y P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

Größe: px
Ab Seite anzeigen:

Download "y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6"

Transkript

1 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit von Zufallsvariablen Aufgabe 5.1 Sie würfeln zweimal hintereinander mit einem Würfel. Dabei interessieren Sie sich für folgende Zufallsvariablen: X = Augenzahl des 1. Wurfs Y = Augenzahl des 2. Wurfs Z = Summe der Augenzahlen des 1. und 2. Wurfs a) Sind die Zufallsvariablen X, Y stochastisch unabhängig? b) Sind die Zufallsvariablen X, Z stochastisch unabhängig? Aufgabe 5.2 Sie würfeln zweimal hintereinander mit einem Würfel. Dabei interessieren Sie sich für folgende Ereignisse: A = Augenzahl des 1. Wurfs ist eine gerade Zahl B = Augenzahl des 2. Wurfs ist eine gerade Zahl C = Summe der Augenzahlen des 1. und 2. Wurfs ist eine ungerade Zahl a) Sind die Ereignisse A, B stochastisch unabhängig? b) Sind die Ereignisse A, C stochastisch unabhängig? c) Wie groß ist die Wahrscheinlichkeit des Ereignisses A B C? Lösung zu Aufgabe 5.1: x P (X = x) 1/6 1/6 1/6 1/6 1/6 1/6 y P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Damit die Summe der beiden Augenzahlen z. B. vier beträgt, können folgende Kombinationen gewürfelt werden: (1,3) oder (2,2) oder (3,1). Es gibt also für dieses Ereignis drei mögliche Ergebnisse. Also beträgt die Wahrscheinlichkeit (nach Laplace) für dieses Ereignis 3/36, da es insgesamt 36 gleich mögliche Ergebnisse gibt. 1

2 z P (Z = z) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 Er- (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (2, 6) (3, 6) (4, 6) (5, 6) (6, 6) geb- (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (3, 5) (4, 5) (5, 5) (6, 5) nis (3, 1) (3, 2) (3, 3) (3, 4) (4, 4) (5, 4) (6, 4) (4, 1) (4, 2) (4, 3) (5, 3) (6, 3) (5, 1) (5, 2) (6, 2) (6, 1) a) y\x /36 1/36 1/36 1/36 1/36 1/36 2 1/36 1/36 1/36 1/36 1/36 1/36 3 1/36 1/36 1/36 1/36 1/36 1/36 4 1/36 1/36 1/36 1/36 1/36 1/36 5 1/36 1/36 1/36 1/36 1/36 1/36 6 1/36 1/36 1/36 1/36 1/36 1/36 Also gilt Folgendes: P (X = x Y = y) = 1 36 = = P (X = x) P (Y = y) 6 d.h. die Zufallsvariablen X, Y sind stochastisch unabhängig. b) Es gilt z.b. Folgendes: P (X = 1 Z = 8) = = = P (X = 1) P (Z = 8) 36 d.h. die Zufallsvariablen X, Z sind stochastisch abhängig. Lösung zu Aufgabe 5.2: P (A) = 1 2 P (B) = 1 2 P (C) = = 1 2 a) Das Ereignis A B tritt ein, wenn eines der nachfolgenden Ergebnisse gewürfelt werden: (2,2) oder (2,4) oder (2,6) oder (4,2) oder (4,4) oder (4,6) oder (6,2) oder (6,4) oder (6,6). Das sind 9 von 36 möglichen Ergebnissen. Also beträgt die Wahrscheinlichkeit (nach Laplace): P (A B) = 9 36 = 0,25 Weiter gilt: P (A) P (B) = 0,5 0,5 = 0,25 d.h. die Ereignisse A, B sind stochastisch unabhängig. b) Das Ereignis A C tritt ein, wenn eines der nachfolgenden Ergebnisse gewürfelt werden: 2

