Physik. Schulinterner Lehrplan. Sekundarstufe II

Größe: px
Ab Seite anzeigen:

Download "Physik. Schulinterner Lehrplan. Sekundarstufe II"

Transkript

1 Physik Schulinterner Lehrplan Sekundarstufe II

2 sverzeichnis Seite 1. Rahmenbedingungen der fachlichen Arbeit 4 2. Schulinternes Curriculum Einführungsphase Übersichtsraster der Unterrichtsvorhaben Unterrichtsvorhaben Physik und Sport Unterrichtsvorhaben Physik auf der Kirmes Unterrichtsvorhaben Star Wars und die Realität Unterrichtsvorhaben Das ist Musik in meinen Ohren Qualifikationsphase 1 Grundkurs Übersichtsraster der Unterrichtsvorhaben Unterrichtsvorhaben Licht: Welle oder Teilchen? Unterrichtsvorhaben Elektron; Teilchen oder doch Welle? Unterrichtsvorhaben Photonen und Elektronen als Quantenobjekte Unterrichtsvorhaben Energieversorgung mit Generatoren und Transformatoren Unterrichtsvorhaben Sicherheit beim Power-Tower die Wirbelstrombremse Qualifikationsphase 1 Leistungskurs Übersichtsraster der Unterrichtsvorhaben Unterrichtsvorhaben Teilchenbeschleuniger Bis(s) ins Innere des Protons Unterrichtsvorhaben Einstein Alles ist relativ! Unterrichtsvorhaben Kosmische Höhenstrahlung am Erdboden? Unterrichtsvorhaben Teilchenbeschleuniger Warum Teilchen aus dem Takt geraten Unterrichtsvorhaben Die gekrümmte Raumzeit Zeitmessung unter dem Einfluss von Gravitation und Geschwindigkeit Unterrichtsvorhaben Teilchenbeschleuniger Unterrichtsvorhaben Aufbau und Funktionsweise von Teilchenbeschleunigern und anderen Messapparaturen Unterrichtsvorhaben Erzeugung elektrischer Energie und deren Übertragung Unterrichtsvorhaben WLAN, Bluetooth, LTE Grundlagen der drahtlosen Nachrichtenübertragung 46

3 2.4 Qualifikationsphase 2 Grundkurs Übersichtsraster der Unterrichtsvorhaben Unterrichtsvorhaben Geschichte der Atommodelle Unterrichtsvorhaben Physik in der Medizin Unterrichtsvorhaben Forschung am CERN und DESY Unterrichtsvorhaben Navigationssysteme Unterrichtsvorhaben Teilchenbeschleuniger Warum Teilchen aus dem Takt geraten Unterrichtsvorhaben Das heutige Weltbild Qualifikationsphase 1 Leistungskurs Übersichtsraster der Unterrichtsvorhaben Unterrichtsvorhaben Erforschung des Photons Unterrichtsvorhaben Röntgenstrahlung, Erforschung des Photons Unterrichtsvorhaben Erforschung des Elektrons Unterrichtsvorhaben Die Welt kleinster Dimensionen Mikroobjekte und Quantentheorie Unterrichtsvorhaben Geschichte der Atommodelle Unterrichtsvorhaben Physik in der Medizin (Bildgebende Verfahren, Radiologie Unterrichtsvorhaben (Erdgeschichtliche) Altersbestimmung Unterrichtsvorhaben Energiegewinnung durch nukleare Prozesse Unterrichtsvorhaben Forschung am CERN und DESY Elementarteilchen und ihre fundamentalen Wechselwirkungen Grundsätze der fachmethodischen und fachdidaktischen Arbeit Grundsätze der Leistungsbewertung und Leistungsrückmeldung Leistungsbewertung Sonstige Mitarbeit Klausuren Bewertung von Facharbeiten Grundsätze der Leistungsrückmeldung und Beratung Lehr- und Lernmittel Entscheidungen zu fach- und unterrichtsübergreifenden Fragen Qualitätssicherung und Evaluation 88

4 1. Rahmenbedingungen der fachlichen Arbeit Das vierzügig ausgelegte Archi ist in der Hansestadt Soest gelegen in unmittelbarer Nähe zur ehemaligen Wallanlage und nur wenige hundert Meter vom Stadtzentrum entfernt. Es ist eines von drei öffentlichen Gymnasien neben einer Gesamtschule und zwei Berufskollegs mit Bildungsgangangeboten zur Erlangung der allgemeinen Hochschulreife. In der Sekundarstufe I unterhält das Archi einen offenen Ganztagsbereich. Auf dem Schulgelände gibt es Solarzellen, welche den erzeugten Strom in das Netz einspeisen können, eine Sonnenuhr, die von Schülerinnen und Schülern im Rahmen von Projekttagen auf dem Pausenhof gestaltet wurde, und einen Planetenweg, der von Schülerinnen und Schülern der Astronomie-AG auf dem Schulhof errichtet wurde. Im unmittelbaren Schulumfeld dominiert Wohnbebauung. Nur einige hundert Meter entfernt befindet sich die Fachhochschule Soest, mit der die Schule eine Kooperation hat. Jedes Jahr besucht die Jahrgangsstufe Q1 die Fachhochschule im Rahmen der Berufsorientierung, des Weiteren finden regelmäßige Exkursionen zu den Schülervorlesungen und Schülerlabors statt. Darüber hinaus gibt es eine Kooperation mit dem am Möhnesee gelegenen Unternehmen Ohrmann, welches als externer Partner eine kleine Schülergruppe (aus den Jahrgangstufen 9 und 10) individuell im Bereich der Technik fördert. Die individuelle Förderung der Schülerinnen und Schüler im Fach Physik beginnt bereits in den Jahrgangsstufen 5 und 6 mit einer Experimentier-AG und das Angebot wird kontinuierlich weitergeführt mit einer technikorientierten Tüftler -AG in den Jahrgangsstufen 7 und 8. Schülerinnen und Schüler aller Klassen- und Jahrgangsstufen werden zur Teilnahme an den vielfältigen Wettbewerben im Fach Physik motiviert und, wo erforderlich, begleitet. Insgesamt besuchen 930 Schülerinnen und Schüler das Archi, welche von 7 Kolleginnen und Kollegen im Fach Physik unterrichtet werden. Das Fach Physik wird in der Sekundarstufe I in den Jahrgangsstufen 6, 7, 8 und 9 unterrichtet, in den Jahrgangstufen 6, 7 und 9 ganzjährig zweistündig, in der Jahrgangstufe 8 ein Halbjahr lang ebenfalls zweistündig. Die zwei Wochenstunden Physikfachunterricht werden in der Regel als Doppelstunde unterrichtet und finden in den Fachräumen statt. Für das Fach Physik gibt es zwei Fachräume, in denen die Schüler auch experimentieren können. In diesen Räumen befinden sich jeweils ein Beamer und eine Dokumentenkamera. Neben den Computerräumen, die allen Lehrerinnen und Lehrern zur Verfügung stehen, verfügt die Fachschaft Physik über einen halben Klassensatz Laptops, auf denen sich u.a. Programme zur Versuchsauswertung befinden, so dass hier problemlos mit einer Klasse oder einem Kurs Versuche digital ausgewertet werden können. In der Sekundarstufe II bietet die Schule sowohl Grund- als auch Leistungskurse im Fach Physik an. 4

5 Im Schuljahr 2016/2017 gibt es in der Einführungsphase drei Grundkurse, in der Qualifikationsphase 1 einen Leistungskurs sowie zwei Grundkurse. In der Qualifikationsphase 2 wurden ein Leistungskurs und zwei Grundkurse eingerichtet. In der Einführungsphase sind dies reine schulinterne Kurse. Ab der Qualifikationsphase kooperiert das Archi sowohl mit dem Aldegrever-Gymnasium als auch mit dem Conrad-von-Soest-Gymnasium und ggf. auch mit der Hannah-Arendt-Gesamtschule, um die von den Schülerinnen und Schülern gewählten Fächer/ Schullaufbahnen realisieren zu können. Ziel der Arbeit der Fachkonferenz Physik ist es, das Interesse der Schülerinnen und Schüler am Fach Physik zu wecken bzw. zu fördern, und die Schülerinnen und Schüler mit umfassenden auszustatten. Dies soll insbesondere durch die weitgehende Orientierung der Unterrichtsbeispiele an Fragestellung des alltäglichen Lebens, durch die Einbeziehung aktueller Forschungsergebnisse aus der Medienberichtserstattung und durch den Einsatz moderner Medien unterstützt werden. Formen des kooperativen Lernens sind als besonders wirksame Arbeits- und Lernformen im Fach Physik verankert. In möglichst vielen Unterrichtsvorhaben wird den Schülerinnen und Schülern die Möglichkeit gegeben, Schülerexperimente durchzuführen; damit wird die Unterrichtspraxis aus der Sekundarstufe I fortgeführt. Insgesamt werden überwiegend kooperative, die Selbstständigkeit des Lerners fördernde Unterrichtsformen genutzt, sodass ein individualisiertes Lernen in der Sekundarstufe II kontinuierlich unterstützt wird. Hierzu eignen sich besonders Doppelstunden. Die individuelle Förderung jeder einzelnen Schülerin und jedes einzelnen Schülers ist der Fachgruppe Physik nicht zuletzt vor dem Hintergrund der gesellschaftlichen Anforderungen an Studierfähigkeit und Berufsorientierung ein besonderes Anliegen. Das Archi ist zu Beginn des Schuljahres 2016 / 2017 zum ersten Mal als MINTfreundliche Schule geehrt werden. Dieser Auszeichnung möchte unsere Schule auch weiterhin gerecht werden; die Fachschaft Physik ist darum bemüht, die Förderung der Schülerinnen und Schüler im MINT-Bereich noch weiter auszubauen. Dies ist vor dem Hintergrund des Fachkräftemangels insbesondere im MINT-Bereich von wachsender Bedeutung für unsere Gesellschaft. Gleichwohl sehen wir uns aber auch dem Leitziel einer philosophisch-kritischen Schule verpflichtet. Eine weitere Grundposition, die die Arbeit und das Schulleben am Archi prägt, ist die bewusste Einbindung, Weiterentwicklung und der Umgang (mit) der humanistischen Tradition unserer im Jahr 1534 gegründeten Schule. 5

6 2. Schulinternes Curriculum sind nicht nur an Kompetenzbereiche, sondern immer auch an fachliche e gebunden. Eine vertiefte physikalischnaturwissenschaftliche Bildung soll deshalb mit Blick auf die nachfolgenden sfelder entwickelt werden. 2.1 Einführungsphase Übersichtsraster der Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Physik und Sport Wie lassen sich Bewegungen vermessen und analysieren? Zeitbedarf: 28 Ustd. Physik auf der Kirmes Wie lassen sich Bewegungsgrößen fachgerecht beschreiben, berechnen und vorhersagen? Zeitbedarf: 24 Ustd. Star Wars" und die Realität Gilt unsere Physik auch für die Aliens? Zeitbedarf: 20 Ustd. Schall Wie lässt sich Schall physikalisch untersuchen? Zeitbedarf: 16 Ustd. Summe Einführungsphase: 84 Unterrichtsstunden sfelder, liche Schwerpunkte Mechanik Kräfte und Bewegungen Mechanik Energie und Impuls Kräfte und Bewegungen Mechanik Gravitation Kräfte und Bewegungen Energie und Impuls Mechanik Schwingungen und Wellen Kräfte und Bewegungen Energie und Impuls 6

7 2.1.2 Unterrichtsvorhaben Physik und Sport Leitfrage: Wie lassen sich Bewegungen vermessen und analysieren? liche Schwerpunkte: Kräfte und Bewegungen Kompetenzschwerpunkte: Schülerinnen und Schüler können... (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen (K4) physikalische Aussagen und Behauptungen mit sachlich fundierten und überzeugenden Argumenten begründen bzw. kritisieren. (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern, (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen, (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen. 7

