Black Box erklärt Zahlensysteme.

Größe: px
Ab Seite anzeigen:

Download "Black Box erklärt Zahlensysteme."

Transkript

1 Black Box erklärt Zahlensysteme. Jeder von uns benutzt aktiv mindestens zwei Zahlenssysteme, oftmals aber so selbstverständlich, dass viele aus dem Stegreif keines mit Namen nennen können. Im europäischen Raum ist das bekannteste System das Zehner-Zahlensystem, auch Dezimalsystem genannt. Das ältere Zwölfer-Zahlensystem verwenden wir, wenn auch nicht durchgängig, weiterhin für die Uhrzeit. Was versteht man unter einem Zahlensystem oder auch Stellenwertsystem? Die für uns wichtigsten Grundsätze sind: Das System muß den allgemeinen Regeln für mathematische Operationen folgen (z. B. Addition / Subtraktion / Multiplikation / Division). Die Basis, die dem System seinen Namen gibt, wird immer durch die Ziffernfolge eins-null also 10 dargestellt. (Nicht zu verwechseln mit dem Dezimalwert 10!) siehe auch Seite 3, Abb. 1 Gebräuchliche Zahlensysteme Die niedrigste Ziffer ist immer die 0. Die Basis gibt die Menge der verwendeten Ziffern an. Da der Zählvorgang innerhalb eines Zahlensystems bei Null beginnt, ist die Basis niemals selbst Bestandteil des Ziffernsatzes. Ein Zahlensystem ist ein mathematisches Konstrukt, das einige Regeln befolgen muß. Beispiel anhand unseres Dezimalsystems (umgangssprachlich Zehnersystem): - Der Ziffernsatz ist 0,1,2,3,4,5,6,7,8,9-0 ist immer die betragsmäßig niedrigste Zahl. - Der Wert zehn wird dargestellt als 10 - Mathematische Regeln der Addition, Subtraktion,... sind gültig Beispiel anhand des Oktalsystems: - Der Ziffernsatz ist 0,1,2,3,4,5,6,7-0 ist immer die betragsmäßig niedrigste Zahl. - Die Zahl acht wird dargestellt als 10 - Mathematische Regeln der Addition, Subtraktion,... sind gültig Beispiel anhand des Zwölfersystems: - Der Ziffernsatz ist 0,1,2,3,4,5,6,7,8,9,#,E - 0 ist immer die betragsmäßig niedrigste Zahl. - Die Zahl zwölf wird dargestellt als 10 - Mathematische Regeln der Addition, Subtraktion,... sind gültig Seite 1 / 7

2 Anhand dieser Regeln können wir nun auch erklären, weshalb weder unser Dezimalsystem im Alltag, noch das Zwölfersystem für die Uhrzeit gänzlich den Regeln eines Zahlensystems folgen. Früher war in unserer Kultur ein Zwölfersystem (Dozenalsystem) üblich, das sich immer noch anhand der gesprochenen Zahlen nachvollziehen lässt, so sagen wir nicht einszehn oder zehn-eins, wie es in anderen Sprachen wie z.b. im Türkischen üblich ist, sondern sagen elf / eleven (engl.) oder zwölf / twelve (engl.). Erst ab drei-zehn gehen wir wieder konform. So ist also unser Dezimalsystem entstanden unter Verwendung der alten Benennungen aus dem Zwölfersystem. In mathematischer Schreibweise haben wir den Schritt zum Dezimalsystem allerdings konsequent umgesetzt, so gibt es kein extra Zeichen für 10 oder 11. Im Hinblick auf die Uhrzeit ist es genau andersherum. Unsere Benennungen folgen den Regeln eines Zwölfersystems, aber für die mathematische Schreibweise wurde das System nicht konsequent angewendet, da die zehn, elf und zwölf mathematisch nicht korrekt als #, E und 10 ausgedrückt werden. In jedem Zahlensystem, das konsequent umgesetzt wurde, gelten Regeln, die einige Die Multiplikation einer Zahl mit der Basis des Zahlensystems ist einfach durch Hinzufügen einer Endstelle mit dem Wert 0 an die Zahl realisierbar. Bei Division einer Zahl durch die Basis ist die letzte Stelle der Zahl zu streichen. Durch die Streichung kann ein Rest übrig bleiben. Grundrechenaufgaben sehr einfach ermöglichen: Beispiel Multiplikation und Division im Zehnersystem Basis = 10, Dezimalzahl = * 10 = Dezimalzahl 23 mit einer Endstelle 0 hinzugefügt = / 10 = Zahl 23 mit gestrichener Endstelle = 2 (Rest 3) Beispiel Multiplikation im Binärsystem Basis = 10 bin, Binärzahl = bin * 10 bin = Binärzahl 10 mit einer Endstelle 0 hinzugefügt = 100 bin. Erst wenn man die Werte in Dezimalzahlen umschreibt, fällt einem auf, dass hier 2 * 2 = 4 dez gerechnet wurde. Seite 2 / 7

