problem: Idee: Beispiel:

Kapitel 6. Nichtlineare Gleichungen. 6.1 Einführung. Problem: Idee: Beispiel: Kapitel 6 Nichtlineare Gleichungen 6. Einführung Problem: Gesucht sind Lösungen nichtlinearer Gleichungen bzw. Systeme, das heißt es geht beispielsweise um die Bestimmung der Nullstellen eines Polynoms

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

Kapitel 5. Lösung nichtlinearer Gleichungen

Kapitel 5. Lösung nichtlinearer Gleichungen Kapitel 5. Lösung nichtlinearer Gleichungen 5.1 Nullstellen reeller Funktionen, Newton-Verfahren 5.2 Das Konvergenzverhalten iterativer Verfahren 5.3 Methode der sukzessiven Approximation 5.4 Das Newton-Verfahren

Mehr

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Algebra Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch Algebra

Mehr

6. Numerische Lösung des. Nullstellenproblems

6. Numerische Lösung des. Nullstellenproblems 6. Numerische Lösung des Nullstellenproblems 1 Problemstellung Zwischenwertsatz: Sei f : [a,b] R stetig und c R mit f(a) c f(b) oder f(b) c f(a). Dann gibt es ein x [a,b] mit f(x) = c. Frage: Wie lässt

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0.

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. 7. Nichtlineare Gleichngssysteme Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. Das Gleichungssystem f(x) = 0 lässt sich in die Fixpunktgleichung x = φ(x) umschreiben, wobei φ : D R n R n. Beispielsweise

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 4 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Iterative Verfahren: Allgemeines, Fixpunkt-Iteration, Nullstellen. Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Iterative Verfahren: Allgemeines, Fixpunkt-Iteration, Nullstellen. Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Iterative Verfahren: Allgemeines, Fiunkt-Iteration, Nullstellen Motivation Viele numerische Probleme lassen sich nicht mit endlich vielen Schritten lösen Nullstellen

Mehr

NEXTLEVEL I, Analysis I

NEXTLEVEL I, Analysis I NEXTLEVEL I, Analysis I Hanna Peywand Kiani Wintersemester 9/ Die ins Netz gestellten Kopien der Folien sollen nur die Mitarbeit während der Veranstaltung erleichtern. Ohne die in der Veranstaltung gegebenen

Mehr

5 Numerische Iterationsverfahren

5 Numerische Iterationsverfahren In diesem Kapitel besprechen wir numerische Iterationsverfahren (insbesondere Fixpunktverfahren) als eine weitere Lösungsmethode zur Lösung von linearen Gleichungssystemen (Kapitel 4) sowie zur Lösung

Mehr

18.4 Das Newton-Verfahren

18.4 Das Newton-Verfahren 18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift

Mehr

Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0.

Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0. 6.4 Fixpunkt-Iteration Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0. Möglichkeiten: Bisektionsverfahren (Intervallhalbierung) Newton-Verfahren, x k+1 = x k f(x k) f (x k ) für k = 0, 1,

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Vektoranalysis Funktionen mehrerer Variabler Wir untersuchen allgemein vektorwertige Funktionen von vektoriellen Argumenten, wobei zunächst nur reelle Vektoren zugelassen seien. Speziell betrachten wir:

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 6.8.005 1 Aufgabe N1 Gegeben seien A = 5-10 -5-10 8-10 -5-10 13 R 3 3 und b = a) Überprüfen Sie, ob die Matrix A positiv definit ist. b) Bestimmen

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0.

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0. 3 Nullstellenbestimmung von Funktionen Sei x f(x) eine reellwertige Funktion, definiert auf einem Intervall I = [a, b] R. suchen Nullstellen der Funktion f, d.h. Wir finde α R so, das f(α) = 0. (3.0.1)

Mehr

Nullstellenberechnung von nichtlinearen Funktionen

Nullstellenberechnung von nichtlinearen Funktionen Kapitel 3 Nullstellenberechnung von nichtlinearen Funktionen In dieser Vorlesung wird nur die Nullstellenberechnung reeller Funktionen einer reellen Variablen f : R R betrachtet. Man nennt die Nullstellen

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Wir betrachten das System f() = 0 von n skalaren Gleichungen f i ( 1,..., n ) = 0, i = 1,..., n. Gesucht: Nullstelle von f() = 0. Es sei (0) eine

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Nullstellen von algebraischen Gleichungen

Nullstellen von algebraischen Gleichungen Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MNUM Mathematik: Numerische Methoden Herbstsemester 17 Dr Christoph Kirsch ZHAW Winterthur Aufgabe 1 : Lösung Semesterendprüfung Wir schreiben zuerst die Gleichungen f(x i ; a, a 1, a y i, i 1,,, 1, als

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

Algorithmen zur Nullstellenbestimmung Ac 2018

Algorithmen zur Nullstellenbestimmung Ac 2018 Algorithmen zur Nullstellenbestimmung Ac 2018 Bestimmt werden sollen Lösungen x der Gleichung f(x) = 0 für eine stetige Funktion f. Diese Lösungen x nennt man Nullstellen von f. 1. Methode: Bisektionsverfahren

Mehr

Nichtlineare Ausgleichsrechnung

Nichtlineare Ausgleichsrechnung 10. Großübung Nichtlineare Ausgleichsrechnung Allgemeines Problem: Wir betrachten ein nichtlineares System F : R n R m mit (m > n, d.h. das System ist überbestimmt und F i (x g(t i ; x g i! 0 i 1,.., m.

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Aussagen Diese sind mit wahr bzw falsch zu kennzeichnen (hinschreiben) Es müssen alle Fragen mit wahr

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus

Mehr

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim Lösung zur Serie 8 Aufgabe 40 Wir zeigen in dieser Aufgabe, dass die Voraussetzung dass die Funktion in einer kleinen Umgebung injektiv sein muss, beim Satz über die Umkehrfunktion notwendig ist. Hierzu

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen 10. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 22. Mai 2014 Gliederung 1 Aufgabenstellung und Interpretation

Mehr

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen Zehnte Vorlesung, 4. Juni 2009, Inhalt Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen 1 Eigenwerte und Eigenvektoren Wichtige Feststellungen zur Eigenwertaufgabe Ax = λx: Eigenwerte

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen

Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen Kapitel 5 Iterative Lösung von nichtlinearen Gleichungen und Gleichungssstemen 5.1 Iterationsverfahren zur Lösung einer reellen nichtlinearen Gleichung Es sei g() eine im Intervall I definierte reellwertige

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Übungen zur Mathematik Blatt 1

Übungen zur Mathematik Blatt 1 Blatt 1 Aufgabe 1: Bestimmen Sie die Fourier-Reihe der im Bild skizzierten periodischen Funktion, die im Periodenintervall [ π, π] durch die Gleichung f(x) = x beschrieben wird. Zeichnen Sie die ersten

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

Gleichungen, GS und Nullstellen

Gleichungen, GS und Nullstellen TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG5.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 5 Gleichungen, GS

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra

Mehr

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch):

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch): Leseprobe Hans-Jochen Bartsch Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler ISBN (Buch): 978-3-446-43800-2 ISBN (E-Book): 978-3-446-43735-7 Weitere Informationen oder Bestellungen

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

VI. Iterationsverfahren

VI. Iterationsverfahren VI. Iterationsverahren To ininity and beyond Falls eine direte Lösung des Problems nicht möglich oder ineizient ist. 6.. Fipuntgleichungen 6... Problemstellung: Iterationsuntion Iteration: R Startwert,

Mehr

Teil 6. Differentialrechnung mehrerer Veränderlicher

Teil 6. Differentialrechnung mehrerer Veränderlicher Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 19 8. Juli 2010 Kapitel 14. Gewöhnliche Differentialgleichungen zweiter Ordnung 14.1 Systeme gewöhnlicher linearer Differentialgleichungen erster

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Mathematik für Anwender. Testklausur mit Lösungen

Mathematik für Anwender. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 4. Januar 0 Prof. Dr. H. Brenner Mathematik für Anwender Testklausur mit en Dauer: Zwei volle Stunden + 0 Minuten Orientierung, in denen noch nicht geschrieben werden

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch b Prüfung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice: Sommer Prof. H.-R. Künsch Gegeben sei die folgende Matrix A = 4. 4 (a) x AA T ist eine 4 4 Matrix mit ( AA T) = 4. AA T ist

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Numerische Methoden 6. Übungsblatt

Numerische Methoden 6. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 202 Institut für Analysis Prof. Dr. Michael Plu Dipl.-Math.techn. Rainer Mandel Nuerische Methoden 6. Übungsblatt Aufgabe 3: Newton-Verfahren I Ziel dieser

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1 Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: 1 1 0 2 b 1 1 2 4 1 1 4 6 x = 1 1. 2 2 2a 2 3a 1 (a) Bringen Sie das lineare Gleichungssystem auf Treppenform. (b) Für welche

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Implizite Funktionen

Implizite Funktionen Implizite Funktionen Durch die Bedingung F (x, y) = C, C R wird eine bestimmte Teilmenge des R 2 festgelegt, zb durch die Bedingung x y = 4 Dabei können wir obda C = 0 annehmen, da wir stets zur Betrachtung

Mehr

Formelsammlung Numerik

Formelsammlung Numerik Formelsammlung Numerik Fachbereich Design und Informatik Fachhochschule Trier University of Applied Sciences - 1-1 Grundlagen 1. Festlegungen: x - exakter Wert x - Näherungswert 2. Wahrer Fehler: 3. Absoluter

Mehr

Bestimmung der Wurzeln nichtlinearer Gleichungen. Mária Lukáčová (Uni-Mainz) Nichtlineare Gleichungen June 22, / 10

Bestimmung der Wurzeln nichtlinearer Gleichungen. Mária Lukáčová (Uni-Mainz) Nichtlineare Gleichungen June 22, / 10 Bestimmung der Wurzeln nichtlinearer Gleichungen Mária Lukáčová (Uni-Mainz) Nichtlineare Gleichungen June 22, 2010 1 / 10 Problem Definition Gegeben f : (a, b) R R. Finde α (a, b) : Existiert eine Lösung?

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 (x 1, x 2,..., x n ) x 2... f 2 (x 1, x 2,..., x n )... x n f m (x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man:

Mehr