8 Beschreibung und Analyse von linearen Bewegungen (16 Ustd.) stellen Daten in Tabellen und sinnvoll skalierten Diagrammen (u. a. t-s- und t-v-diagramme, Vektordiagramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3), unterscheiden gleichförmige und gleichmäßig beschleunigte Bewegungen (UF2), erschließen und überprüfen mit Messdaten und Diagrammen funktionale Beziehungen zwischen mechanischen Größen (E5), bestimmen mechanische Größen mit mathematischen Verfahren und mithilfe digitaler Werkzeuge (u.a. Tabellenkalkulation, GTR) (E6), planen selbstständig Experimente zur quantitativen und qualitativen Untersuchung einfacher Zusammenhänge (u.a. zur Analyse von Bewegungen), führen sie durch, werten sie aus und bewerten Ergebnisse und Arbeitsprozesse (E2, E5, B1), vereinfachen komplexe Bewegungs- und Gleichgewichtszustände durch Komponentenzerlegung bzw. Vektoraddition (E1), Analyse von Bewegungen im Sport (Fahrradfahrt o. ä., Sprint, Flug von Bällen) mit einfachen messtechnischen Hilfsmitteln Auswertung von Bewegungsabläufen mithilfe des GTR Luftkissenfahrbahn mit digitaler Messwerterfassung: Messreihe zur gleichmäßig beschleunigten Bewegung Untersuchung des Freien Falls mithilfe digitaler Videoanalyse Wurfbewegungen Kugelstoßen, Skispringen, Handball /didaktische Hinweise Darstellung von Messdaten in Tabellen und Diagrammen mithilfe des GTR (auch lineare und quadratische Regression), u.u. auch mithilfe einer Software zur Tabellenkalkulation Unterscheidung von gleichförmigen und (beliebig) beschleunigten Bewegungen (insb. auch die gleichmäßig beschleunigte Bewegung) Erarbeitung der Bewegungsgesetze der gleichförmigen Bewegung Untersuchung gleichmäßig beschleunigter Bewegungen Erarbeitung der Bewegungsgesetze der gleichmäßig beschleunigten Bewegung Erstellung von t-s und t-v-diagrammen (auch mithilfe des GTR), die Interpretation und Auswertung derartiger Diagramme sollte intensiv geübt werden. Einführung in die Verwendung von digitaler Videoanalyse beim freien Fall (Auswertung von Videosequenzen) Planung und Durchführung von Experimenten durch die Schüler einschließlich der Auswertung mittels Videoanalyse Schlussfolgerungen bezüglich des Einflusses der Körpermasse bei Fallvorgängen Wesentlich: Erarbeitung des Superpositionsprinzips (Addition und Komponentenzerlegung vektorieller Größen) Herleitung der Gleichung für die Bahnkurve (waagerechter Wurf) 8

9 Newton sche Gesetze, Kräfte und Bewegung (12 Ustd.) entscheiden begründet, welche Größen bei der Analyse von Bewegungen zu berücksichtigen oder zu vernachlässigen sind (E1, E4), reflektieren Regeln des Experimentierens in der Planung und Auswertung von Versuchen (u. a. Zielorientierung, Sicherheit, Variablenkontrolle, Kontrolle von Störungen und Fehlerquellen) (E2, E4), Luftkissenfahrbahn mit digitaler Messwerterfassung: Messung der Beschleunigung eines Körpers in Abhängigkeit von der beschleunigenden Kraft /didaktische Hinweise Erkennen wesentlicher Prinzipien von Laborexperimenten (Ausschalten bzw. Minimieren von Störungen; Konstant halten einzelner Größen, um Zusammenhänge anderer Größen zu erhalten) Erarbeitung des Bewegungsgesetzes von Newton und Definition der Kraft als Erweiterung des Kraftbegriffs aus der Sekundarstufe I. berechnen mithilfe des Newton schen Kraftgesetzes Wirkungen einzelner oder mehrerer Kräfte auf Bewegungszustände und sagen sie unter dem Aspekt der Kausalität vorher (E6), Berechnung von Kräften und Beschleunigungen beim Kugelstoßen, bei Ballsportarten, Einfluss von Reibungskräften geben Kriterien (u.a. Objektivität, Reproduzierbarkeit, Widerspruchsfreiheit, Überprüfbarkeit) an, um die Zuverlässigkeit von Messergebnissen und physikalischen Aussagen zu beurteilen, und nutzen diese bei der Bewertung von eigenen und fremden Untersuchungen (B1), 28 Ustd. Summe 9

10 2.1.3 Unterrichtsvorhaben Physik auf der Kirmes Leitfrage: Wie lassen sich Bewegungsgrößen fachgerecht beschreiben, berechnen und vorhersagen? liche Schwerpunkte: Kräfte und Bewegungen, Energie und Impuls Kompetenzschwerpunkte: Schülerinnen und Schüler können (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen. (E1) in unterschiedlichen Kontexten physikalische Probleme identifizieren, analysieren und in Form physikalischer Fragestellungen präzisieren. (E3) mit Bezug auf Theorien, Modelle und Gesetzmäßigkeiten auf deduktive Weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten. 10

11 Energie und Leistung Impuls (14 Ustd.) erläutern die Größen Position, Strecke, Geschwindigkeit, Beschleunigung, Masse, Kraft, Arbeit, Energie, Impuls und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4), analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ sowohl aus einer Wechselwirkungsperspektive als auch aus einer energetischen Sicht (E1, UF1), verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6), beschreiben eindimensionale Stoßvorgänge mit Wechselwirkungen und Impulsänderungen (UF1), begründen argumentativ Sachaussagen, Behauptungen und Vermutungen zu mechanischen Vorgängen und ziehen dabei erarbeitetes Wissen sowie Messergebnisse oder andere objektive Daten heran (K4), bewerten begründet die Darstellung bekannter mechanischer und anderer physikalischer Phänomene in verschiedenen Medien (Printmedien, Filme, Internet) bezüglich ihrer Relevanz und Richtigkeit (K2, K4), Kirmesvideos Fadenpendel (als Modell für eine Schiffschaukel) Luftkissenfahrbahn mit digitaler Messwerterfassung: Messreihen zu elastischen und unelastischen Stößen Angaben der Schausteller bzgl. ihrer Fahrgeschäfte /didaktische Hinweise Begriffe der Arbeit und der Energie aus der SI aufgreifen und wiederholen Deduktive Herleitung der Formeln für die mechanischen Energiearten aus den Newton schen Gesetzen und der Definition der Arbeit Energieerhaltung an Beispielen (Schiffschaukel, Achterbahn) erarbeiten und für Berechnungen nutzen Energetische Analysen bei verschiedenen Kirmesattraktionen (Achterbahn, Power Tower ) Begriff des Impulses und Impuls als Erhaltungsgröße Elastischer und inelastischer Stoß auch an anschaulichen Beispielen von der Kirmes (z.b. Auto- Scooter) Hinweis: Erweiterung des Impulsbegriffs am Ende des Kontextes Auf dem Weg in den Weltraum 11

12 Kreisbewegungen (8 Ustd.) analysieren und berechnen auftretende Kräfte bei Kreisbewegungen (E6), Messung der Zentralkraft mit dem Zentralkraftgerät /didaktische Hinweise Beschreibung von gleichförmigen Kreisbewegungen, Winkelgeschwindigkeit, Periode, Bahngeschwindigkeit, Frequenz anhand von geeigneten Fahrgeschäften (z.b. Musikexpress) Experimentell-erkundende Erarbeitung der Formeln für Zentripetalkraft und Zentripetalbeschleunigung: Herausstellen der Notwendigkeit der Konstanthaltung der restlichen Größen bei der experimentellen Bestimmung einer von mehreren anderen Größen abhängigen physikalischen Größe (hier bei der Bestimmung der Zentripetalkraft in Abhängigkeit von der Masse des rotierenden Körpers) Ergänzend: Deduktion der Formel für die Zentripetalbeschleunigung 22 Ustd. Summe 12

13 2.1.4 Unterrichtsvorhaben Star Wars und die Realität Leitfrage: Gilt unsere Physik auch für die Aliens? liche Schwerpunkte: Gravitation, Kräfte und Bewegungen, Energie und Impuls Kompetenzschwerpunkte: Schülerinnen und Schüler können (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen. (E3) mit Bezug auf Theorien, Modelle und Gesetzmäßigkeiten auf deduktive Weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten, (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen, (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen. /didaktische Hinweise Aristotelisches Weltbild, Kopernikanische Wende Planetenbewegung-en und Kepler sche Gesetze (6 Ustd.) stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7), ermitteln mithilfe der Kepler schen Gesetze und des Gravitationsgesetzes astronomische Größen (E6), beschreiben an Beispielen Veränderungen im Weltbild und in der Arbeitsweise der Naturwissenschaften, die durch die Arbeiten von Kopernikus, Kepler, Galilei und Newton initiiert wurden (E7, B3). Virtuelles Planetarium (z.b. Stellarium) Internet Schulbuch Film Animationen zur Darstellung der Planetenbewegungen Einstieg über Film zur Entwicklung des Raketenbaus und der Weltraumfahrt Besuch in einer Sternwarte, Planetarium Beobachtungen am Himmel Historie: Verschiedene Möglichkeiten der Interpretation der Beobachtungen Orientierung am Himmel Beobachtungsaufgabe: Finden von Planeten am Nachthimmel Tycho Brahes Messungen, Keplers Schlussfolgerungen Benutzung geeigneter Apps 13

14 Newton sches Gravitationsgesetz, Gravitationsfeld (6 Ustd.) beschreiben Wechselwirkungen im Gravitationsfeld und verdeutlichen den Unterschied zwischen Feldkonzept und Kraftkonzept (UF2, E6), Arbeit mit dem Lehrbuch Recherche im Internet (z.b. Leifi Physik) /didaktische Hinweise Newton sches Gravitationsgesetz als Zusammenfassung bzw. Äquivalent der Kepler schen Gesetze Newton sche Mondrechnung Anwendung des Newton schen Gravitationsgesetzes und der Kepler schen Gesetze zur Berechnung von Satellitenbahnen Feldbegriff diskutieren, Definition der Feldstärke über Messvorschrift Kraft auf Probekörper Impuls und Impulserhaltung, Rückstoß (6 Ustd.) verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6), erläutern unterschiedliche Positionen zum Sinn aktueller Forschungsprogramme (z.b. Raumfahrt, Mobilität) und beziehen Stellung dazu (B2, B3). Wasserrakete Recherchen zu aktuellen Raumfahrtprojekten Impuls und Rückstoß Bewegung einer Rakete im luftleeren Raum Untersuchungen mit einer Wasserrakete, Simulation des Fluges einer Rakete in einer Excel-Tabelle Debatte über wissenschaftlichen Wert sowie Kosten und Nutzen ausgewählter Programme 18 Ustd. Summe 14