3 1. Wurf 2. Wurf Summe Das sind 9 von 36 möglichen Ergebnissen. Also beträgt die Wahrscheinlichkeit (nach Laplace): P (A C) = 9 36 Weiter gilt: P (A) P (C) = 0,5 0,5 = 0,25 d.h. die Ereignisse A, C sind stochastisch unabhängig. c) Das Ereignis A B C kann nicht eintreten. Folglich ist die Wahrscheinlichkeit dieses Ereignisses null. 3

4 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Arbeitsblatt Aufgabe 5 (Klausur vom ) Einem Unternehmen stehen für eine Investitionsentscheidung zwei Alternativen A und B zur Auswahl. Der Abteilung für Investitionsrechnung liegen die Wahrscheinlichkeitsfunktionen der Renditen der Anlagealternativen A und B vor; die Investitionsplaner und -rechner gehen davon aus, dass die Renditen der beiden Anlagealternativen stochastisch unabhängig voneinander sind. Die Renditechancen werden für das Kalenderjahr 2005 zur Zeit wie folgt eingeschätzt: Höhe Wahrscheinlichkeit dafür, der Rendite dass die jeweilige Rendite (in % für realisiert wird (in %) Jahr 2005 Alternative A Alternative B Zusammen a) Berechnen Sie die Wahrscheinlichkeit dafür, dass die Renditen sowohl der Anlagealternative A als auch der Anlagealternative B im Kalenderjahr 2005 gemeinsam null sind. b) Berechnen Sie die Wahrscheinlichkeit dafür, dass mindestens eine der beiden Anlagealternativen im Kalenderjahr 2005 eine positive Rendite bringt. c) Berechnen Sie die Wahrscheinlichkeit dafür, dass die Renditen sowohl der Anlagealternative A als auch der Anlagealternative B im Kalenderjahr 2005 mindestens 2% betragen. d) Berechnen Sie die Wahrscheinlichkeit dafür, dass die Summe der beiden Renditen im Kalenderjahr 2005 mindestens 2% beträgt. e) Berechnen Sie die Wahrscheinlichkeit dafür, dass die Summe der beiden Renditen im Kalenderjahr 2005 höchstens 2% beträgt. Aufgabe 5 c) + d) (Klausur vom ) Einem Unternehmen stehen für eine Investitionsentscheidung zwei Alternativen A 1

5 und B zur Auswahl. Die Zufallsvariable X sei der Gewinn (gemessen in GE) der Anlagealternative A für das Kalenderjahr 2005, die Zufallsvariable Y sei der Gewinn (gemessen in GE) der Anlagealternative B ebenfalls für das Kalenderjahr Die Unternehmensleitung hat folgende Gewinnerwartungen für 2005: Höhe des Alternative Alternative Gewinns (G) A B (in GE) P (X = G) P (Y = G) ,10 0, ,20 0,15 0 0,20 0, ,30 0, ,20 0,20 In der Geschäftsleitung des Unternehmens gibt es vier verschiedene Meinungen dazu, welches Entscheidungskriterium man zu Grunde legen soll bei der Wahl zwischen A und B. Welche der beiden Anlagealternativen A und B wird gewählt, wenn als Entscheidungskriterium herangezogen wird: c) die Maximierung der Wahrscheinlichkeit, in 2005 einen positiven Gewinn (G > 0) zu erzielen? d) die Minimierung der Wahrscheinlichkeit, in 2005 eine Verlust (G < 0) zu erleiden? Aufgabe 3 (Klausur vom ) Autofarbe der 2003 in Deutschland zugelassenen Pkw Farbe silber/grau schwarz blau grün rot weiß sonstige Anteil 44,9% 22,6% 18,6% 5,0% 4,6% 2,4% 1,9% Quelle: ADACmotorwelt 3/2004 a) Wie viel Prozent der 2003 zugelassenen Pkw waren entweder silber/grau oder schwarz oder blau? b) Ein Pkw wurde 2003 zugelassen und hat einen Unfall verursacht. Wie groß muss für diesen Pkw die Wahrscheinlichkeit sein, dass er schwarz lackiert ist, damit für die 2003 zugelassenen Pkw die Ereignisse: A = Pkw-Farbe ist schwarz B = Pkw verursacht einen Unfall stochastisch unabhängig sind? 2

6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Arbeitsblatt Beispiel 1 Eine Bank bietet einen Kredit mit drei unterschiedlichen Kredithöhen/Varianten an. Die Aufteilung der zurzeit laufenden Kreditverträge auf die einzelnen Varianten und die von dem Darlehnsbetrag abhängigen Ausfallwahrscheinlichkeiten (Wahrscheinlichkeit, dass ein Darlehn nicht zurückgezahlt wird) sind wie folgt gegeben: Variante Darlehns- Anzahl Ausfallbetrag der Verträge Wkt. (in %) , , ,5 a) Berechnen Sie die Wahrscheinlichkeit, dass ein Darlehn nicht zurückgezahlt wird. b) Berechnen Sie die Wahrscheinlichkeit, dass ein Darlehnsbetrag GE beträgt, falls ein Darlehn nicht zurückgezahlt wird. c) Wenn ein Darlehn nicht zurückgezahlt wird, geht die Bank davon aus, dass ein Verlust von 75% des Darlehnsbetrages entsteht. Mit welchem Gesamtverlust für alle laufenden Verträge muss die Bank rechnen? d) Mit welchem Verlust pro Vertrag muss die Bank rechnen? Beispiel 2 (Klausur vom ) In einem Unternehmen wurde eine Studie über die Gesundheit der Mitarbeiter und Mitarbeiterinnen durchgeführt. Dabei waren auch die Fragen ˆ Rauchen Sie? ˆ Trinken Sie Kaffee? zu beantworten. Beide Fragen konnten nur mit Ja oder Nein beantwortet werden. Die Auswertung ergab, dass 1

7 ˆ 35% der Befragten sowohl Kaffee trinken als auch rauchen. ˆ 48% der Befragten rauchen. ˆ 64% der Befragten Kaffee trinken. a) Mit welcher Wahrscheinlichkeit beantwortet eine zufällig ausgewählte Person mindestens eine der beiden Fragen mit Ja? b) Mit welcher Wahrscheinlichkeit beantwortet eine zufällig ausgewählte Person mindestens eine der beiden Fragen mit Nein? c) Mit welcher Wahrscheinlichkeit beantwortet eine zufällig ausgewählte Person, die raucht, die Frage nach dem Kaffee trinken mit Ja? d) Sind die Ereignisse Rauchen und Kaffee trinken stochastisch unabhängig? (Begründung!) e) Mit welcher Wahrscheinlichkeit beantwortet eine zufällig ausgewählte Person, die das Rauchen verneint, die Frage nach dem Kaffee trinken mit Ja? 2

8 Lösung zu Beispiel 1 A = Kredit wird nicht zurückgezahlt B 1 = Kredit in Höhe von GE P (B 1 ) = 0,5 P (A B 1 ) = 0,015 B 2 = Kredit in Höhe von GE P (B 2 ) = 0,36 P (A B 2 ) = 0,02 B 3 = Kredit in Höhe von GE P (B 3 ) = 0,14 P (A B 3 ) = 0,025 Arbeitstabelle: B1 B 2 B 3 A 0,0075 0,0072 0,0035 0,0182 A 0,5 0,36 0,14 1 Wobei P (A B 1 ) = P (A B 1 ) P (B 1 ) = 0,015 0,50 = 0,0075 usw. a) P (A) = 0,0182 d.h. 1,82 % aller Darlehnsverträge zahlen ihren Kredit nicht zurück. b) P (B 3 A) = P (A B 3) = 0,0035 P (B 3 ) 0,0182 = 0,1923 d.h. 19,23 % aller nicht zurückgezahlten Kreditverträge laufen über eine Darlehnssumme von GE. c) Anzahl Wkt. Verlust , , , d.h. es ist mit einem Gesamtverlust von GE zu rechnen. d) = d.h. es ist pro Vertrag mit einem Verlust von GE zu rechnen. 3

Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de

Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Rechnen

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Übungen zur Vorlesung Wirtschaftsstatistik Zufallsvariablen Aufgabe 4.1 Ein Unternehmen fertigt einen Teil der Produktion in seinem Werk in München und den anderen Teil in seinem Werk in Köln. Auf Grund

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@fh-koeln.de Übungen zur Vorlesung Wirtschaftsstatistik Wiederholungsaufgaben für die Klausur

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren?

b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren? Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Mathematik für Prüfungskandidaten und Prüfungskandidatinnen Unterjährliche

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei

Mehr

Übungen zur Vorlesung Induktive Statistik Bedingte Wahrscheinlichkeiten

Übungen zur Vorlesung Induktive Statistik Bedingte Wahrscheinlichkeiten Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@dvz.fh-koeln.de Aufgabe 3.1 Übungen zur Vorlesung Induktive Statistik Bedingte Wahrscheinlichkeiten

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62 Unabhängigkeit ================================================================== 1. Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Zwei einfache Kennzahlen für große Engagements

Zwei einfache Kennzahlen für große Engagements Klecksen nicht klotzen Zwei einfache Risikokennzahlen für große Engagements Dominik Zeillinger, Hypo Tirol Bank Die meisten Banken besitzen Engagements, die wesentlich größer sind als der Durchschnitt

Mehr

Lösungshinweise zur Einsendearbeit 2 SS 2011

Lösungshinweise zur Einsendearbeit 2 SS 2011 Lösungshinweise zur Einsendearbeit 2 zum Kurs 41500, Finanzwirtschaft: Grundlagen, SS2011 1 Lösungshinweise zur Einsendearbeit 2 SS 2011 Finanzwirtschaft: Grundlagen, Kurs 41500 Aufgabe Finanzierungsbeziehungen

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe

Mehr

Vorsätze für das Jahr 2015

Vorsätze für das Jahr 2015 Vorsätze für das Jahr 2015 Datenbasis: 1.001 Befragte in Baden-Württemberg Erhebungszeitraum: 20. November bis 10. Dezember 2014 statistische Fehlertoleranz: +/- 3 Prozentpunkte Auftraggeber: DAK-Gesundheit

Mehr

Durch Wissen Millionär WerDen... Wer hat zuerst die Million erreicht? spielanleitung Zahl der spieler: alter: redaktion / autor: inhalt:

Durch Wissen Millionär WerDen... Wer hat zuerst die Million erreicht? spielanleitung Zahl der spieler: alter: redaktion / autor: inhalt: Spielanleitung Durch Wissen Millionär werden... Diesen Traum kann man sich in diesem beliebten Quiz-Spiel erfüllen. Ob allein oder in der geselligen Runde dieses Quiz enthält 330 Fragen und 1.320 Multiple-Choice-Antworten.

Mehr

Vorsätze für das Jahr 2015

Vorsätze für das Jahr 2015 Vorsätze für das Jahr 2015 Datenbasis: 1.005 Befragte in Nordrhein-Westfalen Erhebungszeitraum: 20. November bis 11. Dezember 2014 statistische Fehlertoleranz: +/- 3 Prozentpunkte Auftraggeber: DAK-Gesundheit

Mehr

How to do? Projekte - Zeiterfassung

How to do? Projekte - Zeiterfassung How to do? Projekte - Zeiterfassung Stand: Version 4.0.1, 18.03.2009 1. EINLEITUNG...3 2. PROJEKTE UND STAMMDATEN...4 2.1 Projekte... 4 2.2 Projektmitarbeiter... 5 2.3 Tätigkeiten... 6 2.4 Unterprojekte...