3 Übersicht: Gebräuchlichste Zahlensysteme In der folgenden Tabelle sind 4 gebräuchliche Zahlensysteme (ZS) aufgeführt. Hierbei ist in der ersten Spalte der Zahlenwert der jeweiligen Zeile und in den folgenden Spalten die Schreibweise für das jeweilige Zahlensystem aufgeführt. 2er ZS 8er ZS 10er ZS 16er ZS Wert Dual / Binär Oktal Dezimal Hexadezimal Null Eins Zwei Drei Vier Fünf Sechs Sieben Acht Neun Zehn A Elf B Zwölf C Dreizehn D Vierzehn E Fünfzehn F Sechzehn Grün = Ziffer des Zahlensystems Rot = Basis des Zahlensystems Orange = Zusammengesetzte Ziffern des Zahlensystems Abbildung 1 Seite 3 / 7

4 Das Dezimalsystem ist heute das meistverwendete Zahlensystem in der zwischenmenschlichen Kommunikation. Das Binärsystem ist wegen seines einfachen Aufbaus mit nur 2 Ziffern 0 und 1 und der daraus resultierenden einfachen technischen Darstellbarkeit (0 = aus, 1= ein) in der Computertechnik das meistverwendete Zahlensystem. Oktalzahlen werden noch bei der Darstellung von Dateizugriffsrechten unter Unix verwendet. Jede Ziffer einer Oktalzahl kann durch drei Bit dargestellt werden, die wiederum den Rechten einer Benutzerklasse entsprechen. Früher wurden Oktalziffern auch zur Ein- und Ausgabe von Bitmustern verwendet, da sie für den Menschen übersichtlicher als das Binärsystem waren und die gebräuchliche Datenwortlänge von 24 Bit genau einer achtstelligen Oktalzahl entsprach. Oktalzahlen werden durch ein nachgestelltes o oder eine vorangestellte 0 in C zur Unterscheidung von anderen Zahlensystemen gekennzeichnet. Für die heute üblichen Datenwortlängen von 16, 32 und 64 ist das Hexadezimalsystem das geeignetere Darstellungsmedium. Das Hexadezimalsystem ist eine Zwischenform, die wegen der einfachen Konvertierung ins Binärsystem und ihrer Eigenschaft auch große Zahlenwerte übersichtlich mit wenigen Zeichen darzustellen, von Programmierern sehr gerne verwendet wird. Da wir das Dezimalsystem mit nur 10 Ziffern gewöhnt sind, werden seit etwa 1950 zur Darstellung der sechs zusätzlichen Ziffern die Buchstaben A bis F oder a bis f als Zahlzeichen verwendet. Dies geht auf die damalige Praxis der IBM- Informatiker zurück. So lassen sich mit einer einstelligen hexadezimalen Zahl die Dezimalzahlenwerte von 0 bis 15 darstellen. Umwandlung in andere Zahlensysteme Meist wollen wir Zahlen eines anderen Systems ins Dezimalsystem wandeln, da uns dies am geläufigsten ist. Hier können wir uns Werte am besten vorstellen, da wir das Zehnersystem seit unserer Kindheit verwenden. Die für uns am einfachsten zu verstehende Wandlung funktioniert folgendermaßen: Die Ziffer eines beliebigen Zahlensystems lässt sich in eine Dezimalzahl umrechnen, indem man die einzelnen Ziffern mit der jeweiligen Potenz der Basis multipliziert. Der Exponent entspricht der Stelle der Ziffer vor dem Komma. Begonnen wird mit dem Exponenten 0. Umwandlung von Systemzahlen in Dezimalzahlen Beispiel: 9B hex = B(11) * *16 1 = 11*1 + 9*16 = 155 Seite 4 / 7