15 2.1.5 Unterrichtsvorhaben Das ist Musik in meinen Ohren Leitfrage: Wie lassen sich Schallentstehung, -ausbreitung und -wahrnehmung physikalisch untersuchen und beschreiben? licher Schwerpunkt: Schwingungen und Wellen (sowie angewandte e aus den inhaltlichen Schwerpunkten Kräfte und Bewegungen und Energie und Impuls ) Kompetenzschwerpunkte: Schülerinnen und Schüler können (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien/Gesetzen und Basiskonzepten beschreiben und erläutern, (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen. (E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden, (K1) Fragestellungen, Untersuchungen, Experimente und Daten nach gegebenen Strukturen dokumentieren und stimmig rekonstruieren, auch mit Unterstützung digitaler Werkzeuge. Schwingung als Quelle des Schalls (4 U-St.) beschreiben Schwingungen als Störung eines Gleichgewichts und identifizieren die dabei auftretenden Kräfte und Energien. (UF1, UF4, E1, E2, K1) erläutern den Zusammenhang zwischen Kreisbewegungen und harmonischen Schwingungen (UF1, UF4) beschreiben harmonische Schwingungen mit Hilfe trigonometrischer Funktionen und schwingungstypischer Größen (UF1, UF4, E5) Gitarre, Federn, Stimmgabeln, Lautsprecher, Frequenzgenerator Frequenzmessgerät, Oszilloskop, Schallpegelmesser zur Analyse Darstellung von Schall mit Smartphone-Apps oder Computersoundkarte Projektion einer Kreisbewegung analog zu einer Federschwingung, /didaktische Hinweise Erarbeitung der Grundgrößen zur Beschreibung von Schwingungen Frequenz und Amplitude in Beziehung zum Höreindruck Definition der harmonischen Schwingung Erfassung und Darstellung von Schall mithilfe von Audioprogrammen (z.b. Audacity) oder Apps 15

16 Überlagerung mehrerer Schwingungen Kopplung mehrerer Schwinger planen selbstständig Experimente zur qualitativen Untersuchung überlagerter (Schall-)Schwingungen und stellen die Ergebnisse sach- und fachgerecht dar. (E2, E4, E5, K3) beschreiben Schwebungen qualitativ und quantitativ (UF1) erläutern die Wechselwirkungen (Kraftübertragung) in Abhängigkeit von der Phase. (UF1) mehrere Schallquellen gleichzeitig (Gitarrensaiten, Frequenzgeneratoren, Oszilloskope) Gekoppelte Pendel, Pendelkette /didaktische Hinweise Klang = Überlagerung von Grundton mit Obertönen (Naturtonreihe), Interferenz Stimmen von Instrumenten mittels Schwebungen (4 U-St.) Erzwungene Schwingung und Resonanz (4 U-St.) erläutern das Auftreten von Resonanz mithilfe von Wechselwirkung und Energie (UF1) Anregung einer Federschwingung, Resonanz an Stimmgabeln Resonanz (auch Tacoma-Bridge, Millennium-Bridge) erwünschte/unerwünschte Resonanz (Resonanzkörper von Musikinstrumenten, Stoßdämpfer) Ausbreitung und Überlagerung von Wellen Lärm und seine Bekämpfung erklären qualitativ die Ausbreitung mechanischer Wellen (Transversal- oder Longitudinalwelle) mit den Eigenschaften des Ausbreitungsmediums (E6), können Grenzwerte nennen und Maßnahmen zu deren Einhaltung diskutieren (K2, B1, B2, UF4) Klingel und Vakuumglocke, lange Schraubenfeder, Wellenwanne, Ultraschallsender/-empfänger, Exp. zur Schallgeschwindigkeit Entstehung von Longitudinal- und Transversalwellen Ausbreitungsmedium, Möglichkeit der Ausbreitung longitudinaler. bzw. transversaler Schallwellen in Gasen, Flüssigkeiten und festen Körpern Das Gehör - Möglichkeiten der fächerübergreifenden Betrachtung (Biologie, Physik, Musik) (4 U-St.) 16 Ustd. Summe 16

17 2.2 Qualifikationsphase 1 Grundkurs Übersichtsraster der Unterrichtsvorhaben Unterrichtsvorhaben der Qualifikationsphase (Q1) GRUNDKURS Kontext und Leitfrage sfelder, liche Schwerpunkte Kompetenzschwerpunkte Licht: Welle oder Teilchen? Wie kann das Verhalten von Licht beschrieben und erklärt werden? Zeitbedarf: 14 Ustd. Quantenobjekte Photon (Wellenaspekt) E2 Wahrnehmung und Messung E5 Auswertung K3 Präsentation Elektron: Teilchen oder doch Welle? Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden? Zeitbedarf: 15 Ustd. Photonen und Elektronen als Quantenobjekte Kann das Verhalten von Elektronen und Photonen durch ein gemeinsames Modell beschrieben werden? Zeitbedarf: 5 Ustd. Energieversorgung und Transport mit Generatoren und Transformatoren Wie kann elektrische Energie gewonnen und verteilt werden? Zeitbedarf: 18 Ustd. Sicherheit beim Power-Tower - die Wirbelstrombremse Wie kann man Wirbelströme technisch nutzen? Zeitbedarf: 4 Ustd. Summe Qualifikationsphase (Q1) GRUNDKURS: 56 Stunden Quantenobjekte Elektron (Teilchenaspekt) Quantenobjekte Elektron und Photon (Teilchenaspekt, Wellenaspekt) Quantenobjekte und ihre Eigenschaften Elektrodynamik Spannung und elektrische Energie Induktion Spannungswandlung Elektrodynamik Induktion 17 UF1 Wiedergabe UF3 Systematisierung E5 Auswertung E6 Modelle E6 Modelle E7 Arbeits- und Denkweisen K4 Argumentation B4 Möglichkeiten und Grenzen UF2 Auswahl UF4 Vernetzung E2 Wahrnehmung und Messung E5 Auswertung E6 Modelle K3 Präsentation B1 Kriterien UF4 Vernetzung E5 Auswertung B1 Kriterien

18 2.2.2 Unterrichtsvorhaben Licht: Welle oder Teilchen? Leitfrage: Wie kann das Verhalten von Licht beschrieben und erklärt werden? liche Schwerpunkte: Photon (Wellenaspekt) Kompetenzschwerpunkte: Schülerinnen und Schüler können (E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden, (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern, (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situations-angemessener Medien und Darstellungsformen adressatengerecht präsentieren. Beugung und Interferenz Lichtwellenlänge, Lichtfrequenz, Kreiswellen, ebene Wellen, Beugung, Brechung (7 Ustd.) veranschaulichen mithilfe der Wellenwanne qualitativ unter Verwendung von Fachbegriffen auf der Grundlage des Huygens schen Prinzips Kreiswellen, ebene Wellen sowie die Phänomene Beugung, Interferenz, Reflexion und Brechung (K3), bestimmen Wellenlängen und Frequenzen von Licht mit Doppelspalt und Gitter (E5), Doppelspalt und Gitter, Wellenwanne quantitative Experimente mit Laserlicht /didaktische Hinweise Ausgangspunkt: Beugung von Laserlicht Modellbildung mit Hilfe der Wellenwanne (ggf. als Schülerpräsentation) Bestimmung der Wellenlängen von Licht mit Doppelspalt und Gitter sehr schön sichtbare Beugungsphänomene finden sich vielfach bei Meereswellen (s. Google-Earth) 18

19 Quantelung der Energie von Licht, Austrittsarbeit (7 Ustd.) demonstrieren anhand eines Experiments zum Photoeffekt den Quantencharakter von Licht und bestimmen den Zusammenhang von Energie, Wellenlänge und Frequenz von Photonen sowie die Austrittsarbeit der Elektronen (E5, E2), Photoeffekt Hallwachsversuch Vakuumphotozelle /didaktische Hinweise Roter Faden: Von Hallwachs bis Elektronenbeugung Bestimmung des Planck schen Wirkungsquantums und der Austrittsarbeit Hinweis: Formel für die max. kinetische Energie der Photoelektronen wird zunächst vorgegeben. Der Zusammenhang zwischen Spannung, Ladung und Überführungsarbeit wird ebenfalls vorgegeben und nur plausibel gemacht. Er muss an dieser Stelle nicht grundlegend hergeleitet werden 14 Ustd. Summe 19

20 2.2.3 Unterrichtsvorhaben Elektron: Teilchen oder doch Welle? Leitfrage: Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden? liche Schwerpunkte: Elektron (Teilchenaspekt) Kompetenzschwerpunkte: Schülerinnen und Schüler können (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern, (UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren, (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern, (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen. Elementarladung (5 Ustd.) erläutern anhand einer vereinfachten Version des Millikanversuchs die grundlegenden Ideen und Ergebnisse zur Bestimmung der Elementarladung (UF1, E5), untersuchen, ergänzend zum Realexperiment, Computersimulationen zum Verhalten von Quantenobjekten (E6). schwebender Wattebausch Millikanversuch Schwebefeldmethode (keine Stokes sche Reibung) Auch als Simulation möglich Begriff des elektrischen Feldes in Analogie zum Gravitationsfeld besprechen, Definition der Feldstärke über die Kraft auf einen Probekörper, in diesem Fall die Ladung Homogenes elektrisches Feld im Plattenkondensator, Zusammenhang zwischen Feldstärke im Plattenkondensator, Spannung und Abstand der Kondensatorplatten vorgeben und durch Auseinanderziehen der geladenen Platten demonstrieren 20

21 Elektronenmasse (7 Ustd.) beschreiben Eigenschaften und Wirkungen homogener elektrischer und magnetischer Felder und erläutern deren Definitionsgleichungen. (UF2, UF1), bestimmen die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer elektrischen Spannung (UF2), modellieren Vorgänge im Fadenstrahlrohr (Energie der Elektronen, Lorentzkraft) mathematisch, variieren Parameter und leiten dafür deduktiv Schlussfolgerungen her, die sich experimentell überprüfen lassen, und ermitteln die Elektronenmasse (E6, E3, E5), e/m-bestimmung mit dem Fadenstrahlrohr und Helmholtzspulenpaar auch Ablenkung des Strahls mit Permanentmagneten (Lorentzkraft) evtl. Stromwaage bei hinreichend zur Verfügung stehender Zeit) Messung der Stärke von Magnetfeldern mit der Hallsonde /didaktische Hinweise Einführung der 3-Finger-Regel und Angabe der Gleichung für die Lorentzkraft: Einführung des Begriffs des magnetischen Feldes (in Analogie zu den beiden anderen Feldern durch Kraft auf Probekörper, in diesem Fall bewegte Ladung oder stromdurchflossener Leiter) und des Zusammenhangs zwischen magnetischer Kraft, Leiterlänge und Stromstärke. Vertiefung des Zusammenhangs zwischen Spannung, Ladung und Überführungsarbeit am Beispiel Elektronenkanone. Streuung von Elektronen an Festkörpern, de Broglie-Wellen-länge (3Ustd.) erläutern die Aussage der de Broglie-Hypothese, wenden diese zur Erklärung des Beugungsbildes beim Elektronenbeugungsexperiment an und bestimmen die Wellenlänge der Elektronen (UF1, UF2, E4). Experiment zur Elektronenbeugung an polykristallinem Graphit Veranschaulichung der Bragg-Bedingung analog zur Gitterbeugung 15 Ustd. Summe 21

22 2.2.4 Unterrichtsvorhaben Photonen und Elektronen als Quantenobjekte Leitfrage: Kann das Verhalten von Elektronen und Photonen durch ein gemeinsames Modell beschrieben werden? liche Schwerpunkte: Elektron und Photon (Teilchenaspekt, Wellenaspekt), Quantenobjekte und ihre Eigenschaften Kompetenzschwerpunkte: Schülerinnen und Schüler können (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen, (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen. (K4) sich mit anderen über physikalische Sachverhalte und Erkenntnisse kritisch-konstruktiv austauschen und dabei Behauptungen oder Beurteilungen durch Argumente belegen bzw. widerlegen. (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten. Licht und Materie (5 Ustd.) erläutern am Beispiel der Quantenobjekte Elektron und Photon die Bedeutung von Modellen als grundlegende Erkenntniswerkzeuge in der Physik (E6, E7), verdeutlichen die Wahrscheinlichkeitsinterpretation für Quantenobjekte unter Verwendung geeigneter Darstellungen (Graphiken, Simulationsprogramme) (K3). Computersimulation Elektronen und Photonen am Doppelspalt Photoeffekt Reflexion der Bedeutung der Experimente für die Entwicklung der Quantenphysik zeigen an Beispielen die Grenzen und Gültigkeitsbereiche von Wellen- und Teilchenmodellen für Licht und Elektronen auf (B4, K4), beschreiben und diskutieren die Kontroverse um die Kopenhagener Deutung und den Welle-Teilchen- Dualismus (B4, K4). 5 Ustd. Summe 22