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Zahlenoptimierung Herr Clever spielt optimierte Zahlen

Zahlenoptimierung Herr Clever spielt optimierte Zahlen system oder Zahlenoptimierung unabhängig. Keines von beiden wird durch die Wahrscheinlichkeit bevorzugt. An ein gutes System der Zahlenoptimierung ist die Bedingung geknüpft, dass bei geringstmöglichem

Mehr

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben: Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 22, Tel. 394 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme

ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt

Mehr

Schleswig-Holstein 2011. Kernfach Mathematik

Schleswig-Holstein 2011. Kernfach Mathematik Aufgabe 6: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. Eine repräsentative

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS

Mehr

Fakultät für Wirtschaftswissenschaft

Fakultät für Wirtschaftswissenschaft Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 3, 4, 5 und 6, SS 2012 1 Fakultät für Wirtschaftswissenschaft 2. Einsendearbeit zum Kurs 00091: Kurseinheit: Finanzierungs- und entscheidungstheoretische

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen Name: Note: Punkte: von 50 (in %: ) Unterschrift des Lehrers : Zugelassene Hilfsmittel: Taschenrechner, Geodreieck, Lineal Wichtig: Schreiben Sie Ihren Namen oben auf das Klausurblatt und geben Sie dieses

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Linearen Gleichungssysteme Anwendungsaufgaben

Linearen Gleichungssysteme Anwendungsaufgaben Linearen Gleichungssysteme Anwendungsaufgaben Lb S. 166 Nr.9 Im Jugendherbergsverzeichnis ist angegeben, dass in der Jugendherberge in Eulenburg 145 Jugendliche in 35 Zimmern übernachten können. Es gibt

Mehr

ANLAGEFONDS Arbeitsauftrag

ANLAGEFONDS Arbeitsauftrag Verständnisfragen Aufgabe 1 Welcher Definition passt zu welchem Begriff? Tragen Sie bei den Definitionen die entsprechenden Buchstaben A H ein. A B C D E F G H Fondsvermögen Anteilschein Rendite Zeichnung

Mehr

Zufallsgrößen und Wahrscheinlichkeitsverteilungen

Zufallsgrößen und Wahrscheinlichkeitsverteilungen RS 24.2.2005 Zufallsgroessen_i.mcd 1) Zufallsgröße Zufallsgrößen und Wahrscheinlichkeitsverteilungen Zu jedem Zufallsexeriment gehört ein Ergebnisraum Ω. Die einzelnen Ergebnisse ω i können Buchstaben,

Mehr

Klausur zur Veranstaltung Industrielle Produktionssysteme im SS 04

Klausur zur Veranstaltung Industrielle Produktionssysteme im SS 04 Universität Hannover Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Veranstaltung Industrielle Produktionssysteme im SS 04 Hinweise: Die Klausur

Mehr

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Studiengang BWL DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

ikk-classic.de Gesetzliches Krankengeld für Selbstständige Kein Zusatzbeitrag 2010 Da fühl ich mich gut.

ikk-classic.de Gesetzliches Krankengeld für Selbstständige Kein Zusatzbeitrag 2010 Da fühl ich mich gut. ikk-classic.de Gesetzliches Krankengeld für Selbstständige Kein Zusatzbeitrag 2010 Da fühl ich mich gut. 2 Informationen Gesetzliches Krankengeld für Selbstständige Selbstständige haben die Möglichkeit,

Mehr

Rationale Zahlen. Weniger als Nichts? Ist Null nichts?

Rationale Zahlen. Weniger als Nichts? Ist Null nichts? Rationale Zahlen Weniger als Nichts? Ist Null nichts? Oft kann es sinnvoll sein, Werte anzugeben die kleiner sind als Null. Solche Werte werden mit negativen Zahlen beschrieben, die durch ein Minus als

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht

Mehr

Dieses erste Kreisdiagramm, bezieht sich auf das gesamte Testergebnis der kompletten 182 getesteten Personen. Ergebnis

Dieses erste Kreisdiagramm, bezieht sich auf das gesamte Testergebnis der kompletten 182 getesteten Personen. Ergebnis Datenanalyse Auswertung Der Kern unseres Projektes liegt ganz klar bei der Fragestellung, ob es möglich ist, Biere von und geschmacklich auseinander halten zu können. Anhand der folgenden Grafiken, sollte

Mehr

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Dieser Download ist ein Auszug aus dem Originaltitel Klassenarbeiten

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

Nr. 12-1/Dezember 2005-Januar 2006. A 12041

Nr. 12-1/Dezember 2005-Januar 2006. A 12041 Nr. 12-1/Dezember 2005-Januar 2006. A 12041 Industrie- und Handelskammer Bonn/Rhein-Sieg. Postfach 1820. 53008 Bonn Industrie- und Handelskammer Bonn/Rhein-Sieg Sparkassen-Finanzgruppe Wenn man sich zur

Mehr

Healthy Athletes Gesunde Lebensweise. Selbstbestimmt gesünder

Healthy Athletes Gesunde Lebensweise. Selbstbestimmt gesünder Healthy Athletes Gesunde Lebensweise Selbstbestimmt gesünder SOD ist mehr als Sport 6 Gesundheits-Programme: Gesund im Mund Besser Sehen Besser Hören Fitte Füße Bewegung mit Spaß Gesunde Lebens-Weise SOD

Mehr

Eisenbahnspiel. (Dokumentation)

Eisenbahnspiel. (Dokumentation) Eisenbahnspiel (Dokumentation) Abbildung 1: Hier sieht man den Gleisparcour In der Mitte ist das Depot mit den Einnahmetalern und den dunkelfarbigen Kreditsteinen und den Sparsäcken zu sehen. Außerdem

Mehr

Abitur 2007 Mathematik GK Stochastik Aufgabe C1

Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Eine Werbeagentur ermittelte durch eine Umfrage im Auftrag eines Kosmetikunternehmens vor Beginn einer Werbekampagne

Mehr

Meinungen zur Altersvorsorge

Meinungen zur Altersvorsorge Meinungen zur Altersvorsorge Datenbasis: 1.003 Befragte ab 18 Jahren, die nicht in Rente sind Erhebungszeitraum: 19. bis 22. März 2007 statistische Fehlertoleranz: +/- 3 Prozentpunkte Auftraggeber: komm.passion

Mehr

50 Fragen, um Dir das Rauchen abzugewöhnen 1/6

50 Fragen, um Dir das Rauchen abzugewöhnen 1/6 50 Fragen, um Dir das Rauchen abzugewöhnen 1/6 Name:....................................... Datum:............... Dieser Fragebogen kann und wird Dir dabei helfen, in Zukunft ohne Zigaretten auszukommen

Mehr

Ruinwahrscheinlichkeiten im Glücksspiel

Ruinwahrscheinlichkeiten im Glücksspiel Ruinwahrscheinlichkeiten im Glücksspiel Wilhelm Stannat Fachbereich Mathematik TU Darmstadt February 24, 2007 Stochastik = Wahrscheinlichkeitstheorie + Statistik Wahrscheinlichkeitstheorie = Mathematische

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

Verbraucherkreditrichtlinie Änderungen zum 11.06.2010

Verbraucherkreditrichtlinie Änderungen zum 11.06.2010 Verbraucherkreditrichtlinie Änderungen Begriffserklärungen: VKR = Verbraucherkreditrichtlinie Umsetzung der neuen VKR tritt in Kraft VVI = Vorvertragliche Informationen Vergütungsinformation & Stand des

Mehr

Leistungen der Pflegeversicherung ab 1.1.10

Leistungen der Pflegeversicherung ab 1.1.10 Leistungen der Pflegeversicherung ab 1.1.10 Bei Nutzung der Tagespflege erhält der Versicherte den 1,5 fachen Satz (entspricht 150%) an Leistungen. Alle Leistung können einzeln nie mehr als 100 % ergeben!

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen

Mehr

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673. Flachglasbranche.

Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673. Flachglasbranche. Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673 Ug-Werte für die Flachglasbranche Einleitung Die vorliegende Broschüre enthält die Werte für

Mehr

2. Aufgabe (3 Punkte) Errechne anhand der angegebenen Daten den Abschreibungssatz der linearen Abschreibung in Prozent. Erklärung:

2. Aufgabe (3 Punkte) Errechne anhand der angegebenen Daten den Abschreibungssatz der linearen Abschreibung in Prozent. Erklärung: Beschreibung zu den Aufgaben 1. bis 3. Im Zuge der Einführung des neuen Warenwirtschaftssystems hat die Marktplatz GmbH auch den Fuhrpark erweitert. Es wurden neue Lieferwagen, Pkw und Gabelstapler gekauft.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: If-clauses - conditional sentences - Nie mehr Probleme mit Satzbau im Englischen! Das komplette Material finden Sie hier: School-Scout.de

Mehr

Umfrage zur Erhebung statistischer Daten bzgl. des Rauchverhaltens von Schülerinnen und Schülern an der BBS IV in Braunschweig

Umfrage zur Erhebung statistischer Daten bzgl. des Rauchverhaltens von Schülerinnen und Schülern an der BBS IV in Braunschweig Umfrage zur Erhebung statistischer Daten bzgl. des Rauchverhaltens von Schülerinnen und Schülern an der BBS IV in Braunschweig Datum: 16. Februar 2005 ungültig: 17 Mittleres Geburtsjahr: 1984 weiblich:

Mehr

Rauchfreies Krankenhaus Ein Gewinn für alle.

Rauchfreies Krankenhaus Ein Gewinn für alle. Rauchfreies Krankenhaus Ein Gewinn für alle. Informationen für Patienten, Beschäftigte im Krankenhaus und auch für Besucher Bundeszentrale für gesundheitliche Aufklärung Was bedeutet rauchfreies Krankenhaus?

Mehr

Ab 2012 wird das Rentenalter schrittweise von 65 auf 67 Jahre steigen. Die Deutsche Rentenversicherung erklärt, was Ruheständler erwartet.

Ab 2012 wird das Rentenalter schrittweise von 65 auf 67 Jahre steigen. Die Deutsche Rentenversicherung erklärt, was Ruheständler erwartet. Rente mit 67 was sich ändert Fragen und Antworten Ab 2012 wird das Rentenalter schrittweise von 65 auf 67 Jahre steigen. Die Deutsche Rentenversicherung erklärt, was Ruheständler erwartet. Wann kann ich

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb

Mehr

Wärmedämmungsexperiment 1

Wärmedämmungsexperiment 1 Wärmedämmungsexperiment 1 Ziel dieses Experiments ist die Messung der Wärmeleitfähigkeit verschiedener Materialien durch Umwandlung der übertragenen Wärmeenergie in Bewegung. Die Menge der Wärmeenergie

Mehr

2.1.1 Wer ist zur Bilanzierung verpflichtet?

2.1.1 Wer ist zur Bilanzierung verpflichtet? Seite 1 2.1.1 2.1.1 Ob eine gesetzliche Verpflichtung zur Bilanzierung besteht, ergibt sich aus den Vorschriften des Unternehmensrechts und der Bundesabgabenordnung. Man unterscheidet deshalb auch die

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Umgang mit Schaubildern am Beispiel Deutschland surft

Umgang mit Schaubildern am Beispiel Deutschland surft -1- Umgang mit Schaubildern am Beispiel Deutschland surft Im Folgenden wird am Beispiel des Schaubildes Deutschland surft eine Lesestrategie vorgestellt. Die Checkliste zur Vorgehensweise kann im Unterricht

Mehr

Inhalt 1. Was wird gefördert? Bausparverträge

Inhalt 1. Was wird gefördert? Bausparverträge Inhalt 1. Was wird gefördert? 2. Wie viel Prozent bringt das? 3. In welchem Alter ist das sinnvoll? 4. Wie viel muss man sparen? 5. Bis zu welchem Einkommen gibt es Förderung? 6. Wie groß sollten die Verträge

Mehr

Auswertung der Umfrage 1. Lehrjahr rauchfrei vom 10. Januar 2008

Auswertung der Umfrage 1. Lehrjahr rauchfrei vom 10. Januar 2008 Auswertung der Umfrage 1. Lehrhr rauchfrei vom. Januar 28 Allgemeine Daten 26 Lernende haben im August 27 ihre Ausbildung in einem der drei Pilotbetriebe gestartet. 2 davon haben eine Vereinbarung unterschrieben.