5 Es ergibt sich die folgende Umrechnungstabelle für die gängigen Zahlensysteme. Die Tabelle zeigt die Multiplikationswerte der einzelnen Zahlstellen der hier vorgestellten Zahlensysteme zur Umwandlung in unser gängiges Dezimalsystem. Jede Zahlenstelle wird mit Ihrer Wertigkeit aus der Umrechnungstabelle multipliziert und die einzelnen Produktsummen werden anschließend addiert. Umrechnungstabelle Zahlensystem X in Dezimalzahl Stellenposition vor dem Komma Binärmultiplikator Oktalmultiplikator Dezimalmultiplikator Hexadezimal- Multiplikator Ergebniswerte sind Dezimalwerte Abbildung 2a Potenzansicht Stellenposition vor dem Komma Binärmultiplikator Oktalmultiplikator Dezimalmultiplikator Hexadezimal- Multiplikator Ergebniswerte sind Dezimalwerte Abbildung 2b Ansicht Dezimalwert Hier noch ein Beispiel wie die Tabelle anzuwenden ist: Beispiel Umwandlung Hexadezimalzahl in Dezimalzahl Hexadezimalzahl: A2C3 Eingangs müssen die Ziffern A und C in die entsprechenden Dezimalwerte gewandelt werden. Aus Tabelle Abb.1 ergibt sich A=10 und C= 12 Heximalzahl A=10 2 C=12 3 Multipliziert mit * * * * * * * * Hex Multiplikator = = = = = = = = = Zwischensummen Ergebnis: = Abbildung 3 Ergebnis der Umwandlung: Dezimalwert Seite 5 / 7

6 Divisionsverfahren zur Konvertierung von Zahlensystemen Zur universellen Umwandlung hat sich jedoch folgender Algorithmus bewährt: Die umzuwandelnde Zahl wird durch die Basis des Ziel-Zahlensystems geteilt. Die Divisionsreste werden wieder geteilt, solange bis das letzte Ergebnis 0 vor dem Rest ergibt. Beispiel 1: Umwandlung Dezimalzahl in Hexadezimalzahl Hexadezimalzahl: 1426 dez 1426 / 16 = 89 Rest 2 89 /16 = 5 Rest 9 5 / 16 = 0 Rest 5 von unten nach oben ergibt das => 1426 dez = 592 hex Beispiel 2: Umwandlung Hexdezimalzahl in Binärzahl Hexadezimalzahl: A2C3 hex Die Ziffern sind entsprechend Abb.1 umgerechnet (A=10, C=12) A2C3 / 2 = 5161 Rest / 2 = 28B0 Rest 1 28B0 / 2 = 1458 Rest / 2 = A2C Rest 0 A2C / 2 = 516 Rest / 2 = 28B Rest 0 28B / 2 = 145 Rest / 2 = A2 Rest 1 A2 / 2 = 51 Rest 0 51 / 2 = 28 Rest 1 28 / 2 = 14 Rest 0 14 / 2 = A Rest 0 A / 2 = 5 Rest 0 5 / 2 = 2 Rest 1 2 / 2 =1 Rest 0 1 / 2 = 0 Rest 1 (A)10/2 =5 2/2 =1 (C)12/2 =6 3/2 =1 Rest 1 von unten nach oben ergibt das => A2C3 hex = bin Seite 6 / 7

7 Beispiel 3: Umwandlung derselben Hexdezimalzahl in Dezimalzahl Hexadezimalzahl: A2C3 hex (10 dez = A hex) A2C3 / A = 1046 Rest / A = 1A0 Rest 6 1A0 / A = 29 Rest 6 29 / A = 4 Rest 1 4 / A = 0 Rest 4 von unten nach oben ergibt das => A2C3 hex = dez!! Es ist immer wichtig zu wissen, in welchem Zahlensystem man sich bewegt, denn der Wert 10 ist nicht unbedingt gleich dem Wert 10. Vergleicht man z.b. 10 hex mit 10 bin, so heißen diese im Dezimalsystem 16 und 2! Für Rechner sind dies einfach durchzuführende universelle Konvertierungen. Für die Wandlung von Hexadezimalzahlen in Binärzahlen können die Zifferstellen auch einzeln übersetzt werden, da jeder der 16 Hexziffern (0-15) exakt durch eine Folge von 4 Bits abgebildet werden kann. Die vierstelligen Bitfolgen werden auch als Nibble oder Tetrade bezeichnet. Die Nibble sind leichter zu lesen und zu interpretieren, ein Vorteil der insbesondere in der Digitaltechnik bei der Konvertierung analog zu digital genutzt wird. Die Umwandlung aus Beispiel 2 sieht dann so aus: Hex Dez Bin A C Die vier Ergebnisse hintereinander ergeben von oben nach unten: bin. Seite 7 / 7

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Zahlensysteme Das 10er-System

Zahlensysteme Das 10er-System Zahlensysteme Übungsblatt für die entfallende Stunde am 22.10.2010. Das 10er-System... 1 Umrechnung in das 10er-System... 2 2er-System... 2 8er-System... 2 16er-System... 3 Umrechnung in andere Zahlensysteme...