23 2.2.5 Unterrichtsvorhaben Energieversorgung mit Generatoren und Transformatoren Leitfrage: Wie kann elektrische Energie gewonnen und verteilt werden? liche Schwerpunkte: Spannung und elektrische Energie, Induktion, und Spannungswandlung Kompetenzschwerpunkte: Schülerinnen und Schüler können (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen, (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen. (E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden, (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern, (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen, (K3) (B1) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren, fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten. 23

24 Wandlung von mechanischer in elektrische Energie: Elektromagnetische Induktion Induktionsspannung (5 Ustd.) erläutern am Beispiel der Leiterschaukel das Auftreten einer Induktionsspannung durch die Wirkung der Lorentzkraft auf bewegte Ladungsträger (UF1, E6), definieren die Spannung als Verhältnis von Energie und Ladung und bestimmen damit Energien bei elektrischen Leitungsvorgängen (UF2), bestimmen die relative Orientierung von Bewegungsrichtung eines Ladungsträgers, Magnetfeldrichtung und resultierender Kraftwirkung mithilfe einer Drei-Finger-Regel (UF2, E6), werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5). bewegter Leiter im (homogenen) Magnetfeld - Leiterschaukelversuch Messung von Spannungen mit diversen Spannungsmessgeräten (nicht nur an der Leiterschaukel) Gedankenexperimente zur Überführungsarbeit, die an einer Ladung verrichtet wird. Deduktive Herleitung der Beziehung zwischen U, v und B. Definition der Spannung und Erläuterung anhand von Beispielen für Energieumwandlungsprozesse bei Ladungstransporten, Anwendungsbeispiele. Das Entstehen einer Induktionsspannung bei bewegtem Leiter im Magnetfeld wird mit Hilfe der Lorentzkraft erklärt, eine Beziehung zwischen Induktionsspannung, Leitergeschwindigkeit und Stärke des Magnetfeldes wird (deduktiv) hergeleitet. Die an der Leiterschaukel registrierten (zeitabhängigen) Induktionsspannungen werden mit Hilfe der hergeleiteten Beziehung auf das Zeit-Geschwindigkeit-Gesetz des bewegten Leiters zurückgeführt. Technisch praktikable Generatoren: Erzeugung sinusförmiger Wechselspannungen (4 Ustd.) recherchieren bei vorgegebenen Fragestellungen historische Vorstellungen und Experimente zu Induktionserscheinungen (K2), erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3), Internetquellen, Lehrbücher, Firmeninformationen, Filme und Applets zum Generatorprinzip Experimente mit drehenden Leiterschleifen in (näherungsweise homogenen) Magnetfeldern, Wechselstromgeneratoren Hier bietet es sich an, arbeitsteilige Präsentationen auch unter Einbezug von Realexperimenten anfertigen zu lassen. 24

25 erläutern das Entstehen sinusförmiger Wechselspannungen in Generatoren (E2, E6), werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5). Messung und Registrierung von Induktionsspannungen mit Oszilloskop und digitalem Messwerterfassungssystem /didaktische Hinweise Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der senkrecht vom Magnetfeld durchsetzten Fläche wird deduktiv erschlossen. führen Induktionserscheinungen an einer Leiterschleife zunächst auf die zeitlich veränderliche (effektive) Fläche zurück (UF3, UF4), Nutzbarmachung elektrischer Energie durch Transformation Transformator (5 Ustd.) erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3), ermitteln die Übersetzungsverhältnisse von Spannung und Stromstärke beim Transformator (UF1, UF2). geben Parameter von Transformatoren zur gezielten Veränderung einer elektrischen Wechselspannung an (E4), werten Messdaten, die mit einem Oszilloskop bzw. mit einem Messwerterfassungssystem gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5). führen Induktionserscheinungen am Transformator auf das zeitlich veränderliche Magnetfeld zurück (UF3, UF4), diverse Netzteile von Elektro- Kleingeräten (mit klassischem Transformator) Internetquellen, Lehrbücher, Firmeninformationen Demo-Aufbautransformator mit geeigneten Messgeräten ruhende Induktionsspule in wechselstromdurchflossener Feldspule - mit Messwerterfassungssystem zur zeitaufgelösten Registrierung der Induktionsspannung und des zeitlichen Verlaufs der Stärke des magnetischen Feldes Der Transformator wird eingeführt und die Übersetzungsverhältnisse der Spannungen experimentell ermittelt. Dies kann auch durch einen Schülervortrag erfolgen (experimentell und medial gestützt). Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der Stärke des magnetischen Feldes wird experimentell im Lehrerversuch erschlossen. Die registrierten Messdiagramme werden von den SuS eigenständig ausgewertet. 25

26 Energieerhaltung Ohm sche Verluste (4 Ustd.) verwenden ein physikalisches Modellexperiment zu Freileitungen, um technologische Prinzipien der Bereitstellung und Weiterleitung von elektrischer Energie zu demonstrieren und zu erklären (K3), bewerten die Notwendigkeit eines geeigneten Transformierens der Wechselspannung für die effektive Übertragung elektrischer Energie über große Entfernungen (B1), Modellexperiment (z.b. mit Hilfe von Aufbautransformatoren) zur Energieübertragung und zur Bestimmung der Ohm schen Verluste bei der Übertragung elektrischer Energie bei unterschiedlich hohen Spannungen /didaktische Hinweise Hier bietet sich ein arbeitsteiliges Gruppenpuzzle an, in dem Modellexperimente einbezogen werden. zeigen den Einfluss und die Anwendung physikalischer Grundlagen in Lebenswelt und Technik am Beispiel der Bereitstellung und Weiterleitung elektrischer Energie auf (UF4), beurteilen Vor- und Nachteile verschiedener Möglichkeiten zur Übertragung elektrischer Energie über große Entfernungen (B2, B1, B4). 18 Ustd. Summe 26

27 2.2.6 Unterrichtsvorhaben Sicherheit beim Power-Tower die Wirbelstrombremse Leitfrage: Wie kann man Wirbelströme technisch nutzen? liche Schwerpunkte: Induktion Kompetenzschwerpunkte: Schülerinnen und Schüler können (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen. (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern, (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten. Lenz sche Regel (4 Ustd.) erläutern anhand des Thomson schen Ringversuchs die Lenz sche Regel (E5, UF4), bewerten bei technischen Prozessen das Auftreten erwünschter bzw. nicht erwünschter Wirbelströme (B1), Freihandexperiment: Untersuchung der Relativbewegung eines aufgehängten Metallrings und eines starken Stabmagneten Thomson scher Ringversuch diverse technische und spielerische Anwendungen, Waltenhofensches Pendel, Wirbelstrombremse, fallender Magnet im Alu-Rohr. Ausgehend von kognitiven Konflikten bei den Ringversuchen wird die Lenz sche Regel erarbeitet Erarbeitung von Anwendungsbeispielen zur Lenz schen Regel (z.b. Wirbelstrombremse bei Fahrzeugen, Kirmesfahrgeschäften) Ausblick: Induktionsherd 4 Ustd. Summe 27

28 2.3 Qualifikationsphase 1 Leistungskurs Vorbemerkung: Der Kontext Teilchenbeschleuniger soll als übergreifender Kontext für nahezu alle zu behandelnden sfelder der Q1 und Q2 dienen. Hierzu wird zunächst in einem vorgeschalteten Unterrichtsvorhaben der Teilchenbeschleuniger aus verschiedenen Blickwinkeln mit Hilfe verschiedener Medien vorgestellt und besprochen. (Später ist dann auch ein Besuch eines Teilchenbeschleunigers geplant.) Vor diesem Hintergrund zeichnen sich dann bereits die verschiedenen sfelder ab Übersichtsraster der Unterrichtsvorhaben Kontext und Leitfrage sfelder, liche Schwerpunkte Kompetenzschwerpunkte Teilchenbeschleuniger Bis(s) ins Innere des Protons Wonach wird z.b. am CERN geforscht und welche physikalischen Phänomene treten dabei auf? Zeitbedarf: 4 Ustd. Einstein - Alles ist relativ! Welchen Einfluss hat Bewegung auf den Ablauf der Zeit? Zeitbedarf: 4 Ustd. Kosmische Höhenstrahlung am Erdboden? Warum erreichen Myonen aus der oberen Atmosphäre die Erdoberfläche? Zeitbedarf: 4 Ustd. Teilchenbeschleuniger - Warum Teilchen aus dem Takt geraten Ist die Masse bewegter Teilchen konstant? Zeitbedarf: 8 Ustd. Relativitätstheorie Relativistische Massenzunahme Elektrik Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern (Ausblick auf die Q2: Atom-, Kern- und Elementarteilchenphysik Elementarteilchen und ihre Wechselwirkungen) Relativitätstheorie Konstanz der Lichtgeschwindigkeit Problem der Gleichzeitigkeit Relativitätstheorie Zeitdilatation und Längenkontraktion Relativitätstheorie Relativistische Massenzunahme Energie-Masse-Beziehung E1 Probleme und Fragestellungen UF3 Systematisierung UF2 Auswahl E6 Modelle E5 Auswertung K3 Präsentation UF4 Vernetzung B1 Kriterien 28

29 Die gekrümmte Raumzeit Zeitmessung unter dem Einfluss von Gravitation und Geschwindigkeit Beeinflusst Gravitation den Ablauf der Zeit? Zeitbedarf: 6 Ustd. Relativitätstheorie Der Einfluss der Gravitation auf die Zeitmessung K3 Präsentation B4 Möglichkeiten und Grenzen Teilchenbeschleuniger Wie können Elektronen beschleunigt werden? Zeitbedarf: 24 Ustd. Aufbau und Funktionsweise von Teilchenbeschleunigern und anderen Messapparaturen Welche Effekte treten bei bewegten Ladungsträgern in Feldern auf und welche Auswirkungen ergeben sich für den Aufbau von Messapparaturen? Zeitbedarf: 22 Ustd. Erzeugung elektrischer Energie und deren Übertragung Wie werden wir mit elektrischer Energie versorgt? Zeitbedarf: 22 Ustd. WLAN, Bluetooth, LTE - Grundlagen der drahtlosen Nachrichtenübermittlung Wie können Nachrichten ohne Materietransport übermittelt werden? Zeitbedarf: 28 Ustd. Summe Qualifikationsphase (Q1) LEISTUNGSKURS: 120 Stunden Elektrik Eigenschaften elektrischer Ladungen und ihrer Felder Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern Elektrik Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern wichtige Prinzipien bei Experimenten und messtechnischen Verfahren Elektrik Elektromagnetische Induktion Elektrik Elektromagnetische Schwingungen und Wellen UF1 Wiedergabe UF2 Auswahl E6 Modelle K3 Präsentation B1 Kriterien B4 Möglichkeiten und Grenzen UF2 Auswahl UF4 Vernetzung E1 Probleme und Fragestellungen E5 Auswertung E6 Modelle K3 Präsentation B1 Kriterien B4 Möglichkeiten und Grenzen UF2 Auswahl E6 Modelle B4 Möglichkeiten und Grenzen UF1 Wiedergabe UF2 Auswahl E4 Untersuchungen und Experimente E5 Auswertung E6 Modelle K3 Präsentation B1 Kriterien B4 Möglichkeiten und Grenzen 29

