Mykoplasmen als Modelle von Minimalzellen

Ähnliche Dokumente
Synthetische Biologie

Evolution und Ursprung des Lebens

Leben aus dem Baukasten?

Das Altern beginnt mit den Stammzellen

Andreas Marx - Chemische Biologie der DNA- Polymerasen

Synthetische Biologie

Bioinformatik. Margarethe Kyral

Christian Thoma: Schnelle Regulation durch Translationskontrolle

Vorlesungsthemen Mikrobiologie

27 Funktionelle Genomanalysen Sachverzeichnis

Den molekularen Ursachen der Evolution auf der Spur

Biologie:= Aber: Was ist eigentlich Leben?

Sind die Überlegungen von Hans Jonas zum Sonderstatus biologischer Technik angesichts der Entwicklung in der Synthetischen Biologie noch haltbar?

Leben 2.0. Die "synthetische Biologie" konstruiert das Leben neu. Gen-ethischer Informationsdienst. von Florian Rötzer

Das Wunder der Zelle

acatech DEUTSCHE AKADEMIE DER TECHNIKWISSENSCHAFTEN

Restriktion und Gentechnik

Hermann Bujard - Grundlagenforscher aus Leidenschaft

Stefan Rensing erforscht evolutionären Übergang von Algen zu Landpflanzen

Synthetische Biologie Eine Einführung

Evolution 1859 und heute

Die Distanz zur Quelle bei der Musterbildung im Embryo

Pinschertage der OG Bonn Grundlagen der Zucht

In den Proteinen der Lebewesen treten in der Regel 20 verschiedene Aminosäuren auf. Deren Reihenfolge muss in der Nucleotidsequenz der mrna und damit

Andrei Lupas - Fasziniert von der komplexen Welt der Proteine

Verpackungsrecycling der Bakterienzelle

Weltmeister der Regeneration

Miller-Versuch Ursprung des Lebens?

Intrakoerper II: ( Quelle: t 2?cl=de ) Ansprüche(11)

B I O T E C H N O L O G I E. Molekulare Biotechnologie Engineering von Biosystemen. Bioprozesstechnik Engineering von Produktionsverfahren

Antibiotika-Resistenz: Krankheitserreger beim Lernen stören

Uni Konstanz - Kristallinität als Schlüsselfunktion

Einführung in die Virologie

Darmflora und Menschentyp

Univ.-Prof. Mag. Dr. Thomas Rattei. Bioinformatik als Schlüsseldisziplin im Zeitalter der molekularen und systemorientierten Biologie

Dual-Use-Potenzial. IB21 Bioterrorismus Erreger/Toxine + Szenarien. Bakterien (Bacillus anthracis) Viren (Variola major) Toxine (Botulinum-Toxin)

Genaktivierung und Genexpression

KV: Genexpression und Transkription Michael Altmann

Dass die Entwicklung der Molekularbiologie einfach stehen bleibt,

Mathematik und Biologie

Transkription Teil 2. - Transkription bei Eukaryoten -

Aufbau und Funktion des Genoms: Von der Genstruktur zur Funktion

Der molekulare Bauplan des Lebens; biologische Nano- und Mikrobausteine von Lebewesen. RNA und DNA als sich selbst replizierende Informationsspeicher

Künstliches Leben Fluch oder Segen der synthetischen Biologie Festvortrag auf dem Leibniztag am 30. Juni 2011

Schulinterner Arbeitsplan für den Jahrgang 11 im Fach Biologie Verwendetes Lehrwerk: BIOSKOP 11

Grundlagen der Molekularen Biophysik WS 2011/12 (Bachelor) Dozent: Prof Dr. Ulrike Alexiev (R , Tel /Sekretariat Frau Endrias Tel.

Synthetische Biologie Eine Einführung. - Was ist synthetische Biologie? - Mögliche Anwendungsgebiete -Ethische Fragen

Funktionsnachweis von Genen bei der Cholesterin- Regulation

Circadiane Rhythmen und molekulare Uhren

GENERAL PRINCIPLES OF CELLULAR ORGANIZATION IN THE GENOME-REDUCED BACTERIUM MYCOPLASMA PNEUMONIAE

Einführung in die Bioinformatik

Praktikum Biochemie B.Sc. Water Science WS Enzymregulation. Marinja Niggemann, Denise Schäfer

Synthetische Biologie

Biologie für Physikerinnen und Physiker

Das Leibniz-Institut. Beispiele für Natur-Stoffe sind zum Beispiel Zucker oder Proteine. Ein modernes Wort für Natur-Stoff ist: Bio-Molekül.

Integron und Integrase

Erleuchtung im Tierreich

Bei Einbeziehung von neun Allelen in den Vergleich ergibt sich eine Mutation in 38 Generationen (350:9); das entspricht ca. 770 Jahren.

Andreas Diefenbach: Die molekulare Betrachtungsweise von Krankheitsmechanismen

Synthetische Biologie

Wissenschaftlich-technische Entwicklungen im Bereich der Multiplex- und High-Throughput-Diagnostik. Karl J. Lackner

Masterarbeit. Variantentolerantes Readmapping durch Locality Sensitive Hashing. Jens Quedenfeld November Gutachter: Sven Rahmann Dominik Köppl

Ministerium für Kultus, Jugend und Sport Baden-Württemberg

UNIVERSITÄTSKLINIKUM Schleswig-Holstein. Sequenzierung. Norbert Arnold. Dept. Gynecology and Obstetrics Oncology Laboratory

Patrick Heun: Die Ordnung rund um das DNA-Knäuel

erläutern Eigenschaften des genetischen Codes und charakterisieren mit dessen Hilfe Experimentelle Entschlüsselung (SF)

Technische Universität Dresden Fakultät Mathematik und Naturwissenschaften

Neue Diagnostik für akute myeloische Leukämie

Modelle. Modelle im Biologieunterricht

Musterlösung- Übung 9

SC Biologie Klasse 11 Einführungsphase

Frontlinien der molekularen Biologie

Institut für Biochemie und Molekulare Medizin. Lecture 1 Translational components. Michael Altmann FS 2011

Grundkurs Q 1: Inhaltsfeld: IF 3 (Genetik)

Klausur zum Modul Molekularbiologie ILS, SS 2010 Freitag 6. August 10:00 Uhr

VIRUSEPIDEMIOLOGISCHE INFORMATION NR. 11/16

Synthetische Biologie in biophysikalischer Perspektive

64 MaxPlanckForschung 4 16

Untersuchung der Quartärstruktur

Entzauberung des Lebens

Bioinformatik an der FH Bingen

Alexander Titz: Molekül-Design gegen antibiotikaresistente Bakterien

Biopharm GmbH: Wachstumsfaktor der regenerativen Medizin

Die Evolution. Molekularer Netzwerke. Sarah A. Teichmann

Aufschluss über das Leben im ewigen Eis

Biotechnologische Herstellung von Chitosanen

Perspektiven einer computergestützten Molekularbiologie

Nils Johnsson liefert Bilder für das spätere "Proteinkino"

Begriffliche und ethische Implikationen der Synthetischen Biologie. Werner Kogge Institut für Philosophie Freie Universität Berlin

Einführung in die Bioinformatik

Gezielte Modifikation pflanzlicher Erbinformation mittels Designer-Endonukleasen

Biologischer Abbau (Physiologie)

Inhaltsverzeichnis. Vorwort... Teil I Leben in einem Kubikmikrometer... 1

Biotechnologe/-in FH. Berufsbeschreibung

Transkript:

Powered by Seiten-Adresse: https://www.gesundheitsindustriebw.de/de/fachbeitrag/aktuell/mykoplasmen-als-modellevon-minimalzellen/ Mykoplasmen als Modelle von Minimalzellen Bakterien der Gattung Mycoplasma gehören zu den kleinsten selbstreplizierenden Zellen und dienen als Modellorganismen der Synthetischen Biologie, um essenzielle Lebensfunktionen auszuloten und um als Chassis für neuartige maßgeschneiderte Biosynthesen herzuhalten. Auch Heidelberger Wissenschaftler sind an vorderster Front an der Erforschung der Mykoplasmen als Minimalorganismen beteiligt. Mycoplasma genitalium biotechnologie.de Die Konstruktion von Zellen mit einem Minimalgenom" ist eines der Hauptanliegen der Synthetischen Biologie. Solche Zellen sollen nur die für die Lebensfunktionen absolut unabdingbaren Komponenten enthalten, ihr Genom besteht nur aus den für das Leben unverzichtbaren sogenannten essenziellen Genen. Aus ihrer Analyse erhoffen sich die Forscher Auskunft auf Fragen, was das Leben ist, welche Komponenten unter definierten Bedingungen jeweils zum Überleben erforderlich sind und wie die evolutionäre Anpassung der Zellen an ihre Umwelt erfolgt. Zum anderen sollen Minimalzellen als Plattform dienen, um darauf maßgeschneiderte neue Funktionen aufzubauen. Der dafür benutzte, aus dem Fahrzeugbau entlehnte Begriff Chassis", zeigt, dass sich die Synthetische Biologie als Technikwissenschaft versteht. Die kleinsten Zellen 1

Bakterien der Gattung Mycoplasma gelten als besonders geeignete Modellorganismen für das Ziel, Minimalzellen zu analysieren und mit den Methoden der Synthetischen Biologie im Labor herzustellen. In diesen Tagen sind sie sogar in die Schlagzeilen der Massenmedien mit J.C. Venters spektakulärer Mitteilung über die erste im Labor synthetisierte Zelle (s. Artikel "Ingenieure des Lebens") gekommen. Venter und seine Mitarbeiter Clyde Hutchinson und Hamilton Smith hatten schon 1995 bei der Veröffentlichung der Genomsequenz von Mycoplasma genitalium, als der Begriff Synthetische Biologie noch nicht geläufig war, das Ziel der Synthese von Minimalorganismen zu Produktionszwecken für den Menschen benannt. 1995 galt M. genitalium mit einer Genomlänge von 580 Kilobasenpaaren (kbp) als kleinster selbstreplizierender Organismus. Später sind noch kleinere gefunden worden: Nanoarchaeum equitans (490 kbp), eine auf anderen Archaeen lebende Archaee heißer Quellen ( black smoker") in den Tiefen der Ozeane; Buchnera aphidicola (420 kbp), ein Symbiont oder Parasit von Blattläusen (Aphidae). Seit 2006 hält Carsonella ruddii, ein Endosymbiont von Blattflöhen (Psyllidae), mit ca. 160 kbp den Rekord des kleinsten Genoms eines Lebewesens; dieses Genom ist nicht größer oder sogar kleiner als das mancher Pockenviren. Bei all diesen Kleinstorganismen handelt es sich um Symbionten oder Parasiten, die wesentliche Stoffwechselfunktionen, zum Beispiel die Synthese von Lipiden, nicht selbst ausüben können, sondern von ihrem Wirt beziehen. Mycoplasmen haben den Vorteil, dass sie relativ leicht auf mit Serum angereicherten Nährmedien im Labor kultiviert werden können. Mycoplasma genitalium vs. Mycoplasma pneumoniae Prof. Dr. Richard Herrmann, im Ruhestand. ZMBH Die Sequenzierung des M.-genitalium- Genoms war der Beginn von Venters Minimalgenomprojekt, das zwölf Jahre später in die Synthese dieses Genoms aus vorgefertigten Bausteinen einmündete. Damit war ein wichtiger Meilenstein der Synthetischen Biologie erreicht (eines Begriffes, der zwar schon 1912 als la biologie synthétique" von dem französischen Biologen Stéphane Leduc geprägt worden war, aber erst ab etwa 2000 geläufig 2

wurde). Hier soll aber hervorgehoben werden, dass 1996, fast zeitgleich, das Genom von Mycoplasma pneumoniae von Heidelberger Wissenschaftlern sequenziert worden war. Das Team von Richard Herrmann am Zentrum für Molekulare Biologie Heidelberg (ZMBH) hatte etwa drei Jahre lang an der Entschlüsselung dieses Genoms gearbeitet. Es ist 816 kbp groß und kodiert für 689 Proteine, von denen bei 458 die Funktion vorhergesagt werden konnte. Wie sich herausstellte, sind alle proteinkodierenden Sequenzen (genauer gesagt: Offene Leseraster" oder open reading frames", ORFs), die für M. genitalium beschrieben worden sind, auch in dem größeren Genom von M. pneumoniae enthalten. Von den übrigen, nicht in M. genitalium vorkommenden ORFs waren gut die Hälfte spezifisch für M. pneumoniae, während andere Amplifikationen vorhandener Gene darstellten. Der Vergleich liefert wertvolle Informationen über die lebensnotwendigen Genomstrukturen und evolutionären Anpassungen der Zellen an ihre Umwelt. Dr. Peer Bork EMBL In jüngster Zeit haben Forschungsgruppen um Peer Bork und Anne-Claude Gavin am Europäischen Molekularbiologischen Laboratorium in Heidelberg (EMBL) sowie Luis Serrano (heute Centre Regulacio Genómica, Barcelona, Spanien) bei M. pneumoniae die von der bekannten Genomstruktur abhängige Regulation der Transkription, des Stoffwechsels und die Organisation des Proteoms systematisch untersucht. Sie wählten M. pneumoniae als Modell, weil es komplex genug ist, um auf sich gestellt zu überleben, aber klein und (theoretisch) einfach genug, um eine Minimalzelle zu repräsentieren und eine umfassende Analyse zu erlauben (EMBL, 27.11.09). Dr. Anne-Claude Gavin EMBL Die in drei Artikeln in der Zeitschrift Science veröffentlichten Ergebnisse zeigen, dass die 3

Transkription und ihre Regulation wesentlich komplexer sind, als man bisher für einen Minimalorganismus angenommen hatte. Trotz seines kleinen Genoms und der relativ geringen Zahl von Transkriptionsfaktoren reagiert M. pneumoniae unglaublich flexibel auf selbst drastisch veränderte Umweltbedingungen. Es ist in seiner Anpassungsfähigkeit wesentlich größeren und komplexeren Bakterien keineswegs unterlegen. Die Wissenschaftler fanden außerdem, dass überraschend viele Proteine multifunktionelle Eigenschaften besitzen, darunter auch Interaktionen zwischen Proteinkomplexen, mit denen sie nicht gerechnet hatten. Kein Umsturz im Weltbild der Biologie Als das Team um Craig Venter daran ging, nach der Synthese des M.-genitalium- Genoms den logischen nächsten Schritt der Synthetischen Biologie zu vollziehen, nämlich den Einbau des synthetischen Genoms in eine DNA-freie Bakterienzellhülle, stießen sie auf überraschende Schwierigkeiten. M. genitalium wächst für ein Bakterium sehr langsam, und so entschieden sich die Forscher schließlich, auf ein anderes Bakterium überzuwechseln. M. mycoides hat zwar ein wesentlich größeres Genom (ca. 1 Mio. kbp), wächst aber auch viel schneller. Im vergangenen Jahr gelang es, dieses Genom in eine Hefezelle zu transferieren und dort zu modifizieren. Das veränderte M.-mycoides- Chromosom wurde schließlich in ein verwandtes Bakterium, M. capricolum, als Empfängerzelle transplantiert, bei der das Gen für ein Restriktionsenzym entfernt worden war. Nach Inkubation entstanden Zellen, deren DNA ausschließlich aus dem modifizierten M.-mycoides- Genom bestand. Dieselbe Strategie wurde jetzt mit einem komplett chemisch synthetisierten M.-mycoidesverfolgt. Der Zusammenbau dieses Genoms erfolgte in einem dreistufigen Prozess in Genom Hefezellen mit 1.078 jeweils 1.080 Basenpaare (bp) langen DNA-Streifen (80 bp immer als überlappende Sequenzen), die von einer amerikanischen DNA-Synthese-Firma (Blue Heron Biotechnology) geliefert wurden. Dieser Erfolg verändert meine Betrachtung des Lebens und seiner Funktionsweise, betonte Venter gegenüber der Nachrichtenagentur AFP. Für die meisten Molekularbiologen werden diese Experimente aber keinen Umsturz ihres Weltbildes bewirken. Die großartige technische Leistung muss man bewundern. Aber dass es für die Funktion der Zelle im Prinzip egal ist, ob die DNA aus biologischem Material stammt oder durch chemische Synthese hergestellt wurde, dürfte nicht überraschen. Was ist minimal? Wie groß das Minimalgenom sein muss, damit eine Zelle lebendig ist, wissen wir durch diese Experimente auch nicht; zunächst einmal hat man für sie das Genom wieder vergrößert. Auf der Suche nach der zellulären Minimalausstattung hatte man bei M. genitalium immer mehr Gene ausgeschaltet, und die Zellen lebten trotzdem weiter irgendwie. Neuerdings wird eine Zahl von ca. 110 kbp als untere Grenze gehandelt - vergleiche das oben erwähnte Bakterium Carsonella ruddii. Es spricht aber manches dafür, dass es nicht ein Minimalgenom gibt, sondern dass es je nach Zelle und den Bedingungen, unter denen sie lebt, immer wieder neu definiert werden muss. Die enorme Flexibilität und Anpassungsfähigkeit, die man selbst bei den Mykoplasmen gefunden hat, wirft für das Konzept des Minimalgenoms weitere zunächst verwirrende Fragen auf. 4

Publikationen: Kühner S, van Noort V, Bewtts MJ etr al. (2009) Proteome organization in a genome-reduced bacterium. Science 326:1235-1240 Yus E, Maier T, Michalodimitrakis K et al. (2009) Impact of genome reduction on bacterial metabolism and ist regulation. Science 326: 1263-1268 Güell M, van Noort V, Yus E et al. (2009) Transcriptome complexity in a genome-reduced bacterium. Science 326: 1268-1271 Fachbeitrag 14.06.2010 EJ (31.05.10) BioRN BIOPRO Baden-Württemberg GmbH Der Fachbeitrag ist Teil folgender Dossiers Ingenieure des Lebens 5