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de

Mehr

Zahlensysteme: Oktal- und Hexadezimalsystem

Zahlensysteme: Oktal- und Hexadezimalsystem 20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192. Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,

Mehr

Daten verarbeiten. Binärzahlen

Daten verarbeiten. Binärzahlen Daten verarbeiten Binärzahlen In Digitalrechnern werden (fast) ausschließlich nur Binärzahlen eingesetzt. Das Binärzahlensystem ist das Stellenwertsystem mit der geringsten Anzahl von Ziffern. Es kennt

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

Grundlagen der Informatik Übungen 1.Termin

Grundlagen der Informatik Übungen 1.Termin : : : : : : : : : : : : : : : : : : : : : : Grundlagen der Informatik Übungen 1.Termin Dipl.-Phys. Christoph Niethammer Grundlagen der Informatik 2012 1 : : : : : : : : : : : : : : : : : : : : : : Kontakt

Mehr

Zahlensysteme. von Christian Bartl

Zahlensysteme. von Christian Bartl von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 Seite: 1 Zahlensysteme im Selbststudium Inhaltsverzeichnis Vorwort Seite 3 Aufbau des dezimalen Zahlensystems Seite 4 Aufbau des dualen Zahlensystems Seite 4 Aufbau des oktalen Zahlensystems Seite 5 Aufbau

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5 Personal Computer in Betrieb nehmen 1/6 Weltweit setzen die Menschen alltäglich das Zehnersystem für Zählen und Rechnen ein. Die ursprüngliche Orientierung stammt vom Zählen mit unseren 10 Fingern. Für

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Grundlagen der Informatik Übungen 1. Termin Zahlensysteme

Grundlagen der Informatik Übungen 1. Termin Zahlensysteme Grundlagen der Informatik Übungen 1. Termin Zahlensysteme M. Sc. Yevgen Dorozhko dorozhko@hlrs.de Kurzvorstellung M. Sc. Yevgen Dorozhko Ausbildung: 2008: M. Sc. Systemprogrammieren, Nationale technische

Mehr

Die Zahlensysteme. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.

Die Zahlensysteme. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000. Die Zahlensysteme Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Einführung Seite 1 2 Das Umrechnen von Zahlen aus unterschiedlichen

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Information in einem Computer ist ein

Information in einem Computer ist ein 4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.

Mehr

3 Zahlensysteme in der Digitaltechnik

3 Zahlensysteme in der Digitaltechnik 3 Zahlensysteme in der Digitaltechnik System Dezimal Hexadezimal Binär Oktal Basis, Radix 10 16 2 8 Zahlenwerte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 0 1 10 11 100

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

1. Stellenwerte im Dualsystem

1. Stellenwerte im Dualsystem 1. a) Definitionen Stellenwertsystem Ein Zahlensystem bei dem der Wert einer Ziffer innerhalb einer Ziffernfolge von ihrer Stelle abhängt, wird Stellenwertsystem genannt. Die Stellenwerte sind also ganzzahlige

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

Binär Codierte Dezimalzahlen (BCD-Code)

Binär Codierte Dezimalzahlen (BCD-Code) http://www.reiner-tolksdorf.de/tab/bcd_code.html Hier geht es zur Startseite der Homepage Binär Codierte Dezimalzahlen (BCD-) zum 8-4-2-1- zum Aiken- zum Exeß-3- zum Gray- zum 2-4-2-1- 57 zum 2-4-2-1-

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

Aufgaben zu Stellenwertsystemen

Aufgaben zu Stellenwertsystemen Aufgaben zu Stellenwertsystemen Aufgabe 1 a) Zähle im Dualsystem von 1 bis 16! b) Die Zahl 32 wird durch (100000) 2 dargestellt. Zähle im Dualsystem von 33 bis 48! Zähle schriftlich! Aufgabe 2 Wandle die

Mehr

Theoretische Informatik SS 04 Übung 1

Theoretische Informatik SS 04 Übung 1 Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die

Mehr

Ein bisschen Theorie Dezimal, hexadezimal, oktal und binär.