Mehr

Klausur zur Vorlesung Informationsökonomik

Klausur zur Vorlesung Informationsökonomik Dr. Tone Arnold Wintersemester 2003/04 Klausur zur Vorlesung Informationsökonomik Die Klausur besteht aus drei Vorfragen und drei Hauptfragen, von denen jeweils zwei zu beantworten sind. Sie haben für

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DIPLOM-PRÜFUNG

UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DIPLOM-PRÜFUNG UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DIPLOM-PRÜFUNG DATUM: 13. Juli 2009 FACH: TEILGEBIET: KLAUSURDAUER: Allgemeine Betriebswirtschaftslehre SL-Schein Marketing II 60 Minuten PRÜFER:

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

Aufgaben für die Übung 2 zur Vorlesung Theory of Banking

Aufgaben für die Übung 2 zur Vorlesung Theory of Banking UNIVERSITÄT HOHENHEIM INSTITUT FÜR BETRIEBSWIRTSCHAFTSLEHRE LEHRSTUHL FÜR BANKWIRTSCHAFT UND FINANZDIENSTLEISTUNGEN PROF. DR. HANS-PETER BURGHOF Aufgaben für die Übung 2 zur Vorlesung Theory of Banking

Mehr

Jeder in Deutschland soll ab Mitte 2016 ein Konto eröffnen können.

Jeder in Deutschland soll ab Mitte 2016 ein Konto eröffnen können. Manche Wörter in diesem Text sind schwer. Diese Wörter sind blau. Ganz am Ende vom Text: Sie können eine Erklärung über das Wort in Leichter Sprache lesen. Wenn Sie das Wort nicht kennen. Oder wenn Sie

Mehr

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP .RPELQDWRULN (für Grund- und Leistungsurse Mathemati) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nach dem Studium dieses Sripts sollten folgende Begriffe beannt sein: n-menge, Kreuzprodut, n-tupel Zählprinzip

Mehr

Übungsaufgaben Prozentrechnung und / oder Dreisatz

Übungsaufgaben Prozentrechnung und / oder Dreisatz Übungsaufgaben Prozentrechnung und / oder Dreisatz 1. Bei der Wahl des Universitätssprechers wurden 800 gültige Stimmen abgegeben. Die Stimmen verteilten sich so auf die drei Kandidat/innen: A bekam 300,

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1

Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1 Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene

Mehr

infach Geld FBV Ihr Weg zum finanzellen Erfolg Florian Mock

infach Geld FBV Ihr Weg zum finanzellen Erfolg Florian Mock infach Ihr Weg zum finanzellen Erfolg Geld Florian Mock FBV Die Grundlagen für finanziellen Erfolg Denn Sie müssten anschließend wieder vom Gehaltskonto Rückzahlungen in Höhe der Entnahmen vornehmen, um

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Sparen in Deutschland - mit Blick über die Ländergrenzen

Sparen in Deutschland - mit Blick über die Ländergrenzen Sparen in Deutschland - mit Blick über die Ländergrenzen Repräsentativbefragung Die wichtigsten Ergebnisse Oktober 2011 1 Daten zur Untersuchung Durchführendes Institut: Grundgesamtheit: forsa. Gesellschaft

Mehr

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

XT Großhandelsangebote

XT Großhandelsangebote XT GROßHANDELSANGEBOTE XT Großhandelsangebote Die neuen XT- Großhandelsangebote bieten Ihnen eine große Anzahl an Vereinfachungen und Verbesserungen, z.b. Großhandelsangebote werden zum Stichtag automatisch

Mehr