Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Größe: px
Ab Seite anzeigen:

Download "Einführung in Berechenbarkeit, Komplexität und Formale Sprachen"

Transkript

1 Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V17, Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1

2 Rückblick: NP-vollständige Probleme SAT 3-SAT BINPROG HAMILTONKREIS SUBSETSUM CLIQUE INTPROG TSP RUCKSACK VC IS Heute ist eine kaum überschaubare Anzahl an (natürlichen) NP-vollständigen Problem bekannt. z.b.: Garey, Johnson, Computers and Intractability listet mehr als 300 NP-vollständige Problem auf. Friedhelm Meyer auf der Heide 2

3 Rückblick: NP-vollständig Was nun? Spezialfälle Ist wirklich die Lösung des allgemeinen Problems verlangt? Beispiel : 2-SAT Heuristiken Im worst-case: exponentielle Laufzeit Für viele Eingaben: polynomielle Laufzeit Beispiel: Backtracking, Branch&Bound, Simulated Annealing, genetische Algorithmen, Friedhelm Meyer auf der Heide 3

4 Rückblick: NP-vollständig Was nun? Approximationsalgorithmen Ziel: für jede Eingabe polynomielle Laufzeit Lösung ist nicht optimal, aber wir können etwas über die Qualität sagen (z.b. Wert der Ausgabe ist höchstens doppelt so schlecht wie der Wert einer opt. Lösung ) Wir behandeln hier Optimierungsversionen von Entscheidungsproblemen. Friedhelm Meyer auf der Heide 4

5 Themen heute Wiederholung: Approximationsalgorithmen für KNOTENÜBERDECKUNG und -TSP Nichtapproximierbarkeit Approximationsalgorithmus für das Rucksackproblem Friedhelm Meyer auf der Heide 5

6 Approximationsalgorithmen liefern in polynomieller Zeit Lösungen für Optimierungsprobleme, die nur um einen festen Faktor (die Güte des Appr. Algo) vom Optimum entfernt sind. TSP: Falls in <G, w> die kürzeste Rundreise Länge k hat, muss ein Appr. Alg. mit Güte c eine Rundreise der Länge c. k liefern. [Minimierungsproblem, c > 1] Rucksack: Falls <g 1,, g n, w 1,, w n, g> eine Lösung mit Wert k erlaubt, muss ein Appr. Algo mit Güte c eine Lösung mit Wert c. k liefern. [Maximierungsproblem, c < 1] KNOTENÜBERDECKUNG: Falls in G eine minimale Knotenüberdeckung (Vertex Cover) Größe k hat, muss ein Appr. Algo mit Güte c eine Knotenüberdeckung der Größe c. k berechnen. [Minimierungsproblem, c > 1] Friedhelm Meyer auf der Heide 6

7 Approx. Algo für Knotenüberdeckung Eine Knotenüberdeckung in einem Graph G = (V,E) ist eine Menge U V mit für alle e E. Erinnering: KNOTENÜBERDECKUNG := {<G, k>, G enthält Knotenüberdeckung der Größe k} ist NP-vollständig. Optimierungsproblem: Zu Eingabe <G> berechne eine Knotenüberdeckung minimaler Größe. Satz: Für KNOTENÜBERDECKUNG gibt es einen Approximationsalgorithmus mit Güte 2 und Laufzeit O( E ) (also lineare Laufzeit). Friedhelm Meyer auf der Heide 7

8 Approx. Algo für Knotenüberdeckung Optimierungsproblem: Zu Eingabe <G> berechne eine maximal große Knotenüberdeckung. Lemma: Die Knoten eines nicht erweiterbaren Matchings bilden eine Knotenüberdeckung, diese ist höchstens doppelt so groß wie eine optimale. Somit ist folgender Algorithmus eine 2-Approximation. - Eingabe <G> - Berechne ein nicht erweiterbares Matching M in G. - Gebe die am Matching beteiligten Knoten aus Berechnung ein nicht erweiterbares Matching M in G: Einfacher Greedy-Algorithmus: Durchlaufe die Kanten e 1,.., e m von G. Nehme jeweils e i in das Matching auf, wenn es mit den bisherigen Matchingkanten keinen gemeinsamen Knoten hat. Friedhelm Meyer auf der Heide 8