Ein bisschen Theorie Dezimal, hexadezimal, oktal und binär. Seite 1 von 9 Ein bisschen Theorie Dezimal, hexadezimal, oktal und binär. Wenn man als Neuling in die Digitalelektronik einsteigt, wird man am Anfang vielleicht etwas unsicher, da man viele Bezeichnungen

Mehr

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Die Subnetzmaske/Netzwerkmaske

Die Subnetzmaske/Netzwerkmaske Die Subnetzmaske/Netzwerkmaske Die Subnetzmaske (auch Netzwerkmaske genannt) ist eine mehrstellige Binärzahl (Bitmaske), die in einem Netzwerk eine IP-Adresse in eine Netzadresse und eine Geräteadresse

Mehr

Binär- und Hexadezimal-Zahl Arithmetik.

Binär- und Hexadezimal-Zahl Arithmetik. Binär- und Hexadezimal-Zahl Arithmetik. Prof. Dr. Dörte Haftendorn, MuPAD 4, http://haftendorn.uni-lueneburg.de Aug.06 Automatische Übersetzung aus MuPAD 3.11, 24.04.02 Version vom 12.10.05 Web: http://haftendorn.uni-lueneburg.de

Mehr

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 JOACHIM VON ZUR GATHEN, OLAF MÜLLER, MICHAEL NÜSKEN Abgabe bis Freitag, 14. November 2003, 11 11 in den jeweils richtigen grünen oder roten Kasten

Mehr

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden. Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in

Mehr

Infocode. Auswertung von Systemmeldungen

Infocode. Auswertung von Systemmeldungen Infocode Auswertung von Systemmeldungen Allgemeines... 3 Umrechnung... 4 Heizkostenverteiler 200-bx/200wx... 4 Splitrechenwerk 235-mmx... 5 Inhalt 2 Infocode Hexadezimale Darstellung des Infocodes Die

Mehr

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte

Mehr

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben. Präsenzaufgaben

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben. Präsenzaufgaben Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand, Marcel Preuß, Iman Kamehkhosh, Marc Bury, Diana Howey Übungsblatt

Mehr

Aufgabensammlung Bruchrechnen

Aufgabensammlung Bruchrechnen Aufgabensammlung Bruchrechnen Inhaltsverzeichnis Bruchrechnung. Kürzen und Erweitern.................................. 4. Addition von Brüchen................................... Multiplikation von Brüchen...............................

Mehr

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18 Kapitel 3 Datentypen und Variablen Seite 1 von 18 Datentypen - Einführung - Für jede Variable muss ein Datentyp festgelegt werden. - Hierdurch werden die Wertemenge und die verwendbaren Operatoren festgelegt.

Mehr

Kapitel 4A: Einschub - Binärcodierung elementarer Datentypen. Einschub: Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik

Kapitel 4A: Einschub - Binärcodierung elementarer Datentypen. Einschub: Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik Einschub: Binärcodierung elementarer Datentypen Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik Unterscheide Zahl-Wert Zahl-Bezeichner Zu ein- und demselben Zahl-Wert kann es verschiedene

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127.

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. Übung 2, Aufgabe 4) a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. 1,125 in IEEE 754 (32Bit) 0,125 2 = 0,25 0,25 2 = 0,5 0,5 2 = 1 1,125 10 = 1,001 2 Da die Zahl bereits

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHISCHE UIVERSITÄT MÜCHE Zentrum Mathematik PRF. R.R. JÜRGE RICHTER-GEBERT, VAESSA KRUMMECK, MICHAEL PRÄHFER Höhere Mathematik für Informatiker I (Wintersemester 003/004) Aufgabenblatt 1 (4. ktober 003)

Mehr

DIGITALTECHNIK 02 ZAHLENSYSTEME

DIGITALTECHNIK 02 ZAHLENSYSTEME Seite 1 von 15 DIGITALTECHNIK 02 ZAHLENSYSTEME Inhalt Seite 2 von 15 1 ALLGEMEINES ZU ZAHLENSYSTEMEN... 3 1.1 ZAHLENSYSTEME... 3 1.2 KENNZEICHEN VON ZAHLENSYSTEMEN... 4 1.3 BILDUNGSGESETZE... 4 1.4 STELLENWERTSYSTEM...