30 2.3.2 Teilchenbeschleuniger Bis(s) ins Innere des Protons Leitfrage: Wonach wird z.b. am CERN geforscht und welche physikalischen Phänomene treten dabei auf? liche Schwerpunkte: Relativistische Massenzunahme, Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern, (Q2: Elementarteilchen und ihre Wechselwirkung) Kompetenzschwerpunkte: Schülerinnen und Schüler können (E1) in unterschiedlichen Kontexten physikalische Probleme identifizieren, analysieren und in Form physikalischer Fragestellungen präzisieren. (UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren. Forschungsgegenstand an modernen Teilchenbeschleunigern Funktion und Betrieb von Teilchenbeschleunigern Physikalische Schwierigkeiten beim Betrieb von Teilchenbeschleunigern identifizieren die verschiedenen physikalischen Aspekte im Kontext von Teilchenbeschleunigern (UF3). ordnen die o.g. Aspekte nach physikalischen Aspekten (E1). unterscheiden physikalische, wirtschaftlichpolitische und ethische Kriterien bei der Bewertung des Betriebs eines Teilchenbeschleunigers (B1). Video eines Science-Slam- Beitrags zum LHC aktuelle Medienbeiträge zu Teilchenbeschleunigern Hinweis auf spätere Exkursion zum Teilchenbeschleuniger DELTA an der TU Dortmund Der Kontext Teilchenbeschleuniger stellt einen der zentralen Kontexte im Physikunterricht in der Qualifikationsphase dar. Es wird ein Ausblick auf zentrale Fragestellungen des Physikunterrichts in der Qualifikationsphase erreicht. Die detaillierte Behandlung dieser Aspekte erfolgt im weiteren Verlauf der Qualifikationsphase. Anhand von aktuellen Beiträgen werden nicht-physikalische Kriterien zur Bewertung von Teilchenbeschleunigern aufgegriffen. 4 Ustd. Summe 30

31 2.3.3 Unterrichtsvorhaben Einstein Alles ist relativ! Leitfrage: Welchen Einfluss hat Bewegung auf den Ablauf der Zeit? liche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Problem der Gleichzeitigkeit Kompetenzschwerpunkte: Schülerinnen und Schüler können (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen, (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen. Konstanz der Lichtgeschwindigkeit und Problem der Gleichzeitigkeit Inertialsysteme Relativität der Gleichzeitigkeit (4 Ustd.) begründen mit dem Ausgang des Michelson-Morley- Experiments die Konstanz der Lichtgeschwindigkeit (UF4, E5, E6), erläutern das Problem der relativen Gleichzeitigkeit mit in zwei verschiedenen Inertialsystemen jeweils synchronisierten Uhren (UF2), begründen mit der Lichtgeschwindigkeit als Obergrenze für Geschwindigkeiten von Objekten Auswirkungen auf die additive Überlagerung von Geschwindigkeiten (UF2). Experiment von Michelson und Morley (Computersimulation) Relativität der Gleichzeitigkeit (Video / Film) Begründung der Hypothese von der Konstanz der Lichtgeschwindigkeit mit dem Ausgang des Michelson- und Morley-Experiments (Computersimulation). Das Additionstheorem für relativistische Geschwindigkeiten kann ergänzend ohne Herleitung angegeben werden. Anwendung: Exaktheit der Positionsbestimmung mit Navigationssystemen 4 Ustd. Summe 31

32 Zeitdilatation und relativistischer Faktor (2 Ustd.) Unterrichtsvorhaben Kosmische Höhenstrahlung am Erdboden? Leitfrage: Warum erreichen Myonen aus der oberen Atmosphäre die Erdoberfläche? liche Schwerpunkte: Zeitdilatation und Längenkontraktion Kompetenzschwerpunkte: Schülerinnen und Schüler können (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern, (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren. leiten mithilfe der Konstanz der Lichtgeschwindigkeit und des Modells Lichtuhr quantitativ die Formel für die Zeitdilatation her (E5), reflektieren die Nützlichkeit des Modells Lichtuhr hinsichtlich der Herleitung des relativistischen Faktors (E7). Lichtuhr (Gedankenexperiment / Computersimulation) Myonenzerfall (Bezug zum Besuch des Teilchenbeschleunigers an der Uni Dortmund) Mit der Lichtuhr wird der relativistische Faktor hergeleitet. Der Myonenzerfall in der Erdatmosphäre dient als eine experimentelle Bestätigung der Zeitdilatation. Längenkontraktion (2 Ustd.) erläutern die Bedeutung der Konstanz der Lichtgeschwindigkeit als Ausgangspunkt für die Entwicklung der speziellen Relativitätstheorie (UF1) begründen den Ansatz zur Herleitung der Längenkontraktion (E6), erläutern die relativistischen Phänomene Zeitdilatation und Längenkontraktion anhand des Nachweises von in der oberen Erdatmosphäre entstehenden Myonen (UF1), (Bezug zum Besuch des Teilchenbeschleunigers an der Uni Dortmund) Der Myonenzerfall dient als experimentelle Bestätigung der Längenkontraktion (im Vergleich zur Zeitdilatation) s. o. Herleitung der Formel für die Längenkontraktion 2 Ustd. Summe beschreiben Konsequenzen der relativistischen Einflüsse auf Raum und Zeit anhand anschaulicher und einfacher Abbildungen (K3), 32

Inhalt. Didaktische und Methodische Hinweise. Kompetenzen. Kontext: Erforschung des Lichts

Inhalt. Didaktische und Methodische Hinweise. Kompetenzen. Kontext: Erforschung des Lichts Kontext: Erforschung des Lichts Leitfrage: Wie kann das Verhalten von Licht beschrieben und erklärt werden? liche Schwerpunkte: Die Erforschung des Lichts als Grundlage zur Beschreibung mittels Modellvorstellungen

Mehr

Kräfte und Bewegungen. Die Schülerinnen und Schüler. beschreiben unterschiedliche Phänomene in Verkehrssituationen

Kräfte und Bewegungen. Die Schülerinnen und Schüler. beschreiben unterschiedliche Phänomene in Verkehrssituationen Jahrgangsstufe EF Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Verkehrsphysik Wie lassen sich Bewegungen vermessen und analysieren?

Mehr

Schulinternes Curriculum im Fach Physik SII Einführungsphase

Schulinternes Curriculum im Fach Physik SII Einführungsphase Schulinternes Curriculum im Fach Physik SII Einführungsphase Inhaltsfeld: Mechanik Kontexte: Physik im Straßenverkehr, Fall- und Wurfbewegungen im Sport Leitfrage: Wie lassen sich Bewegungen vermessen,

Mehr

E2 Wahrnehmung und Messung E5 Auswertung und erklärt werden? Quantenobjekte Elektron (Teilchenaspekt)

E2 Wahrnehmung und Messung E5 Auswertung und erklärt werden? Quantenobjekte Elektron (Teilchenaspekt) Freiherr-vom-Stein-Gymnasium Dieckmannstr. 141 48161 Münster Schulinternes Curriculum Physik, Sekundarstufe II, Grundkurs Q1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Qualifikationsphase

Mehr

MCG Physik Einführungsphase

MCG Physik Einführungsphase MCG Physik Einführungsphase Themen und Kompetenzen aus dem Stoffverteilungsplan zum Lehrbuch Impulse Physik Oberstufe Einführungsphase NRW Kinematik Lineare Bewegungen erläutern die Größen Position, Strecke,

Mehr

Kräfte und Bewegungen. Energie und Impuls. Gravitation Kräfte und Bewegungen. Energie und Impuls. Schwingungen und Wellen Kräfte und Bewegungen

Kräfte und Bewegungen. Energie und Impuls. Gravitation Kräfte und Bewegungen. Energie und Impuls. Schwingungen und Wellen Kräfte und Bewegungen Teil 1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitideen sfelder, liche Schwerpunkte Physik im Straßenverkehr Mechanik Physik und Sport Kräfte und Bewegungen

Mehr

Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik 2.1.1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Physik und Bewegungen

Mehr

VORSCHLAG FÜR EINEN SCHULINTERNEN LEHRPLAN PHYSIK

VORSCHLAG FÜR EINEN SCHULINTERNEN LEHRPLAN PHYSIK Bezirksregierung Düsseldorf Fachaufsicht Physik LRSD Stirba VORSCHLAG FÜR EINEN SCHULINTERNEN LEHRPLAN PHYSIK INHALTSFELDER IM GRUNDKURS UND IM LEISTUNGSKURS- VORSCHLAG EF 1 Mechanik Q1.1 2 Quantenobjekte

Mehr

Physik. Schulinternes Curriculum zum Kernlehrplan für die gymnasiale Oberstufe. Einführungsphase. (Stand: )

Physik. Schulinternes Curriculum zum Kernlehrplan für die gymnasiale Oberstufe. Einführungsphase. (Stand: ) Schulinternes Curriculum zum Kernlehrplan für die gymnasiale Oberstufe Physik Einführungsphase Silverberg-Gymnasium Bedburg Eichendorffstraße 1 50181 Bedburg (Stand: 30.10.2015) Schulinterner Lehrplan

Mehr

Physik. Überblick über die Themen der Oberstufe. Unterrichtsvorhaben der Einführungsphase (EF) GRUNDKURS

Physik. Überblick über die Themen der Oberstufe. Unterrichtsvorhaben der Einführungsphase (EF) GRUNDKURS Physik Unterrichtsvorhaben der Einführungsphase (EF) GRUNDKURS Physik in Sport und Verkehr Wie lassen sich Bewegungen vermessen und analysieren? Bewegungsvorgänge im alltäglichen Leben Auf dem Weg in den

Mehr

Geschwister-Scholl-Gymnasium Unna Schulinterner Lehrplan Einführungsphase

Geschwister-Scholl-Gymnasium Unna Schulinterner Lehrplan Einführungsphase Schulinterner Lehrplan Einführungsphase Physik und Straßenverker Wie lassen sich Bewegungen vermessen und analysieren? Auf dem Weg in den Weltraum Wie kommt man zu physikalischen Erkenntnissen über unser

Mehr

Schulinterner Lehrplan (Übersichtsraster) des Joseph-Haydn-Gymnasiums Senden zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan (Übersichtsraster) des Joseph-Haydn-Gymnasiums Senden zum Kernlehrplan für die gymnasiale Oberstufe. Physik Schulinterner Lehrplan (Übersichtsraster) des Joseph-Haydn-Gymnasiums Senden zum Kernlehrplan für die gymnasiale Oberstufe Physik 1 Die Fachgruppe Physik am JHG Senden Das Joseph-Haydn-Gymnasium ist das

Mehr

Schulinternes Curriculum Fachgruppe Physik Jahrgangsstufe EF

Schulinternes Curriculum Fachgruppe Physik Jahrgangsstufe EF Jahrgangsstufe EF Inhaltsfeld 1: Mechanik Kräfte und Bewegungen Fachlicher Kontext: Straßenverkehr Sequenzen 1. Lineare Bewegungen (gleichförmige Bewegung, gleichmäßig beschleunigte Bewegung) 2. Überlagerte

Mehr

Physik. Einführungsphase (EF) Friedrich-Harkort-Schule Herdecke. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe

Physik. Einführungsphase (EF) Friedrich-Harkort-Schule Herdecke. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Friedrich-Harkort-Schule Herdecke Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Einführungsphase (EF) (ab Schuljahr 2014/15) Physik Übersichtsraster Unterrichtsvorhaben in der Einführungsphase

Mehr

Technisch praktikable Generatoren - Schwingende Leiterschaukel - Erzeugung sinusförmiger Wechselspannung