9 Metrisches TSP (MTSP) Eingabe: vollst. Graph G mit Kantengewichten w(e), so dass die Dreiecksungleichung gilt: w(a,c) w(a, b) + w (b,c). Ausgabe: minimale Rundreise (Permutation π ) Spezialfall: Euklidisches TSP: V R 2, w(a,b) = a-b Bem: Die Entscheidungsprobleme zum metrischen und zum Euklidischen TSP sind NP-vollständig. (ETSP ist Spezialfall von MTSP) Friedhelm Meyer auf der Heide 9

10 Appr. Algo für MTSP Eingabe: G = (V,E) vollständiger Graph mit Kantengewichten w: E N, die die Dreiecksungleichung erfüllen. 1. Berechne Minimalen Spannbaum T in (G, w). 2. Durchlaufe T in Preorder (Start bei beliebigen Knoten), gebe diese als Rundreise aus. Satz: Der oben skizzierte Algorithmus ist ein Approximationsalgorithmus für MTSP mit Güte 2 und Laufzeit O( V 2 ) (also linearer Laufzeit). Laufzeit: wird dominiert von der Zeit zur Berechnung eines minimalen Spannbaums in einem vollständigen gewichteten Graphen. Kruskals oder Prims Algo (DuA). Friedhelm Meyer auf der Heide 10

11 Beispiel (a) Vollständiger Graph G mit 8 Knoten, Kantengewicht = euklidischer Abstand (b) Minimaler Spannbaum T in G (c) Preorder-Durchlauf, startend in Knoten a a,b,c,b,h,b,a,d,e,f,e,g,e,d,a (d) Aus dem Preorder- Durchlauf resultierende Rundreise Friedhelm Meyer auf der Heide 11

12 Beispiel Gefundene Rundreise, Länge Optimale Rundreise, Länge Friedhelm Meyer auf der Heide 12

13 Grenzen der Approximierbarkeit Satz: Falls NP P gilt, gibt es kein polynomiellen Appr. Algo für TSP mit konstanter Güte c. Satz: (Johan Håstad, 1996) Falls NP P ist, existiert kein Approximationsalgorithmus für CLIQUE mit Güte O(n 1-ε ), für beliebiges ε>0. Das Ergebnis über Cliquen basiert auf der Theorie der probabilistically checkable proofs (PCP), einem Highlight der Komplexitätstheorie der letzten 15 Jahre. Das Resultat über TSP ist einfach. Friedhelm Meyer auf der Heide 13

14 Grenzen der Approximierbarkeit Satz: Falls NP P gilt, gibt es kein polynomiellen Appr. Algo für TSP mit konstanter Güte. Bew. durch Widerspruch. Annahme: Es gibt polynomiellen Appr. Algo A für TSP mit Güte r. Dann starte A mit (K n, c). Wir akzeptieren, falls eine Rundreise der Größe r. n berechnet wird. Beh.: Algo berechnet Rundreise der Länge r. n (K n, c) enthält Rundreise der Länge n G enthält einen Hamiltonkreis. Also: Falls A exisitiert, folgt Hamiltonkreis P. Friedhelm Meyer auf der Heide 14

15 Das Rucksackproblem Eingabe : Gewichte g 1,,g n, Maximalgewicht g, Werte w 1,,w n Berechne S {1, n} mit Σ k S g k g, so dass Σ k S w k maximal ist. (Der maximale Wert Σ k S w k heisse OPT.) Wiederholung aus DuA (Dynamische Programmierung) Definiere F j (i):= min{σ k S g k S {1, j} mit Σ k S w k i} (Falls kein solches S exisitiert, ist F j (i):=.) Lemma: Friedhelm Meyer auf der Heide 15