Mehr

Übungen zu Informatik 1

Übungen zu Informatik 1 Communication Systems Group (CSG) Prof. Dr. Burkhard Stiller, Universität Zürich, Binzmühlestrasse 14, CH-8050 Zürich Telefon: +41 44 635 6710, Fax: +41 44 635 6809, stiller@ifi.uzh.ch Fabio Hecht, Telefon:

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

Gliederung. Was ist der Unicode? Warum gibt es den Unicode? Wie funktioniert er? Wo ist mein Schriftzeichen? Kritische Stimmen

Gliederung. Was ist der Unicode? Warum gibt es den Unicode? Wie funktioniert er? Wo ist mein Schriftzeichen? Kritische Stimmen Unicode Gliederung Was ist der Unicode? Warum gibt es den Unicode? Wie funktioniert er? Wo ist mein Schriftzeichen? Kritische Stimmen Was ist der Unicode? ein Datensatz von Schriftzeichen wie viele andere

Mehr

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll

Mehr

Grundlagen der Informatik I Informationsdarstellung

Grundlagen der Informatik I Informationsdarstellung Grundlagen der Informatik I Informationsdarstellung Einführung in die Informatik, Gumm, H.-P./Sommer, M. Themen der heutigen Veranstaltung. ASCIi Code 2. Zeichenketten 3. Logische Operationen 4. Zahlendarstellung

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

4 Binäres Zahlensystem

4 Binäres Zahlensystem Netzwerktechnik achen, den 08.05.03 Stephan Zielinski Dipl.Ing Elektrotechnik Horbacher Str. 116c 52072 achen Tel.: 0241 / 174173 zielinski@fh-aachen.de zielinski.isdrin.de 4 inäres Zahlensystem 4.1 Codieren

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

2. Negative Dualzahlen darstellen

2. Negative Dualzahlen darstellen 2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Anwendungsbeispiele Buchhaltung

Anwendungsbeispiele Buchhaltung Kostenstellen in Webling Webling ist ein Produkt der Firma: Inhaltsverzeichnis 1 Kostenstellen 1.1 Was sind Kostenstellen? 1.2 Kostenstellen in der 2 Kostenstellen in Webling 2.1 Kostenstellen erstellen

Mehr

Mathe-Übersicht INHALTSVERZEICHNIS

Mathe-Übersicht INHALTSVERZEICHNIS S. 1/13 Mathe-Übersicht V. 1.1 2004-2012 by Klaus-G. Coracino, Nachhilfe in Berlin, www.coracino.de Hallo, Mathe-Übersicht Diese Datei enthält verschiedene Themen, deren Überschriften im INHALTSVERZEICHNIS

Mehr

Englische Division. ... und allgemeine Hinweise

Englische Division. ... und allgemeine Hinweise Das folgende Verfahren ist rechnerisch identisch mit dem Normalverfahren; es unterscheidet sich nur in der Schreibweise des Rechenschemas Alle Tipps und Anmerkungen, die über die Besonderheiten dieser

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche

Mehr

Leichte-Sprache-Bilder

Leichte-Sprache-Bilder Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung

Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung WS 06/07 Thema 4: Zahlensysteme / Codierung 1 Übung zur Winfo I - Themenplan - Informationsverarbeitung in Unternehmen Tabellenkalkulation Anwendungen PC-Komponenten Zahlensysteme / Codierung Boole sche

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 MikroControllerPass Lernsysteme MC 805 Seite: (Selbststudium) Inhaltsverzeichnis Vorwort Seite 2 Addition Seite 3 Subtraktion Seite 4 Subtraktion durch Addition der Komplemente Dezimales Zahlensystem:Neunerkomplement

Mehr

Anzahl Pseudotedraden: Redundanz: Weitere Eigenschaften?

Anzahl Pseudotedraden: Redundanz: Weitere Eigenschaften? 1. Aufgabe: Aiken-Code Erstellen Sie die Codetabelle für einen Aiken-Code. Dieser Code hat die Wertigkeit 2-4-2-1. Tipp:Es gibt hier mehrere Lösungen, wenn nicht die Bedingung Aiken-Code gegeben wäre.