Technisch praktikable Generatoren - Schwingende Leiterschaukel - Erzeugung sinusförmiger Wechselspannung Unterrichtsvorhaben der Qualifikationsphase GK/ Inhaltsfeld Elektrodynamik Erforschung des Elektrons Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

Mehr

Gegenüberstellung. KLP Gy/Ge. LP Gy/Ge

Gegenüberstellung. KLP Gy/Ge. LP Gy/Ge Gegenüberstellung KLP Gy/Ge LP Gy/Ge KLP und bisheriger LP Bisheriger LP mit optionalen Inhalten KLP obligatorisch Gegenüberstellung Obligatorik Quantenobjekte (Q1 GK) Basiskonzept Wechselwirkung Bewegung

Mehr

Schulinterner Lehrplan Physik EF

Schulinterner Lehrplan Physik EF Schulinterner Lehrplan Physik EF Da es sich um die erstmalige praktische Umsetzung der neuen Kernlehrpläne handelt, gelten die folgenden Angaben nur unter Vorbehalt. Die Reihenfolge der einzelnen Unterrichtsvorhaben

Mehr

MCG Physik Qualifikationsphase

MCG Physik Qualifikationsphase MCG Physik Qualifikationsphase Themen und Kompetenzen aus dem Stoffverteilungsplan zum Lehrbuch Impulse Physik Qualifikationsphase NRW Quantenobjekte: Erforschung des Photons Beugung und Interferenz, Kreiswellen,

Mehr

Schulinterner Lehrplan Physik Franz-Stock-Gymnasium Arnsberg

Schulinterner Lehrplan Physik Franz-Stock-Gymnasium Arnsberg Schulinterner Lehrplan Physik Franz-Stock-Gymnasium Arnsberg Übersichtsraster Unterrichtsvorhaben Physik Einführungsphase Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche

Mehr

Übersichtsraster Unterrichtsvorhaben 2

Übersichtsraster Unterrichtsvorhaben 2 Lehrplan 10 EF 1 Übersichtsraster Unterrichtsvorhaben 2 Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage sfelder, liche Schwerpunkte Kompetenzschwerpunkte Physik und Sport Wie lassen sich

Mehr

Schulinterner Lehrplan (SILP) Physik

Schulinterner Lehrplan (SILP) Physik Christian-Rohlfs-Gymnasium Hagen Schulinterner Lehrplan (SILP) Physik Einführungsphase (EF) Stand: 28.9.2014 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Der neue Kernlehrplan tritt mit Beginn des Schuljahres 2014/15 für die neue Einführungsphase in Kraft. Der neue schulinterne

Mehr

Konkretisierte Unterrichtsvorhaben

Konkretisierte Unterrichtsvorhaben Konkretisierte Unterrichtsvorhaben I. Einführungsphase Inhaltsfeld: Mechanik Kontext: Physik und Sport Leitfrage: Wie lassen sich Bewegungen vermessen, analysieren und optimieren? Inhaltliche Schwerpunkte:

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Städtisches Gymnasium Wülfrath. Einführungsphase. Wülfrath, Februar 2017

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Städtisches Gymnasium Wülfrath. Einführungsphase. Wülfrath, Februar 2017 Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Städtisches Gymnasium Wülfrath Einführungsphase Wülfrath, Februar 2017 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben

Mehr

Heinrich-Mann-Gymnasium. Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase. Physik

Heinrich-Mann-Gymnasium. Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase. Physik Heinrich-Mann-Gymnasium Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase Physik Stand: 07.05.2014 Übersichtsraster Unterrichtsvorhaben in der Einführungsphase Unterrichtsvorhaben der Einführungsphase

Mehr

Schulinterner Lehrplan (SILP) Physik

Schulinterner Lehrplan (SILP) Physik Christian-Rohlfs-Gymnasium Hagen Schulinterner Lehrplan (SILP) Physik Grundkurs Qualifikationsphase Q1 (GK Q1) Stand: 22.6.2015 SILP CRG GK-Q1 1 Unterrichtsvorhaben der Qualifikationsphase (Q1) GRUNDKURS

Mehr

Schulinterner Lehrplan Gymnasium Thusneldastraße. Einführungsphase. Physik

Schulinterner Lehrplan Gymnasium Thusneldastraße. Einführungsphase. Physik Schulinterner Lehrplan Gymnasium Thusneldastraße zum Kernlehrplan für die Einführungsphase Physik Die Fachgruppe Physik in der Schule Die Fachgruppe Physik versucht in besonderem Maße, jeden Lernenden

Mehr

Physik. Carl-von-Ossietzky-Gymnasium Bonn Schulinternes Curriculum. Jahrgangstufe 6. Jahrgangsstufe 8. Materialhinweise: Unterrichtsvorhaben:

Physik. Carl-von-Ossietzky-Gymnasium Bonn Schulinternes Curriculum. Jahrgangstufe 6. Jahrgangsstufe 8. Materialhinweise: Unterrichtsvorhaben: Jahrgangsstufe 8 Jahrgangstufe 6 Einführung in die Grundlagen des Faches Das Licht und der Schatten Temperatur und Energie Elektrische Stromkreise UV 5: Schall Impulse 1 (Klett-Verlag, Stuttgart) SchwerpunkteSach-,

Mehr

1. Übersichtsraster Unterrichtsvorhaben (verbindlich)

1. Übersichtsraster Unterrichtsvorhaben (verbindlich) 1. Übersichtsraster Unterrichtsvorhaben (verbindlich) Einführungsphase sfeld Mechanik Kontext und Leitfrage liche Schwerpunkte Kompetenzschwerpunkte Physik und Sport Wie lassen sich Bewegungen vermessen

Mehr

Schulinternes Curriculum im Fach Physik SII Qualifikationsphase Grundkurs

Schulinternes Curriculum im Fach Physik SII Qualifikationsphase Grundkurs Schulinternes Curriculum im Fach Physik SII Qualifikationsphase Grundkurs Inhalte der Jahrgangsstufe Q1 Inhaltsfeld: Quantenobjekte Kontexte: Erforschung des Photons Leitfrage: Wie kann das Verhalten von

Mehr

Übersichtsraster Unterrichtsvorhaben

Übersichtsraster Unterrichtsvorhaben Schulinterner Lehrplan, Physik Einführungsphase Gymnasium Maria Königin Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte

Mehr

Schulinterner Lehrplan für Physik. Städtisches Gymnasium Wülfrath

Schulinterner Lehrplan für Physik. Städtisches Gymnasium Wülfrath Schulinterner Lehrplan für Physik Qualifikationsphase Grundkurs Städtisches Gymnasium Wülfrath Einige Anmerkungen: - Auf der ersten Seite ist eine kurze Zusammenfassung der Inhalte - Eine Unterrichtsstunde

Mehr

Schulinterner Lehrplan. Gymnasium Broich Fachschaft Physik. Inhaltliche Übersicht der Oberstufe. Stand

Schulinterner Lehrplan. Gymnasium Broich Fachschaft Physik. Inhaltliche Übersicht der Oberstufe. Stand Schulinterner Lehrplan Gymnasium Broich Fachschaft Physik Inhaltliche Übersicht der Oberstufe Stand 2.2.2015 In Absprache mit den Fachvorsitzenden der Fachschaft Physik der Luisenschule, des Gymnasium

Mehr

Schulinterner Lehrplan für die Einführungsphase im Fach PHYSIK

Schulinterner Lehrplan für die Einführungsphase im Fach PHYSIK 1. Überblick Inhaltsfeld: Mechanik Unterrichtsvorhaben der Einführungsphase Mögliche Kontexte und Leitfragen Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Physik und Sport Wie lassen sich

Mehr

Schulinterner Lehrplan EBG, Sek II, Q1 Stand:

Schulinterner Lehrplan EBG, Sek II, Q1 Stand: Schulinterner Lehrplan EBG, Sek II, Q1 Stand: 26.5.2015 Q1 Kontext und Leitfrage Erforschung des Photons Wie kann das Verhalten von Licht beschrieben und erklärt werden? Unterrichtsvorhaben der Qualifikationsphase

Mehr

Muster für einen Studienbericht im Fach Physik GK 1. Prüfungsteil Name: III. individuelle Konkretisierung der Angabe. II. Kompetenzen. I.

Muster für einen Studienbericht im Fach Physik GK 1. Prüfungsteil Name: III. individuelle Konkretisierung der Angabe. II. Kompetenzen. I. Muster für einen Studienbericht im Fach Physik GK 1. Prüfungsteil Name: I. Inhalt gem. Kernlehrplan und fachlichen Vorgaben für das Zentralabitur im Jahr 2017 (Schwerpunkte 2017 kursiv) Quantenobjekte

Mehr

Schnelle Ladungsträger - Massenzunahme - Bertozzi-Experiment. Ruhemasse und dynamische Masse - Energie-Masse-Äquivalenz

Schnelle Ladungsträger - Massenzunahme - Bertozzi-Experiment. Ruhemasse und dynamische Masse - Energie-Masse-Äquivalenz Unterrichtsvorhaben der Qualifikationsphase/ Inhaltsfeld Relativitätstheorie Satellitennavigation Zeitmessung ist nicht absolut Relativität der Zeit - Michelson-Morley-Experiment Welchen Einfluss hat die

Mehr

Übersichtsraster Unterrichtsvorhaben Einführungsphase - 80 Stunden

Übersichtsraster Unterrichtsvorhaben Einführungsphase - 80 Stunden Übersichtsraster Unterrichtsvorhaben Einführungsphase - 80 Stunden Vorhaben I Vorhaben II Vorhaben III Kontext und Leitfrage: Physik und Sport Wie lassen sich Bewegungen vermessen und analysieren? Inhaltsfelder:

Mehr

Fachschaft Physik Peter-Paul-Rubens-Gymnasium, Siegen Schulinternes Curriculum Physik für Q1/Q2

Fachschaft Physik Peter-Paul-Rubens-Gymnasium, Siegen Schulinternes Curriculum Physik für Q1/Q2 Fachschaft Physik Peter-Paul-Rubens-Gymnasium, Siegen Schulinternes Curriculum Physik für Q1/Q2 Stand Juli 2015 Q1 Übersicht Q1 Unterrichtsvorhaben der Qualifikationsphase (Q1) GRUNDKURS Kontext und Leitfrage

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Gymnasium Rheinkamp Europaschule Moers. Physik in der SII

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Gymnasium Rheinkamp Europaschule Moers. Physik in der SII Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Gymnasium Rheinkamp Europaschule Moers Physik in der SII Stand: Nov. 2014 Inhalt 1. Übersichtsraster Unterrichtsvorhaben 4 2 Konkretisierte

Mehr

Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Physik und Sport

Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Physik und Sport Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Physik und Sport Mechanik E7 Arbeits- und Denkweisen Wie lassen sich Bewegungen

Mehr

Schulcurriculum Physik

Schulcurriculum Physik Schulcurriculum Physik Einführungsphase Inhaltsfeld: Mechanik Kontext: Physik und Sport Leitfrage: Wie lassen sich Bewegungen vermessen, analysieren und optimieren? Inhaltliche Schwerpunkte: Kräfte und

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe für das Fach. Physik. am Gymnasium Norf

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe für das Fach. Physik. am Gymnasium Norf Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe für das Fach Physik am Gymnasium Norf Inhalt Seite 1 Die Fachgruppe Physik am Gymnasium Norf 3 2 Entscheidungen zum Unterricht 3 2.1

Mehr

Wo. Kontext Inhalte Kompetenzen: Die SuS Vorschlag für Versuche Weitere Absprachen 5 Physik in Sport und Verkehr. unterscheiden gleichförmige und

Wo. Kontext Inhalte Kompetenzen: Die SuS Vorschlag für Versuche Weitere Absprachen 5 Physik in Sport und Verkehr. unterscheiden gleichförmige und Schulinternes Curriculum Physik Einführungsphase Inhaltsfeld Mechanik Kräfte und Bewegungen 5 Physik in Sport und Verkehr Geradlinige Bewegungen (unbeschleunigt und beschleunigt): s-t- / v-t- / a-t-diagramme

Mehr

Katharina-Henoth-Gesamtschule Schulinterner Lehrplan Physik Gymnasiale Oberstufe

Katharina-Henoth-Gesamtschule Schulinterner Lehrplan Physik Gymnasiale Oberstufe Katharina-Henoth-Gesamtschule Schulinterner Lehrplan Physik Gymnasiale Oberstufe Im Folgenden werden die von der Fachgruppe getroffenen Vereinbarungen zur inhaltlichen Gestaltung des Unterrichts und der

Mehr

Schulinterner Lehrplan Sekundarstufe 2 Abitur Physik. Fachkonferenzbeschluss: Juli 2014

Schulinterner Lehrplan Sekundarstufe 2 Abitur Physik. Fachkonferenzbeschluss: Juli 2014 Schulinterner Lehrplan Sekundarstufe 2 Abitur 2017 Physik Fachkonferenzbeschluss: Juli 2014 Jahrgangsstufe EF Unterrichtseinheit / Kontext : Physik und Sport, Auf dem Weg in den Weltraum, Schall Umfang

Mehr

2.1.1 Übersichtsraster Unterrichtsvorhaben

2.1.1 Übersichtsraster Unterrichtsvorhaben 2.1.1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Physik und Sport Wie lassen sich

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Joseph-König-Gymnasium. Physik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Joseph-König-Gymnasium. Physik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Joseph-König-Gymnasium Physik Inhalt Seite 1 Die Fachgruppe Physik am Joseph-König-Gymnasium 3 2 Entscheidungen zum Unterricht 4

Mehr

Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Seite Inhaltsverzeichnis 1 Die Fachgruppe Physik am Franz-Stock-Gymnasium Arnsberg... 2 Entscheidungen zum

Mehr

Curriculum im Fach Physik Sekundarstufe II

Curriculum im Fach Physik Sekundarstufe II Gymnasium am Neandertal Stand Juni 2015 FK Physik Curriculum im Fach Physik Sekundarstufe II Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder,

Mehr

Schulinterner Lehrplan zum Kernlehrplan am Ruhr-Gymnasium Witten Physik

Schulinterner Lehrplan zum Kernlehrplan am Ruhr-Gymnasium Witten Physik Schulinterner Lehrplan zum Kernlehrplan am Ruhr-Gymnasium Witten Physik Teil III Inhaltsverzeichnis Seite Entscheidungen zum Unterricht in der Sekundarstufe II 3 Übersichtsraster der Unterrichtsvorhaben

Mehr

Schulinterner Kernlehrplan für die gymnasiale Oberstufe (Physik Einführungsphase)

Schulinterner Kernlehrplan für die gymnasiale Oberstufe (Physik Einführungsphase) Schulinterner Kernlehrplan für die gymnasiale Oberstufe (Physik Einführungsphase) 1. Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche

Mehr

Inhalt Kompetenzen Medien/Experimente Kommentar. Luftkissenfahrbahn mit digitaler Messwerterfassung: Messreihen zur gleichförmigen und

Inhalt Kompetenzen Medien/Experimente Kommentar. Luftkissenfahrbahn mit digitaler Messwerterfassung: Messreihen zur gleichförmigen und Beschreibung und Analyse von linearen Bewegungen unterscheiden gleichförmige und gleichmäßig beschleunigte Bewegungen und erklären zugrundeliegende Ursachen (UF2), vereinfachen komplexe Bewegungs- und

Mehr

Schulinterner Lehrplan Gymnasium Thusneldastraße zum Kernlehrplan für die. Qualifikationsphase Grundkurs. Physik

Schulinterner Lehrplan Gymnasium Thusneldastraße zum Kernlehrplan für die. Qualifikationsphase Grundkurs. Physik Schulinterner Lehrplan Gymnasium Thusneldastraße zum Kernlehrplan für die Qualifikationsphase Grundkurs Physik Die Fachgruppe Physik in der Schule Die Fachgruppe Physik versucht in besonderem Maße, jeden

Mehr

Relativitätstheorie. Modelle auf den Ablauf der Zeit? (ca. 4 ggf. Film-/Videomaterial. Inertialsysteme. Relativitätstheorie

Relativitätstheorie. Modelle auf den Ablauf der Zeit? (ca. 4 ggf. Film-/Videomaterial. Inertialsysteme. Relativitätstheorie Unterrichtsvorhaben der Qualifikationsphase (Q1) LEISTUNGSKURS Mögliche Kontexte und Zeitmessung ist nicht absolut? Experiment von Michelson und Morley Welchen Einfluss hat Bewegung (evtl. Computersimulation),

Mehr

Quantenobjekte Photon (Wellenaspekt) Quantenobjekte Elektron (Teilchenaspekt) Quantenobjekte Elektron und Photon (Teilchenaspekt, Wellenaspekt)

Quantenobjekte Photon (Wellenaspekt) Quantenobjekte Elektron (Teilchenaspekt) Quantenobjekte Elektron und Photon (Teilchenaspekt, Wellenaspekt) Lehrewerk: Physik Oberstufe (Qualifikationsphase) Cornelsen Verlag Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Qualifikationsphase (Q1) GRUNDKURS Kontext und Leitfrage Inhaltsfelder, Inhaltliche

Mehr

Schulinterner Lehrplan des KWG Höxter zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan des KWG Höxter zum Kernlehrplan für die gymnasiale Oberstufe. Physik Schulinterner Lehrplan des KWG Höxter zum Kernlehrplan für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik im KWG Höxter 3 2 Entscheidungen zum Unterricht 4 2.1 Unterrichtsvorhaben

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik im Stadtgymnasium Köln-Porz 3 2 Entscheidungen zum Unterricht 5 2.1 Unterrichtsvorhaben

Mehr

Stoffverteilungsplan Impulse Physik Qualifikationsphase Grundkurs (Ausgabe 2015 ISBN ) zum neuen Kernlehrplan Physik NRW 2014

Stoffverteilungsplan Impulse Physik Qualifikationsphase Grundkurs (Ausgabe 2015 ISBN ) zum neuen Kernlehrplan Physik NRW 2014 Stoffverteilungsplan Impulse Physik Qualifikationsphase Grundkurs (Ausgabe 2015 ISBN 978-3-12-772677-0) zum neuen Kernlehrplan Physik NRW 2014 Inhaltsfeld/Kontext Quantenobjekte: Erforschung des Photons

Mehr

Muster für einen Studienbericht im Fach Physik GK

Muster für einen Studienbericht im Fach Physik GK Muster für einen Studienbericht im Fach Physik GK Name: (bitte individuelle Eintragungen eindeutig vornehmen) I. Inhalt gem. Kernlehrplan und fachlichen Vorgaben für das Zentralabitur im Jahr 2017 (Schwerpunkte

Mehr

Schulinterner Kernlehrplan für die Oberstufe

Schulinterner Kernlehrplan für die Oberstufe Schulinterner Kernlehrplan für die Oberstufe im Fach Physik am Willy-Brandt-Gymnasium in Oer-Erkenschwick Hinweis: Die nachfolgend dargestellte Umsetzung der verbindlichen Kompetenzerwartungen des Kernlehrplans

Mehr

Sekundarstufe II Schulinterner Lehrplan für das Fach Physik

Sekundarstufe II Schulinterner Lehrplan für das Fach Physik Sekundarstufe II Schulinterner Lehrplan für das Fach Physik Inhalt Seite 1 Die Fachgruppe Physik am Gymnasium Antonianum 3 2 Entscheidungen zum Unterricht 4 2.1 Unterrichtsvorhaben 4 2.1.1 Übersichtsraster

Mehr

Albertus-Magnus-Gymnasium Bergisch Gladbach. Schulinterner Lehrplan der Stufe EF zum Kernlehrplan für die gymnasiale Oberstufe.

Albertus-Magnus-Gymnasium Bergisch Gladbach. Schulinterner Lehrplan der Stufe EF zum Kernlehrplan für die gymnasiale Oberstufe. Albertus-Magnus-Gymnasium Bergisch Gladbach Schulinterner Lehrplan der Stufe EF zum Kernlehrplan für die gymnasiale Oberstufe Physik Entscheidungen zum Unterricht Hinweis: Die nachfolgend dargestellte

Mehr

Physik Einführungsphase

Physik Einführungsphase schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Landrat-Lucas-Gymnasium Leverkusen Physik Einführungsphase Unterrichtsvorhaben Die Darstellung der Unterrichtsvorhaben im schulinternen

Mehr

Physik. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. am Hüffertgymnasium Warburg

Physik. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. am Hüffertgymnasium Warburg Physik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Hüffertgymnasium Warburg Beschluss der Fachkonferenz am 18.6.2015 Inhalt Seite 1 Die Fachgruppe Physik am Hüffertgymnasium

Mehr

Schulinterner Lehrplan des Burggymnasiums Altena für die gymnasiale Oberstufe

Schulinterner Lehrplan des Burggymnasiums Altena für die gymnasiale Oberstufe Schulinterner Lehrplan des Burggymnasiums Altena für die gymnasiale Oberstufe Physik Beschluss der Fachkonferenz Physik vom: 24.02.2016 gültig ab: 24.02.2016 in aktueller Fassung Inhalt Seite 1 Die Fachgruppe

Mehr

-KLP Physik SII - 25 obligatorische Experimente im GK

-KLP Physik SII - 25 obligatorische Experimente im GK -KLP Physik SII - 25 obligatorische Experimente im GK Zähler -KLP Physik SII - 25 obligatorische Experimente im GK Zähl er 1 -KLP Physik SII - 25 obligatorischen Experimente im GK Idee: Ein Handbuch mit...

Mehr

Physik. Einführungsphase und Qualifikationsphase Q1 & Q2 (gültig ab 20. August 2014)

Physik. Einführungsphase und Qualifikationsphase Q1 & Q2 (gültig ab 20. August 2014) Physik Einführungsphase und Qualifikationsphase Q1 & Q2 (gültig ab 20. August 2014) Inhalt Seite 1 Die Fachgruppe Physik 3 2 Entscheidungen zum Unterricht 4 2.1 Unterrichtsvorhaben 4 2.1.1 Übersichtsraster

Mehr

Schulinterner Lehrplan für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan für die gymnasiale Oberstufe. Physik Schulinterner Lehrplan für die gymnasiale Oberstufe Physik Inhalt 1 Fachgruppe Physik am Gymnasium Siegburg Alleestraße... 3 2 Entscheidungen zum Unterricht... 5 3 Entscheidungen zu fach- und unterrichtsübergreifenden

Mehr

Schulinterner Lehrplan des Clara-Schumann- Gymnasiums zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan des Clara-Schumann- Gymnasiums zum Kernlehrplan für die gymnasiale Oberstufe. Physik Schulinterner Lehrplan des Clara-Schumann- Gymnasiums zum Kernlehrplan für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik am Clara-Schumann- Gymnasium 3 2 Entscheidungen zum Unterricht

Mehr

Physik. Einführungsphase und Qualifikationsphase Q1 & Q2 (Stand: Sept. 2017)

Physik. Einführungsphase und Qualifikationsphase Q1 & Q2 (Stand: Sept. 2017) Physik Einführungsphase und Qualifikationsphase Q1 & Q2 (Stand: Sept. 2017) Inhalt Inhalt 2 1. Die Fachgruppe Physik 3 2 Entscheidungen zum Unterricht 4 2.1 Unterrichtsvorhaben 4 2.1.1 Übersichtsraster

Mehr

Johann-Gottfried-Herder-Gymnasium Köln-Buchheim. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Johann-Gottfried-Herder-Gymnasium Köln-Buchheim. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik Johann-Gottfried-Herder-Gymnasium Köln-Buchheim Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik am Herder-Gymnasium 3 2 Entscheidungen zum

Mehr

Gymnasium der Stadt Menden. Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. (ab Schuljahr 2015/16)

Gymnasium der Stadt Menden. Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. (ab Schuljahr 2015/16) Gymnasium der Stadt Menden Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik (ab Schuljahr 2015/16) Inhalt Seite 1 Die Fachgruppe Physik 3 2 Entscheidungen zum Unterricht 4 2.1

Mehr

Curriculum im Fach Physik Jahrgangsstufe Einführungsphase

Curriculum im Fach Physik Jahrgangsstufe Einführungsphase Gymnasium am Neandertal Stand Juni 2014 FK Physik Curriculum im Fach Physik Jahrgangsstufe Einführungsphase Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage

Mehr

Physik am HLG Leistungskurs Grundkurs Kurssequenzen EF - Q1 Q2 Fachkonferenz Physik

Physik am HLG Leistungskurs Grundkurs Kurssequenzen EF - Q1 Q2 Fachkonferenz Physik Physik am HLG Leistungskurs Grundkurs Kurssequenzen EF - Q1 Q2 Fachkonferenz Physik Unterrichtsvorhaben der Einführungsphase Inhaltsfeld Mechanik Warum all das? Wer braucht so was?? Ohne Kenntnisse der

Mehr

Städtisches Hansa-Gymnasium Köln Schulinterner Lehrplan zum Kernlehrplan für die Sekundarstufe II (G8) Physik (Stand 11/2016)

Städtisches Hansa-Gymnasium Köln Schulinterner Lehrplan zum Kernlehrplan für die Sekundarstufe II (G8) Physik (Stand 11/2016) Städtisches Hansa-Gymnasium Köln Schulinterner Lehrplan zum Kernlehrplan für die Sekundarstufe II (G8) Physik (Stand 11/2016) Lage der Schule Das Hansa-Gymnasium liegt in der Altstadt-Nord, zentral in

Mehr

Schulinterner Lehrplan des städtischen Gymnasiums Gevelsberg für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan des städtischen Gymnasiums Gevelsberg für die gymnasiale Oberstufe. Physik Schulinterner Lehrplan des städtischen Gymnasiums Gevelsberg für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik in der Schule XY 3 2 Entscheidungen zum Unterricht 5 2.1 Unterrichtsvorhaben

Mehr

Schulinternes Curriculum zum Kernlehrplan für die gymnasiale. Physik

Schulinternes Curriculum zum Kernlehrplan für die gymnasiale. Physik Schulinternes Curriculum zum Kernlehrplan für die gymnasiale Oberstufe Physik Stand: August 2016 Inhalt Seite 1 Die Fachgruppe Physik am SFG 3 2 Entscheidungen zum Unterricht 5 2.1 Unterrichtsvorhaben

Mehr

Einführungsphase Kontext, Inhaltsfeld, Zeitbedarf Inhaltliche Schwerpunkte Kompetenzschwerpunkte Unterrichtsvorhaben I. Kräfte und Bewegungen

Einführungsphase Kontext, Inhaltsfeld, Zeitbedarf Inhaltliche Schwerpunkte Kompetenzschwerpunkte Unterrichtsvorhaben I. Kräfte und Bewegungen Stand: August 2015 Schulinterner Lehrplan SII für das Fach Physik (Jahrgangsstufen EF, Q1, Q2) Übersichtsraster Unterrichtsvorhaben EF Einführungsphase Kontext, Inhaltsfeld, Zeitbedarf Inhaltliche Schwerpunkte

Mehr

Vorläufiges schulinternes Curriculum des Fachbereichs Physik Einführungsphase (EF)

Vorläufiges schulinternes Curriculum des Fachbereichs Physik Einführungsphase (EF) Schulinternes Curriculum der Fachschaft Physik Einführungsphase 1 Vorläufiges schulinternes Curriculum des Fachbereichs Physik Einführungsphase (EF) Lineare Bewegungen 1. Geradlinige Bewegungen mit konstanter

Mehr

St.-Antonius Gymnasium Lüdinghausen. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

St.-Antonius Gymnasium Lüdinghausen. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik St.-Antonius Gymnasium Lüdinghausen Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik 1 Inhalt Seite 1 Die Fachgruppe Physik am St.-Antonius-Gymnasium 3 2 Entscheidungen zum Unterricht

Mehr

Gymnasium An der Stenner. schulinterner Lehrplan für die gymnasiale Oberstufe. Physik

Gymnasium An der Stenner. schulinterner Lehrplan für die gymnasiale Oberstufe. Physik Gymnasium An der Stenner schulinterner Lehrplan für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik in der Schule...3 2 Entscheidungen zum Unterricht...4 3 Einführungsphase...6 4 Grundkurs

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik des Gymnasiums Horn-Bad Meinberg 3 2 Entscheidungen zum Unterricht 5 2.1 Unterrichtsvorhaben

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik des Gymnasium Bergkamens 3 2 Entscheidungen zum Unterricht 4 2.1 Unterrichtsvorhaben 4 2.1.1

Mehr

Gymnasium im Gustav-Heinemann-Schulzentrum Städtisches Gymnasium für Mädchen und Jungen

Gymnasium im Gustav-Heinemann-Schulzentrum Städtisches Gymnasium für Mädchen und Jungen Gymnasium im Gustav-Heinemann-Schulzentrum Städtisches Gymnasium für Mädchen und Jungen Schulinterner Lehrplan für die gymnasiale Oberstufe des Gymnasiums im GHZ Physik (Beschluss der Fachkonferenz) Inhalt

Mehr

Schulinterner Lehrplan des Viktoria-Gymnasums für die gymnasiale Oberstufe. Qualifikationsphase. Physik

Schulinterner Lehrplan des Viktoria-Gymnasums für die gymnasiale Oberstufe. Qualifikationsphase. Physik Schulinterner Lehrplan des Viktoria-Gymnasums für die gymnasiale Oberstufe Qualifikationsphase Physik Inhalt Seite 1 Die Fachgruppe Physik im Viktoria-Gymnasium 2 Entscheidungen zum Unterricht 2.1 Unterrichtsvorhaben

Mehr

Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Inhalt Seite 1 Die Fachgruppe Physik in der Schule XY 3 2 Entscheidungen zum Unterricht 5 2.1 Unterrichtsvorhaben

Mehr

2.1.1 Übersichtsraster Unterrichtsvorhaben

2.1.1 Übersichtsraster Unterrichtsvorhaben 2.1.1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase Kontext und Leitfrage Inhaltsfelder, Inhaltliche Schwerpunkte Kompetenzschwerpunkte Physik und Straßenverkehr Wie lassen

Mehr

Strahlung und Materie Energiequantelung der Atomhülle Spektrum der elektromagnetischen Strahlung

Strahlung und Materie Energiequantelung der Atomhülle Spektrum der elektromagnetischen Strahlung Freiherr-vom-Stein-Gymnasium Dieckmannstr. 141 48161 Münster Schulinternes Curriculum Physik, Sekundarstufe II, Grundkurs Q2 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Qualifikationsphase

Mehr

Schulinterner Lehrplan der GLS zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Stand: Dezember 2014

Schulinterner Lehrplan der GLS zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Stand: Dezember 2014 Schulinterner Lehrplan der GLS zum Kernlehrplan für die gymnasiale Oberstufe Physik Stand: Dezember 2014 2 Entscheidungen zum Unterricht 2.1 Unterrichtsvorhaben Die Darstellung der Unterrichtsvorhaben

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase Städt. Gymnasium Köln-Deutz Schaurtestraße. Physik

Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase Städt. Gymnasium Köln-Deutz Schaurtestraße. Physik Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase Städt. Gymnasium Köln-Deutz Schaurtestraße Physik Allgemeine Bemerkungen zur Schule und zu den Arbeitsbedingungen im Fach Physik Das Deutzer

Mehr

Viktoriagymnasium. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Einführungsphase

Viktoriagymnasium. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Einführungsphase Viktoriagymnasium Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Einführungsphase gültig ab Schuljahr 2014/15 2 Inhalt Seite 1 Die Fachschaft Physik am Viktoriagymnasium 2

Mehr

Mariengymnasium Warendorf Europaschule. Schulinterner Lehrplan zum Kernlehrplan für das Gymnasium Sekundarstufe II. Physik. (Stand:

Mariengymnasium Warendorf Europaschule. Schulinterner Lehrplan zum Kernlehrplan für das Gymnasium Sekundarstufe II. Physik. (Stand: Mariengymnasium Warendorf Europaschule Schulinterner Lehrplan zum Kernlehrplan für das Gymnasium Sekundarstufe II Physik (Stand: 05.07.2016) Inhalt Seite 1 Rahmenbedingungen der fachlichen Arbeit 3 2 Entscheidungen

Mehr

Quantenobjekte Photon (Wellenaspekt) Elektron (Teilchenaspekt) Quantenobjekte und ihre Eigenschaften

Quantenobjekte Photon (Wellenaspekt) Elektron (Teilchenaspekt) Quantenobjekte und ihre Eigenschaften Schulinternes Curriculum im Fach Physik Sekundarstufe II Teil 1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Qualifikationsphase (Q1) - GRUNDKURSE Kontext und Leitideen sfelder, liche Kompetenzschwerpunkte

Mehr

Schulinterner Lehrplan des Gymnasium Adolfinum Moers. zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Schulinterner Lehrplan des Gymnasium Adolfinum Moers. zum Kernlehrplan für die gymnasiale Oberstufe. Physik Schulinterner Lehrplan des Gymnasium Adolfinum Moers zum Kernlehrplan für die gymnasiale Oberstufe Physik in der Fassung vom 24. April 2015 Inhalt 1 Entscheidungen zum Unterricht 3 1.1 Unterrichtsvorhaben

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Seite 1 Die Fachgruppe Physik am Heinrich-Böll-Gymnasium 3 2 Entscheidungen zum Unterricht 5 2.1 Unterrichtsvorhaben 5 2.1.1

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Städtisches Gymnasium Wülfrath. Einführungsphase

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Städtisches Gymnasium Wülfrath. Einführungsphase Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik Städtisches Gymnasium Wülfrath Einführungsphase Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben der Einführungsphase

Mehr

Schulinterner Lehrplan des Gymnasiums der Gemeinde Kreuzau zum Kernlehrplan für die gymnasiale Oberstufe. Grundkurs Physik

Schulinterner Lehrplan des Gymnasiums der Gemeinde Kreuzau zum Kernlehrplan für die gymnasiale Oberstufe. Grundkurs Physik Schulinterner Lehrplan des Gymnasiums der Gemeinde Kreuzau zum Kernlehrplan für die gymnasiale Oberstufe Grundkurs Physik 1 Inhalt Seite 1 Die Fachgruppe Physik am Gymnasium der Gemeinde Kreuzau...3 2

Mehr

Schulinterner Lehrplan EBG Unna, Sek. II. Physik

Schulinterner Lehrplan EBG Unna, Sek. II. Physik Schulinterner Lehrplan EBG Unna, Sek. II Physik Inhalt Seite 1 Das Fach Physik am EBG... 3 2 Entscheidungen zum Unterricht... 4 3 Entscheidungen zu fach- und unterrichtsübergreifenden Fragen... 15 4 Qualitätssicherung

Mehr

Physik Stand: September Seite 1 von 5

Physik Stand: September Seite 1 von 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Unterrichtliche Umsetzung Fachwissen grundlegendes Anforderungsniveau Zusatz für erhöhtes Anforderungsniveau Zusatz für erhöhtes Anforderungsniveau

Mehr