16 Exakter Algo für das Rucksackproblem F j (i):= min{σ k S g k S {1, j} mit Σ k S w k i} (Falls kein solches S existiert, ist F j (i):=.) Lemma: Algorithmus ExactKnapsack Laufzeit: O(n OPT) Friedhelm Meyer auf der Heide 16

17 Exakter Algo für das Rucksackproblem Satz: Das Rucksackproblem kann in Zeit =(n OPT) exakt gelöst werden. Folgt nun P=NP??? Nein, denn OPT kann die Größe etwa Σ k w k annehmen, die Eingabengröße ist aber nur O (Σ k log(w k )+ Σ k log(g k ) + log(g) + n). Somit ist die Laufzeit exponentiell, Falls die w i s exponentiell groß in n sind. Man spricht von einem pseudo-polynomiellen Algorithmus. Friedhelm Meyer auf der Heide 17

18 Approximationsalgo für Knapsack Algo ScaledKnapsack(ε) Beispiel: Objekte Werte Gewichte zulässiges Gesamtgewicht 3 Optimale Lösung: S = {2,3,4}, Wert: opt = = 31 Skalierung, k=2: skalierte Werte (Gewichte, zul. Ges.gew. unverändert) S(k) = {1}, Wert: opt* = 30 nicht optimal Friedhelm Meyer auf der Heide 18

19 Approximationsalgo für Knapsack Algo ScaledKnapsack(ε) Lemma: (i) S(k) ist auch für die Originaleingabe zulässig. (ii) Laufzeit ist = O(n 3 /ε). (iii) ScaledKnapsack(ε) hat Güte (1-ε). Satz: ScaledKnapsack(ε) ist polynomieller Approximationsalgorithmus mit Güte (1-ε) für das Rucksackproblem. Friedhelm Meyer auf der Heide 19

20 Analyse der Güte Beh: ScaledKnapsack(ε) hat Güte (1-ε). S ist optimale Lösung für Originalproblem Für das skalierte Problem is S(k) optimal k=1: Problem wurde durch Skalierung nicht verändert, OPT* =OPT S n Opt w max k>1: Dann folgt sofort: Also: opt* opt (1-ε) Friedhelm Meyer auf der Heide 20

21 Bemerkungen zu Approximationsalgorithmen für NP-vollständige Probleme ExactKnapsack ist sogar ein sog. Polynomielles Approximationsschema: ε kann als weitere Eingabe eingegeben werden, der Algo liefert dann in Zeit poly(n, 1/ε) eine (1-ε)-Approximation. Polynomielle Approximierbarkeit verhält sich für verschiedene Optimierungsvarianten verschiedener NP-vollständiger Probleme sehr unterschiedlich. Friedhelm Meyer auf der Heide 21

Einführung in Algorithmen und Komplexität

Einführung in Algorithmen und Komplexität Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 4. Januar 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante

Mehr

Approximationsalgorithmen. 19. Dezember / 28

Approximationsalgorithmen. 19. Dezember / 28 Approximationsalgorithmen 19. Dezember 2017 1 / 28 Optimierungsprobleme Das Ziel: Bearbeite schwierige Optimierungsprobleme der Form opt y f (x, y) so dass L(x, y). Die Zielfunktion f (x, y) ist zu minimieren

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Approximationsalgorithmen 1. Vorlesung Joachim Spoerhase Alexander Wolff Lehrstuhl für Informatik I Wintersemester 2017/18 Bücher zur Vorlesung Vijay V. Vazirani Approximation Algorithms Springer-Verlag

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 7. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 07.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

NP-vollständig - Was nun?

NP-vollständig - Was nun? Kapitel 4 NP-vollständig - Was nun? Wurde von einem Problem gezeigt, dass es NP-vollständig ist, ist das Problem damit nicht gelöst oder aus der Welt geschafft. In der Praxis muss es trotzdem gelöst werden.

Mehr

Einführung in das Seminar Algorithmentechnik

Einführung in das Seminar Algorithmentechnik Einführung in das Seminar Algorithmentechnik 10. Mai 2012 Henning Meyerhenke, Roland Glantz 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Roland undglantz: nationales Einführung Forschungszentrum

Mehr

Das Rucksackproblem: schwache NP-Härte und Approximation

Das Rucksackproblem: schwache NP-Härte und Approximation Das Rucksackproblem: schwache NP-Härte und Approximation Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1. Februar 2010 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Rundreiseproblem und Stabilität von Approximationsalg.

Rundreiseproblem und Stabilität von Approximationsalg. Das Rundreiseproblem und Stabilität von Approximationsalgorithmen Friedrich Alexander Universität Erlangen-Nürnberg Seminar Perlen der theoretischen Informatik, 2008-01-19 http://verplant.org/uni/perlen/

Mehr

Informatik III - WS07/08

Informatik III - WS07/08 Informatik III - WS07/08 Kapitel 4 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner dwagner@ira.uka.de Kapitel 4 : Komplexitätsklassen Informatik III - WS07/08 Kapitel 4 2 Sprachen, Probleme, Zeitkomplexität

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Grundlagen Theoretischer Informatik 3 SoSe 2012 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 3 SoSe 2012 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 3 SoSe 2012 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Harte Probleme Sind harte Probleme stets NP-hart? Vermutlich nein... Klassisches Beispiel:

Mehr

Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS Oktober 2016

Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS Oktober 2016 Technische Universität Wien Institut für Computergraphik und Algorithmen Algorithms and Complexity Group 186.815 Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS 2016 5. Oktober 2016 Machen Sie

Mehr

Approximierbarkeit. Definition. Ein Optimierungsproblem P ist gegeben durch ein Quadrupel. P = (I, Sol, m, goal), wobei:

Approximierbarkeit. Definition. Ein Optimierungsproblem P ist gegeben durch ein Quadrupel. P = (I, Sol, m, goal), wobei: Approximierbarkeit Ein Optimierungsproblem P ist gegeben durch ein Quadrupel wobei: P = (I, Sol, m, goal), I ist die Menge der Instanzen von P. Sol ist eine Funktion, die ein x I abbildet auf die Menge

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 2016 2. Vorlesung Rundreiseprobleme Teil II Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Übersicht I) Eulerkreise III) Handlungsreisende II) Hamiltonkreise

Mehr

Kapitel 9: Lineare Programmierung Gliederung

Kapitel 9: Lineare Programmierung Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Polynomialzeit- Approximationsschema

Polynomialzeit- Approximationsschema Polynomialzeit- Approximationsschema 27.01.2012 Elisabeth Sommerauer, Nicholas Höllermeier Inhalt 1.NP-Vollständigkeit Was ist NP-Vollständigkeit? Die Klassen P und NP Entscheidungsproblem vs. Optimierungsproblem

Mehr

Randomisierte und Approximative Algorithmen. Prof. Dr. Heiko Röglin Institut für Informatik Universität Bonn

Randomisierte und Approximative Algorithmen. Prof. Dr. Heiko Röglin Institut für Informatik Universität Bonn Randomisierte und Approximative Algorithmen Prof. Dr. Heiko Röglin Institut für Informatik Universität Bonn 22. Januar 2018 Inhaltsverzeichnis 1 Einleitung 4 2 Greedy-Algorithmen 6 2.1 Vertex Cover................................

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 02.07.2015 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Vorlesung Theoretische Informatik (Info III)

Vorlesung Theoretische Informatik (Info III) 1 Vorlesung Theoretische Informatik (Info III) Prof. Dr. Dorothea Wagner Dipl.-Math. Martin Holzer 20. Dezember 2007 Einleitung Motivation 2 Thema heute Relative Approximation (Forts.) Approximationsschemata

Mehr

Übung 2 Algorithmen II

Übung 2 Algorithmen II Yaroslav Akhremtsev, Demian Hespe yaroslav.akhremtsev@kit.edu, hespe@kit.edu Mit Folien von Michael Axtmann (teilweise) http://algo2.iti.kit.edu/algorithmenii_ws17.php - 0 Akhremtsev, Hespe: KIT Universität

Mehr

Approximierbarkeit von NP Problemen

Approximierbarkeit von NP Problemen Komplexitätstheorie (6) (Wolfgang Slany) 1 Approximierbarkeit von NP Problemen Approximations-Algorithmen: in polynomieller Zeit wird ein Resultat gefunden, das garantiert höchstens einen vorgegebenen

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Komplexitätsklassen - Teil 2 INSTITUT FÜR THEORETISCHE 0 KIT 05.12.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme

Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18./20. VO A&D WS 08/09

Mehr

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger

VL-13: Polynomielle Reduktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger VL-13: Polynomielle Reduktionen (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger WS 2018, RWTH BuK/WS 2018 VL-13: Polynomielle Reduktionen 1/46 Organisatorisches Nächste Vorlesungen: Donnerstag,

Mehr

Grundlagen Theoretischer Informatik 3 SoSe 2010 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 3 SoSe 2010 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 3 SoSe 2010 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 3 Gesamtübersicht Organisatorisches; Einführung Algorithmenanalyse:

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009

Mehr

Übungsblatt 5. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 5. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 5 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 20. Dezember 2017 Abgabe 16. Januar 2018, 11:00 Uhr

Mehr

Algorithmen 2. Kapitel: Approximationsalgorithmen. Thomas Worsch. Fakultät für Informatik Karlsruher Institut für Technologie

Algorithmen 2. Kapitel: Approximationsalgorithmen. Thomas Worsch. Fakultät für Informatik Karlsruher Institut für Technologie Algorithmen 2 Algorithmen 2 Kapitel: Approximationsalgorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2017/2018 1 / 40 Einleitung Überblick Einleitung

Mehr

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 26 Optimierungsprobleme und ihre Entscheidungsvariante Beim Rucksackproblem

Mehr

Literatur für diese VO. Überblick. Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme

Literatur für diese VO. Überblick. Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme Kap. : Approximationsalgorithmen für kombinatorische Optimierungsprobleme Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Literatur für diese VO

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V7, 5.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Hamiltonsche Graphen

Hamiltonsche Graphen Hamiltonsche Graphen Definition 3.2. Es sei G = (V, E) ein Graph. Ein Weg, der jeden Knoten von G genau einmal enthält, heißt hamiltonscher Weg. Ein Kreis, der jeden Knoten von G genau einmal enthält,

Mehr

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung Informatik III Arne Vater Wintersemester 2006/07 25. Vorlesung 01.02.2007 1 Approximation Viele wichtige Probleme sind NP-vollständig (also nicht effizient lösbar unter der Annahme P NP) Diese sind zu

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Walter Unger Lehrstuhl für Informatik I 20. April 2006 1 Einleitung Motivation Cliquenproblem 2 Vertex Cover Greedy 3 Steiner-Bäume 4 TSP Einleitung Approximation Nichtapproximierbarkeit

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Approximationsalgorithmen auf metrischen Instanzen Minimum Spanning Tree Definition (Spannbaum) Ein Spannbaum in einem Graphen G = (V,E) ist ein kreisfreier Teilgraph

Mehr

Approximationsklassen für Optimierungsprobleme

Approximationsklassen für Optimierungsprobleme Approximationsklassen für Optimierungsprobleme Matthias Erbar 19. September 2007 Inhaltsverzeichnis 1 Einleitung 1 2 Approximationsalgorithmen mit garantierter Güte 2 2.1 Terminologie......................................

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 29. Januar 2013 Näherungsalgorithmen, Fernau, Universität Trier, WiSe 2012/13

Mehr

Algorithmen II. Peter Sanders, Christian Schulz, Simon Gog. Übungen: Michael Axtmann. Institut für Theoretische Informatik, Algorithmik II.

Algorithmen II. Peter Sanders, Christian Schulz, Simon Gog. Übungen: Michael Axtmann. Institut für Theoretische Informatik, Algorithmik II. Schulz, Gog, Sanders: Algorithmen II - 13. Februar 2017 Algorithmen II Peter Sanders, Christian Schulz, Simon Gog Übungen: Michael Axtmann Institut für Theoretische Informatik, Algorithmik II Web: http://algo2.iti.kit.edu/algorithmenii_ws16.php

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Das Rucksackproblem. Definition Sprache Rucksack. Satz

Das Rucksackproblem. Definition Sprache Rucksack. Satz Das Rucksackproblem Definition Sprache Rucksack Gegeben sind n Gegenstände mit Gewichten W = {w 1,...,w n } N und Profiten P = {p 1,...,p n } N. Seien ferner b, k N. RUCKSACK:= {(W, P, b, k) I [n] : i

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Effiziente Algorithmen Lösen NP-vollständiger Probleme 320 Approximationsalgorithmen In polynomieller Zeit lässen sich nicht exakte Lösungen von NP-harten Problemen berechnen. Approximationsalgorithmen

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 21 1 Approximationsalgorithmen auf

Mehr

Das Rundreiseproblem und Stabilität von Approximationsalgorithmen

Das Rundreiseproblem und Stabilität von Approximationsalgorithmen Das Rundreiseproblem und Stabilität von Approximationsalgorithmen Florian Forster 21. Februar 2008 Zusammenfassung Diese Seminararbeit stellt das Rundreiseproblem und das TSP vor und führt kurz in die

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Der Branching-Operator B

Der Branching-Operator B Branching 1 / 17 Der Branching-Operator B Unser Ziel: Löse das allgemeine Minimierungsproblem minimiere f (x), so dass Lösung(x). B zerlegt eine Menge von Lösungen in disjunkte Teilmengen. Die wiederholte

Mehr

Wiederholung. Divide & Conquer Strategie

Wiederholung. Divide & Conquer Strategie Wiederholung Divide & Conquer Strategie Binäre Suche O(log n) Rekursives Suchen im linken oder rechten Teilintervall Insertion-Sort O(n 2 ) Rekursives Sortieren von a[1..n-1], a[n] Einfügen von a[n] in

Mehr

lineare Programmierung

lineare Programmierung lineare Programmierung Viele Probleme sind durch lineare Gleichungssysteme charakterisiert lineare Programmiermethoden Der Lösungsraum ist häufig auf ganze Zahlen oder gar natürliche Zahlen eingeschränkt!

Mehr

Rechenzeit für A. Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +).

Rechenzeit für A. Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +). Rechenzeit für A Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +). Rechenzeit des resultierenden Algo für A: t A (n) p(n) + q(n) t B (r(n)). Ist polynomiell, falls t B Polynom.

Mehr

Approximationskomplexität 1 / 53

Approximationskomplexität 1 / 53 Approximationskomplexität 1 / 53 Approximationsalgorithmen Ein Optimierungsproblem P besteht aus einer Menge I von Instanzen, einer Zielfunktion f, die nur nicht-negative reelle Zahlen annimmt, und für

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl. Beispiele für optimale Greedy-Lösungen

Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl. Beispiele für optimale Greedy-Lösungen Wiederholung Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl unabhängig von Subproblemen Optimalität der Subprobleme Beispiele für optimale Greedy-Lösungen Scheduling Problem

Mehr

Effiziente Algorithmen (SS2015)

Effiziente Algorithmen (SS2015) Effiziente Algorithmen (SS205) Kapitel 5 Approximation II Walter Unger Lehrstuhl für Informatik 2.06.205 07:59 5 Inhaltsverzeichnis < > Walter Unger 5.7.205 :3 SS205 Z Inhalt I Set Cover Einleitung Approximation

Mehr

Algorithmentheorie 1. Vorlesung

Algorithmentheorie 1. Vorlesung Algorithmentheorie. Vorlesung Martin Dietzfelbinger 6. April 2006 Methode, Material Vorlesung Vorlesungsskript (Netz, Copyshop) Folien (im Netz) Vorlesung nachbereiten! Übung Übungsblätter (im Netz) Übung

Mehr

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen

Mehr

Optimierung. Vorlesung 12

Optimierung. Vorlesung 12 Optimierung Vorlesung 12 Letze Woche Approximieren von ILP durch randomisiertes Runden. Beispiel Set Cove Relaxiertes LP lösen und runden. Probleme: 1. Zielfunktionswert 2. Zulässigkeit 1. Linearität des

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Komplexitätsklassen - Teil 2 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Näherungsalgorithmen Gesamtübersicht Organisatorisches Einführung / Motivation

Mehr

VL-17: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger

VL-17: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger VL-17: Jenseits von P und NP (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger WS 2018, RWTH BuK/WS 2018 VL-17: Jenseits von P und NP 1/46 Organisatorisches Nächste (letzte) Vorlesung: Donnerstag,

Mehr

Informatik III. 4.3 Weitere NP-Vollständige Probleme und Approximation. Christian Schindelhauer

Informatik III. 4.3 Weitere NP-Vollständige Probleme und Approximation. Christian Schindelhauer 4.3 Weitere NP-Vollständige Probleme und Approximation Institut für Informatik Wintersemester 2007/08 1 Komplexitätstheorie Vertex Cover ist NP-vollständig 2 2 Wiederholung: 3-SAT Definition: 3-SAT = {

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 16.11.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Approximation mit relativer Gütegarantie Überblick und einführende Beispiele

Approximation mit relativer Gütegarantie Überblick und einführende Beispiele Approximation mit relativer Gütegarantie Überblick und einführende Beispiele Marvin Schiller 4. Oktober 2007. Einführung In diesem Essay geben wir einen Überblick über eine Auswahl von algorithmischen

Mehr

a b r a c a d a b r a

a b r a c a d a b r a Textalgorithmen Stringmatching Algorithmus von Rabin und Karp (Folie 446, Seite 81 im Skript) a b r a c a d a b r a Gegeben u und v mit v = m. Wähle eine geeignete Hashfunktion Σ N. 1 Berechne h(v) und

Mehr

Approximationsalgorithmen. Approximation im Sinne der Analysis:

Approximationsalgorithmen. Approximation im Sinne der Analysis: Approximationsalgorithmen Ulrich Pferschy 1 Approximationsalgorithmen Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Wiederholung TSP: Kurz:

Mehr

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes.

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes. Turingmaschinen Wir haben Turingmaschinen eingeführt. Bis auf einen polynomiellen Anstieg der Rechenzeit haben Turingmaschinen die Rechenkraft von parallelen Supercomputern! Statt Turingmaschinen anzugeben,

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

Hans Ulrich Simon. A Entscheidungs- versus Optimierungsprobleme

Hans Ulrich Simon. A Entscheidungs- versus Optimierungsprobleme Komplexitätstheorie: Ergänzende Anmerkungen Hans Ulrich Simon A Entscheidungs- versus Optimierungsprobleme Es scheint so, daß die Theorie der NP-vollständigen Probleme die Komplexität von Sprachen erfaßt,

Mehr

Organisatorisches. VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

Organisatorisches. VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Organisatorisches VL-18: Jenseits von P und NP (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste (letzte) Vorlesung: Mittwoch, Januar 24, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-18: Jenseits von P und NP. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-18: Jenseits von P und NP (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-18: Jenseits von P und NP 1/43 Organisatorisches Nächste (letzte) Vorlesung: Mittwoch,

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 23. Vorlesung 25.01.2007 1 NP-Vollständigkeit Definition: Eine Sprache S ist NP-vollständig, wenn: S NP S ist NP-schwierig, d.h. für alle L

Mehr

Formale Grundlagen der Informatik F3: Berechenbarkeit un

Formale Grundlagen der Informatik F3: Berechenbarkeit un Formale Grundlagen der Informatik F3: Berechenbarkeit und Komplexität Fachbereich Informatik AB Theoretische Grundlagen der Informatik (TGI) Universität Hamburg farwer@informatik.uni-hamburg.de 14. Dezember

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 16.12.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Map Labeling INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 06.04.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal

Mehr

Einführung in Approximationsalgorithmen

Einführung in Approximationsalgorithmen Einführung in Approximationsalgorithmen Skript zur Vorlesung Effiziente Algorithmen von Berthold Vöcking, RWTH Aachen 1. Juni 2007 Hilfreiche Literatur Vazirani: Approximation Algorithms, Springer Verlag,

Mehr

Das Problem des minimalen Steiner-Baumes

Das Problem des minimalen Steiner-Baumes Das Problem des minimalen Steiner-Baumes Ein polynomieller Approximationsalgorithmus Benedikt Wagner 4.05.208 INSTITUT FU R THEORETISCHE INFORMATIK, LEHRSTUHL ALGORITHMIK KIT Die Forschungsuniversita t

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Jan Johannsen Vorlesung im Sommersemester 2007 Einordnung Algorithmik und Analyse von Algorithmen Komplexitätstheorie Analyse der Komplexität von Problemen Einteilung in Klassen ähnlicher Komplexität Untersuchung

Mehr

Dynamische Programmierung II

Dynamische Programmierung II Vorlesungstermin 10: Dynamische Programmierung II Markus Püschel David Steurer talks2.dsteurer.org/dp2.pdf Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Plan für heute Dynamische Programmierung

Mehr

Einführung in Approximationsalgorithmen

Einführung in Approximationsalgorithmen Einführung in Approximationsalgorithmen Skript zur Vorlesung Effiziente Algorithmen von Berthold Vöcking, RWTH Aachen 30. Juli 2008 Hilfreiche Literatur Vazirani: Approximation Algorithms, Springer Verlag,

Mehr

20. Dynamic Programming II

20. Dynamic Programming II 536 20. Dynamic Programming II Subset Sum Problem, Rucksackproblem, Greedy Algorithmus, Lösungen mit dynamischer Programmierung, FPTAS, Optimaler Suchbaum [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et

Mehr

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung! Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 23/4 ILKD Prof. Dr. D. Wagner 2. Februar 24. Klausur zur Vorlesung Informatik III Wintersemester 23/24 Mit Lösung! Beachten Sie:

Mehr

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar.

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar. Gegeben sei ein Netzwerk N = (V, A, c, s, t) wie in der Vorlesung. Ein maximaler s-t-fluss kann immer mit Hilfe einer Folge von höchstens A Augmentationsschritten gefunden werden. Wendet man den Dijkstra-Algorithmus

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de Näherungsalgorithmen, Fernau, Universität Trier, WiSe 2012/13 1/34 Näherungsalgorithmen

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 5.5 Grenzen überwinden 1. Pseudopolynomielle Algorithmen 2. Approximierende Algorithmen 3. Probabilistische Algorithmen Wie kann man unlösbare Probleme angehen? Viele

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2008/2009

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2008/2009 . Klausur zur Vorlesung Algorithmentechnik Wintersemester 008/009 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber mit Ihrem

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Effiziente Algorithmen II

Effiziente Algorithmen II 10. Präsenzaufgabenblatt, WiSe 2014/15 Übungstunde am 19.01.2015 Aufgabe Q Betrachten Sie das Knapsackpolytop P = conv(v ) mit V = {x n i=1 a ix i α} {0, 1} n für gegebenes α und a i 0 (insbesondere ist

Mehr

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage Ideen der Informatik Kurt Mehlhorn Gliederung Ziele von Theorie Gibt es Probleme, die man prinzipiell nicht mit einem Rechner lösen kann?

Mehr