Mehr

Programmierung mit NQC: Kommunikation zwischen zwei RCX

Programmierung mit NQC: Kommunikation zwischen zwei RCX Programmierung mit NQC: Kommunikation zwischen zwei RCX Teil : Grundlagen Martin Schmidt 7. Februar 24 Teil : Grundlagen Zahlensysteme : Binärsystem Ziffern: und Bit = binary digit (Binärziffer) Einfach

Mehr

Digital signierte Rechnungen mit ProSaldo.net

Digital signierte Rechnungen mit ProSaldo.net Digital signierte Rechnungen mit ProSaldo.net Digitale Signatur der PDF-Rechnungen Hier finden Sie eine Anleitung, wie beim erstmaligen Öffnen von digital signierten PDF- Rechnungen, die mit ProSaldo.net

Mehr

Numerische Datentypen. Simon Weidmann

Numerische Datentypen. Simon Weidmann Numerische Datentypen Simon Weidmann 08.05.2014 1 Ganzzahlige Typen 1.1 Generelles Bei Datentypen muss man immer zwei elementare Eigenschaften unterscheiden: Zuerst gibt es den Wertebereich, zweitens die

Mehr

Printserver und die Einrichtung von TCP/IP oder LPR Ports

Printserver und die Einrichtung von TCP/IP oder LPR Ports Printserver und die Einrichtung von TCP/IP oder LPR Ports In der Windowswelt werden Drucker auf Printservern mit 2 Arten von Ports eingerichtet. LPR-Ports (Port 515) oder Standard TCP/IP (Port 9100, 9101,9102)

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Polyadische Zahlensysteme Gleitkomma-Arithmetik 4.

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Einführung in das Arbeiten mit MS Excel. 1. Bearbeitungs

Einführung in das Arbeiten mit MS Excel. 1. Bearbeitungs Einführung in das Arbeiten mit MS Excel 1. Bildschirmaufbau Die Tabellenkalkulation Excel basiert auf einem Rechenblatt, das aus Spalten und Zeilen besteht. Das Rechenblatt setzt sich somit aus einzelnen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: If-clauses - conditional sentences - Nie mehr Probleme mit Satzbau im Englischen! Das komplette Material finden Sie hier: School-Scout.de

Mehr

Inhaltsverzeichnis. 1. Empfängerübersicht / Empfänger hinzufügen 2. Erstellen eines neuen Newsletters / Mailings 3. Versand eines Newsletters

Inhaltsverzeichnis. 1. Empfängerübersicht / Empfänger hinzufügen 2. Erstellen eines neuen Newsletters / Mailings 3. Versand eines Newsletters Erste Schritte Wir heißen Sie herzlich willkommen im Newslettersystem der Euroweb Internet GmbH. Hier erfahren Sie die grundlegendsten Informationen, die Sie zur Erstellung und zum Versand eines Newsletters

Mehr

Wir machen neue Politik für Baden-Württemberg

Wir machen neue Politik für Baden-Württemberg Wir machen neue Politik für Baden-Württemberg Am 27. März 2011 haben die Menschen in Baden-Württemberg gewählt. Sie wollten eine andere Politik als vorher. Die Menschen haben die GRÜNEN und die SPD in

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Handbuch zur Anlage von Turnieren auf der NÖEV-Homepage

Handbuch zur Anlage von Turnieren auf der NÖEV-Homepage Handbuch zur Anlage von Turnieren auf der NÖEV-Homepage Inhaltsverzeichnis 1. Anmeldung... 2 1.1 Startbildschirm... 3 2. Die PDF-Dateien hochladen... 4 2.1 Neue PDF-Datei erstellen... 5 3. Obelix-Datei

Mehr

Hinweise zum Übungsblatt Formatierung von Text:

Hinweise zum Übungsblatt Formatierung von Text: Hinweise zum Übungsblatt Formatierung von Text: Zu den Aufgaben 1 und 2: Als erstes markieren wir den Text den wir verändern wollen. Dazu benutzen wir die linke Maustaste. Wir positionieren den Mauszeiger

Mehr

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren:

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren: Daten und ihre Codierung Seite: 1 Zur Universalität der Informatik Gott ist ein Informatiker Die Grundordnung der Welt läßt sich mathematisch formulieren: Naturgesetze, wie wir sie in der Physik, Chemie

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten "bedingten Wahrscheinlichkeit".

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten bedingten Wahrscheinlichkeit. Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 9 12 04/2015 Diabetes-Test Infos: www.mued.de Blutspenden werden auf Diabetes untersucht, das mit 8 % in der Bevölkerung verbreitet ist. Dabei werden

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr