Relationentheorie grundlegende Elemente
|
|
|
- Gudrun Adler
- vor 9 Jahren
- Abrufe
Transkript
1 Relationentheorie grundlegende Elemente Symbol Bedeutung Entsprechung in SQL π AAAA Projektion SELECT σ F Selektion WHERE ρ Umbenennung RENAME; AS Natural Join NATURAL JOIN (nicht in MS SQL Server verwendbar) A=B Equijoin (Gleichverbund) INNER JOIN R x S Kartesisches Produkt CROSS JOIN R S Vereinigung UNION R S Durchschnitt INTERSECT R\S Differenz MINUS; EXCEPT 1
2 Relationenalgebra Cabrios, die mindestens 4 Sitze haben π FFFFFFFFFF (σ AAAAAAAAA="offen" AAA AAAAAAAA=4 (FFFFFFFF) 2
3 Relationenalgebra Welche Personen (VNamen, NName) sind auf welche Fahrzeuge zugelassen? π VVVVVV, NNNNN(( FFFFFFFF Fahrzeug.FahrzeugID=Zulassung.FFFFFFFFFF ZZZZZZZZZ) Person.PersID=Zulassung.PPPPIIPPPPPP) 3
4 Relationenalgebra Alle Firmensitze (Städte) der Fahrzeugdatenbank π SSSS (Hersteller) π HHHHHHHHH (Versicherer) 4
5 Normalisierung von Daten 1. Normalform: Beseitigung von mengenwertigen Attributen und Überführung in atomare Zellwerte Bsp.: Aufteilung der Spalte Kundenname in Vorname und Nachname 2. Normalform: Voraussetzung: 1. Normalform Identifizierung aller Entitätstypen und Erstellung separater Tabellen Bsp.: Tabelle Kunde, Tabelle Spiel 3. Normalform: Voraussetzung: 1. Normalform Beseitigung transitiver Abhängigkeiten, bei denen ein Nichtschlüsselattribut transitiv von einem Schlüsselkandidaten abhängt Bsp.: transitive Abhängigkeit: PLZ -> Ort -> Kundennr 5
6 Boyce-Codd Normalform Lösung Die BCNF ist dann verletzt, wenn sich überlappende Schlüsselkandidaten existieren. Das Attribut Hogwarts House hängt vom Attribut Nominee ab. Allerdings ist die Spalte Nominee allein kein Schlüsselattribut Schlüsselkandidaten: S 1 = {Student, Nominee} S 2 = {Student, Hogwarts House} Lösung: Zerlegung in die zwei separaten Tabellen Nominations und Candidates Nominations Candidates Student Harry Potter Harry Potter Ron Weasley Ron Weasley Gregory Goyle Nominee Cho Chang Cedric Diggory Hermione Granger Cedric Diggory Lucius Malfoy Candidate Cho Chang Cedric Diggory Hermione Granger Lucius Malfoy Hogwarts House Ravenclaw Hufflepuff Gryffindor Slytherin 6
7 Data Definition Language CREATE TABLE Orte( PLZ char(5) PRIMARY KEY, Stadt varchar(20) ); CREATE TABLE Kundendaten( Kundennr int PRIMARY KEY, Nachname varchar(20), Vorname varchar(20), PLZ char(5) FOREIGN KEY REFERENCES Orte, Strasse varchar(50), Hausnummer int ); CREATE TABLE Verleihdaten( Verleihnr int PRIMARY KEY, Kundennr int FOREIGN KEY REFERENCES Kundendaten, Verleihdatum date ); 7
8 Data Definition Language CREATE TABLE Spiel( Spielnr int PRIMARY KEY, Spielbezeichnung varchcar(50) ); CREATE TABLE Verleihdetails( Verleihnr int FOREIGN KEY REFERENCES Verleihdaten, SpielNr int FOREIGN KEY REFERENCES Spiel, Rueckgabe date, PRIMARY KEY(Verleihnr, Spielnr) ); 8
9 Einfügen von Datensätzen INSERT INTO Orte VALUES ('12345','Berlin'), ('23456','Hamburg'); INSERT INTO Kundendaten VALUES (101, 'Müller', 'Fritz', '12345', 'Mustergasse', 4), (102, 'Meier', 'Frieda', '23456', 'Webergasse', 1), (103, 'Lehmann', 'Max', '12345', 'Fallweg', 1); INSERT INTO Spiel VALUES (21, 'Sitzball'), (15, 'Bausteine'), (37, 'Traktor'); 9
10 Einfügen von Datensätzen INSERT INTO Verleihdaten VALUES (5, 101, ' '), (1, 102, ' '), (6, 102, ' '), (3, 103, ' '); INSERT INTO Verleihdetails VALUES (5, 21, ' '), (5, 15, ' '), (5, 37, NULL), (1, 15, ' '), (6, 21, NULL), (3, 21, ' '), (3, 37, ' '); 10
11 Updatable Views Aktualisierungen auf Sichten lassen sich nur in wenigen Fällen durchführen, da es oft zu Konsistenzproblemen kommen kann. Bei welchen der Sichten ist ein Update ohne Weiteres möglich? Sicht 1: CREATE VIEW Geburtsorte AS SELECT DISTINCT GebInOrt FROM Person; Update nicht möglich Aktualisierte Werte können durch die Duplikatentfernung oftmals nicht mehr eindeutig auf bestimmte Datensätze zurückgeführt werden. In diesem konkreten Fall würde das schon funktionieren, sobald allerdings z.b. eine WHERE- Bedingung hinzukommt, ist eine eindeutige Zuordnung nicht mehr gegeben. Sicht 2: CREATE VIEW Fahrzeugmarken as SELECT ma.fzmarke, COUNT(ma.FZMarke) FROM (Fahrzeug as f INNER JOIN Modell as mo ON f.fzmodellid=mo.fzmodellid) INNER JOIN Marke as ma ON mo.fzmarkeid=ma.fzmarkeid GROUP BY ma.fzmarke; Update nicht möglich Durch die Aggregation (Zusammenfassung der Werte) ist eine eindeutige Zuordnung zu konkreten Datensätzen nicht mehr möglich. Sicht 3: CREATE VIEW Personen SELECT VNamen, NName FROM Person; Update möglich 11
ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de
08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren
Oracle 10g Einführung
Kurs Oracle 10g Einführung Teil 5 Einführung Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 16 Seite 1 von 16 Agenda 1 Tabellen und Views erstellen 2 Indizes
Übung ERM. Beispiel: Erstellung einer relationalen Datenbank
LE 9-1 Übung ERM Lernziele: Sie sind in der Lage, Sachverhalte mit Hilfe von ERMs abzubilden. LE 9-2 Beispiel: Erstellung einer relationalen Datenbank Ein Bild ist von einem Künstler gemalt und hängt in
SQL. DDL (Data Definition Language) Befehle und DML(Data Manipulation Language)
SQL DDL (Data Definition Language) Befehle und DML(Data Manipulation Language) DML(Data Manipulation Language) SQL Abfragen Studenten MatrNr Name Vorname Email Age Gruppe 1234 Schmidt Hans [email protected]
Seminar 2. SQL - DML(Data Manipulation Language) und. DDL(Data Definition Language) Befehle.
Seminar 2 SQL - DML(Data Manipulation Language) und DDL(Data Definition Language) Befehle. DML Befehle Aggregatfunktionen - werden auf eine Menge von Tupeln angewendet - Verdichtung einzelner Tupeln yu
ACCESS SQL ACCESS SQL
ACCESS SQL Datenbankabfragen mit der Query-Language ACCESS SQL Datenbankpraxis mit Access 34 Was ist SQL Structured Query Language Bestehend aus Datendefinitionssprache (DDL) Datenmanipulationssprache
Datenbanken. Zusammenfassung. Datenbanksysteme
Zusammenfassung Datenbanksysteme Christian Moser Seite 1 vom 7 12.09.2002 Wichtige Begriffe Attribut Assoziation API Atomares Attribut Datenbasis DBMS Datenunabhängigkeit Datenbankmodell DDL DML DCL ER-Diagramm
Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL
Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) DDL ist Teil von SQL (Structured
Finalklausur zur Vorlesung Datenbanksysteme I Wintersemester 2003/2004 Prüfer: Prof. R. Bayer, Ph.D. Datum: Zeit: 16.
Finalklausur zur Vorlesung Datenbanksysteme I Wintersemester 2003/2004 Prüfer: Prof. R. Bayer, Ph.D. Datum: 13.02.2004 Zeit: 16. Uhr Hinweis: Die Bearbeitungszeit beträgt 90 Minuten. Bitte benutzen Sie
Verbunde (Joins) und mengentheoretische Operationen in SQL
Verbunde (Joins) und mengentheoretische Operationen in SQL Ein Verbund (Join) verbindet zwei Tabellen Typischerweise wird die Verbindung durch Attribute hergestellt, die in beiden Tabellen existieren Mengentheoretische
Verbunde (Joins) und mengentheoretische Operationen in SQL
Verbunde (Joins) und mengentheoretische Operationen in SQL Ein Verbund (Join) verbindet zwei Tabellen Typischerweise wird die Verbindung durch Attribute hergestellt, die in beiden Tabellen existieren Mengentheoretische
DB-Datenbanksysteme. DB SQL-DML 1 Mario Neugebauer
DB-Datenbanksysteme DB-13 043-SQL-DML 1 Mario Neugebauer Einführung Informationsmodellierung Relationales Datenbankmodell Datenbanksprache SQL Einführung Daten-Abfrage-Sprache - DQL Daten-Definitions-Sprache
DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt
DBS ::: SERIE 5 Die Relation produkt enthält Hersteller, Modellnummer und Produktgattung (pc, laptop oder drucker aller Produkte. Die Modellnummer ist (der Einfachheit halber eindeutig für alle Hersteller
Datenbanksysteme Kapitel 5: SQL Data Manipulation Language
Datenbanksysteme Kapitel 5: SQL Data Manipulation Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni
SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.
SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit
Wiederholung VU Datenmodellierung
Wiederholung VU Datenmodellierung VL Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester
Datenbanksysteme 2013
Datenbanksysteme 2013 Kapitel 8: Datenintegrität Vorlesung vom 14.05.2013 Oliver Vornberger Institut für Informatik Universität Osnabrück Datenintegrität Statische Bedingung (jeder Zustand) Dynamische
Grundlagen von SQL. Informatik 2, FS18. Dr. Hermann Lehner (Material von Dr. Markus Dahinden) Departement Informatik, ETH Zürich
Grundlagen von SQL Informatik 2, FS18 Dr. Hermann Lehner (Material von Dr. Markus Dahinden) Departement Informatik, ETH Zürich Markus Dahinden 13.05.18 1 Grundlagen von SQL (Structured Query Language)
5/14/18. Grundlagen von SQL. Grundlagen von SQL. Google, Facebook und Co. setzen auf SQL. Whatsapp
5/14/18 Grundlagen von SQL (Structured Query Language) Datenbanksprache Befehle Datenbanken und Tabellen erstellen/verändern Daten manipulieren (eingeben, ändern, löschen) Datenbank durchsuchen (Queries
Introduction to Data and Knowledge Engineering. 6. Übung SQL
Introduction to Data and Knowledge Engineering 6. Übung SQL Aufgabe 6.1 Datenbank-Schema Buch PK FK Autor PK FK ISBN Titel Preis x ID Vorname Nachname x BuchAutor ISBN ID PK x x FK Buch.ISBN Autor.ID FB
5.8 Bibliotheken für PostgreSQL
5.8 Bibliotheken für PostgreSQL Haskell/WASH: Modul Dbconnect PHP: pqsql-funktionen Java/JSP: JDBC Perl: DBI database interface modul Vorläufige Version 80 c 2004 Peter Thiemann, Matthias Neubauer 5.9
Labor 3 - Datenbank mit MySQL
Labor 3 - Datenbank mit MySQL Hinweis: Dieses Labor entstand z.t. aus Scripten von Prof. Dr. U. Bannier. 1. Starten des MySQL-Systems MySQL ist ein unter www.mysql.com kostenlos erhältliches Datenbankmanagementsystem.
Wiederholung VU Datenmodellierung
Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester
Wirtschaftsinformatik 7a: Datenbanken. Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte
Wirtschaftsinformatik 7a: Datenbanken Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte Drei Gäste bezahlen nach einem gemeinsamen Abendessen eine Rechnung von 30 Euro, so dass jeder 10 Euro gibt.
Kapitel 8: Datenintegrität
Kapitel 8: Datenintegrität Datenintegrität Statische Bedingung (jeder Zustand) Dynamische Bedingung (bei Zustandsänderung) Bisher: Definition eines Schlüssels 1:N - Beziehung Angabe einer Domäne Jetzt:
Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten
Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem
dbis Praktikum DBS I SQL Teil 2
SQL Teil 2 Übersicht Fortgeschrittene SQL-Konstrukte GROUP BY HAVING UNION / INTERSECT / EXCEPT SOME / ALL / ANY IN / EXISTS CREATE TABLE INSERT / UPDATE / DELETE 2 SELECT Syntax SELECT FROM [WHERE [GROUP
Die Anweisung create table
SQL-Datendefinition Die Anweisung create table create table basisrelationenname ( spaltenname 1 wertebereich 1 [not null],... spaltenname k wertebereich k [not null]) Wirkung dieses Kommandos ist sowohl
Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198
Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen
Datenmanagement I SoSe 2006 Aufgabenblatt 4
Datenmanagement I SoSe 2006 Aufgabenblatt 4 June 11, 2009 Versuchen Sie, einige der Anfragen zu formulieren (ab Punkt 6), die im Tutorium stehen, das hier zu finden ist: http://wwwiti.cs.uni-magdeburg.de/iti_db/lehre/dm/tut/tutorium.html.
Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien
Kapitel 5 Dr. Jérôme Kunegis SQL: Grundlagen WeST Institut für Web Science & Technologien Lernziele Kenntnis der Grundkonzepte von SQL Fähigkeit zur praktischen Anwendung von einfachen SQL-Anweisungen
Datenbank- und Informationssysteme. Lösungsvorschläge zu Übungsblatt 2. Sommersemester 1999. CREATE DOMAIN KennzeichenDomain AS VARCHAR(9);
Institut für Angewandte Informatik AIFB und Formale Beschreibungsverfahren Universität Karlsruhe (TH) Prof. Dr. W. Stucky U. Schmidle Tel.: 0721 / 608-3812, 3509 Fax.: 0721 / 693717 e-mail: stucky schmidle
Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.
Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 10 Übung zur Vorlesung Grundlagen: Datenbanken im WS16/17 Harald Lang, Linnea Passing ([email protected])
Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)
Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der
Übung Datenbanksysteme Updates, Integritätsbedingungen, funktionale Abhängigkeiten
Übung Datenbanksysteme Updates, Integritätsbedingungen, funktionale Abhängigkeiten 12.1.2004 Änderungsoperationen bei SQL (Daten) Einfügen neuer Tupel (schon bekannt) INSERT INTO Table (Spalte1, Spalte2)
Praktische SQL-Befehle
Praktische SQL-Befehle Datenbanksysteme I WiSe 2018/2019 Todor Ivanov DB1 WS2018 1 Praktische SQL-Befehle Nested Selects Inserts Updates Views Triggers Constraints Functions Voraussetzung: Laptop + MySQL/
SQL und MySQL. Kristian Köhntopp
SQL und MySQL Kristian Köhntopp Wieso SQL? Datenbanken seit den frühen 1950er Jahren: Hierarchische Datenbanken Netzwerkdatenbanken Relationale Datenbanken = SQL Relational? 10 9 8 7 6 f(y) := y = x r(y)
SQL Data Manipulation Language (DML) und Query Language (QL)
Innsbruck Information System University of Innsbruck School of Management Information Systems Universitätsstraße 15 6020 Innsbruck SQL Data Manipulation Language (DML) und Query Language (QL) Universität
Datenbanksysteme I WS 18/19 Teillösung Übungsblatt 4-6
Datenbanksysteme I WS 18/19 Teillösung Übungsblatt 4-6 Universität Leipzig, Institut für Informatik Abteilung Datenbanken Prof. Dr. E. Rahm, V. Christen, M. Franke DBS1 Blatt 4 Mitschreibbar 2 Welche Autoren
3 Query Language (QL) Einfachste Abfrage Ordnen Gruppieren... 7
1 Data Definition Language (DDL)... 2 1.1 Tabellen erstellen... 2 1.1.1 Datentyp...... 2 1.1.2 Zusätze.... 2 1.2 Tabellen löschen... 2 1.3 Tabellen ändern (Spalten hinzufügen)... 2 1.4 Tabellen ändern
SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software
SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4
Anwendungsentwicklung Datenbanken SQL. Stefan Goebel
Anwendungsentwicklung Datenbanken SQL Stefan Goebel SQL Structured Query Language strukturierte Abfragesprache von ANSI und ISO standardisiert deklarativ bedeutet was statt wie SQL beschreibt, welche Daten
Grundlagen von Datenbanken
Grundlagen von Datenbanken Aufgabenzettel 4 SQL-Anfragen Überblick: DB-Entwurf und Modellierung Konzeptioneller Entwurf Anforderungen Informationsmodell PNr. Vorname Nachname Geb.Datum Person n Datum kaufen
SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";
phpmyadmin SQL Dump version 3.2.4 http://www.phpmyadmin.net Host: localhost Erstellungszeit: 13. April 2011 um 18:44 Server Version: 5.1.41 PHP-Version: 5.3.1 SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO"; /*!40101
WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3)
Vorlesung #5 SQL (Teil 3) Fahrplan Besprechung der Übungsaufgaben Rekursion Rekursion in SQL-92 Rekursion in DBMS- Dialekten (Oracle und DB2) Views (Sichten) - gespeicherte Abfragen Gewährleistung der
Datenbanksysteme Kapitel 5: SQL Data Manipulation Language
Datenbanksysteme Kapitel 5: SQL Data Manipulation Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni
Datenbanken 1. Sommersemester Übung 1
Datenbanken 1 Sommersemester 2017 Übung 1 Übersicht Entwurf Anforderungsanalyse -> Dokumentation der Anford. Konzeptuelles Modell -> ER-Diagramm Logisches Modell -> Relationales Datenmodell Physisches
SQL als Zugriffssprache
SQL als Zugriffssprache Der Select Befehl: Aufbau Select- und From-Klausel Where-Klausel Group-By- und Having-Klausel Union Join-Verbindung Order-By-Klausel Der Update-Befehl Der Delete-Befehl Der Insert-Befehl
1 Relationenalgebra [8 P.] Gegeben seien die folgenden Relationenschemata: Hafen(HNR, Ort, Grundsteinlegung)
1 Relationenalgebra Gegeben seien die folgenden Relationenschemata: [8 P.] Hafen(HNR, Ort, Grundsteinlegung) Matrose(MNR, Nachname, Geburtsdatum, Ausbildungsort Hafen.HNR) Schi(SNR, Name, Bruttoregistertonnen,
Lösungen der Übungsaufgaben von Kapitel 10
Lösungen der Übungsaufgaben von Kapitel 10 1. Legen Sie mit einem SQL - Befehl eine neue Tabelle PERSON_KURZ mit den Feldern Kurz_Id, Kurz_Name an. Machen Sie das so, dass Kurz_Id der Primärschlüssel wird
Cryptokeeper Dokumentation
Cryptokeeper Dokumentation Release 0.1.2 s0556166 Steffen Exler und Alain Ngoufack Nguefack s0557214 21.03.2018 Contents: 1 Beschreibung 1 2 ER-Diagramm 3 3 Implementationsentwurf 5 3.1 Initial-Entwurf..............................................
Abfragen (Queries, Subqueries)
Abfragen (Queries, Subqueries) Grundstruktur einer SQL-Abfrage (reine Projektion) SELECT [DISTINCT] {* Spaltenname [[AS] Aliasname ] Ausdruck} * ; Beispiele 1. Auswahl aller Spalten SELECT * ; 2. Auswahl
Abschlussprüfung im Fach Datenbanken am
Seite 1/8 Abschlussprüfung im Fach Datenbanken am 28.01.2005 Prüfer : Prof. Dr. Sabine Müllenbach Arbeitszeit : 90 Min. Hilfsmittel : keine Anmerkung : Die Prüfung besteht aus 3 Aufgaben. Die Fragen zu
Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort... 13
Auf einen Blick Vorwort... 13 Teil 1 Vorbereitung Kapitel 1 Einleitung... 17 Kapitel 2 SQL der Standard relationaler Datenbanken... 21 Kapitel 3 Die Beispieldatenbanken... 39 Teil 2 Abfrage und Bearbeitung
Daniel Warner SQL. Das Praxisbuch. Mit 119 Abbildungen. Franzis
Daniel Warner SQL Das Praxisbuch Mit 119 Abbildungen Franzis Inhaltsverzeichnis Teil I - Einleitung 15 1 Einleitung 17 1.1 Zum Aufbau des Buchs 17 1.2 Hinweise zur Buch-CD 18 1.3 Typografische Konventionen
Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13
Auf einen Blick Vorwort 13 Teil 1 Vorbereitung Kapitel 1 Einleitung 17 Kapitel 2 SQL - der Standard relationaler Datenbanken 21 Kapitel 3 Die Beispieldatenbanken 39 Teil 2 Abfrage und Bearbeitung Kapitel
1 Hartmann Anna Cäcilienstr Köln (0221) Behrens-Hoffmeister Heidi Lindenweg Köln (0221)
Erstellen einer Mitarbeiter-Datenbank 1 Erstellen einer Mitarbeiter-Datenbank Arbeitsauftrag Ziel der Übung Erstellen von Datenbanken mit Hilfe von SQL-Abfragen Aufgabe (1.) Erstellen Sie eine neue Datenbank
SQL structured query language
Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query
Grundlagen von Datenbanken. Referentielle Aktionen, Sichten, Serialisierbarkeit und Locking
Grundlagen von Datenbanken Referentielle Aktionen, Sichten, Serialisierbarkeit und Locking SQL DDL: Referentielle Aktionen (1/3) Potentielle Gefährdung der referentiellen Integrität durch Änderungsoperationen
ABTEILUNGS- ABTEILUNGS- LEITER NAME
Übungsaufgaben Übungsaufgabe 1 - Normalisierung - Gegeben ist folgende unnormalisierte Relation, die Daten über Mitarbeiter und deren Abteilungszughörigkeit enthält. Weiterhin sind die Beteiligung(en)
WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1)
Vorlesung #3 SQL (Teil 1) Fahrplan Wiederholung/Zusammenfassung Relationales Modell Relationale Algebra Relationenkalkül Geschichte der Sprache SQL SQL DDL (CREATE TABLE...) SQL DML (INSERT, UPDATE, DELETE)
Tabellen verknüpfen: Joins
SQL2-1 - Tabellen verknüpfen: Joins Bisher haben wir Tabellen mittels Unterabfragen verknüpft d. h. eine Spalte einer anderen Tabelle kann ein Selektionskriterium liefern. Wie kann man aber eine "echte"
SQL. DDL (Data Definition Language) Befehle und DML(Data Manipulation Language)
SQL DDL (Data Definition Language) Befehle und DML(Data Manipulation Language) DML(Data Manipulation Language) SQL Abfragen Studenten MatrNr Name Vorname Email Age Gruppe 1234 Schmidt Hans [email protected]
Üben von DDL und DML. Ergebnis:
SQL DDL Üben von DDL und DML https://www.jdoodle.com/execute-sql-online Ergebnis: Befehlsgruppen in SQL DDL Data Definition Language DML Data Manipulation Language CREATE: Tabellen anlegen DROP: Tabellen
SQL-Befehlsliste. Vereinbarung über die Schreibweise
Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden fett und in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche
Create-Table-Befehl. CREATE TABLE Tabellenname ( { Spalte { Datentyp Gebietsname } [ Spaltenbedingung [ ] ] Tabellenbedingung }
Create-Table-Befehl CREATE TABLE Tabellenname ( { Spalte { Datentyp Gebietsname } [ Spaltenbedingung [ ] ] Tabellenbedingung } [, ] ) Liste der wichtigsten Datentypen in SQL INTEGER INT SMALLINT NUMERIC(x,y)
Einführung SQL Data Definition Language (DDL)
Innsbruck Information System University of Innsbruck School of Management Universitätsstraße 15 6020 Innsbruck Einführung SQL Data Definition Language (DDL) Universität Innsbruck Institut für Wirtschaftsinformatik,
DB I S. 1 Referentielle Aktionen [10 P.] Gegeben sei folgende Datendefinition:
1 Referentielle Aktionen Gegeben sei folgende Datendefinition: [10 P.] CREATE TABLE Wissenschaftler( SVNr int PRIMARY KEY, Vorname varchar(25) NOT NULL, Nachname varchar(25) NOT NULL, Gehalt int NOT NULL
Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15
Vorwort..................................................... 13 Kapitel 1 Einleitung.......................................... 15 Kapitel 2 SQL der Standard relationaler Datenbanken... 19 2.1 Die Geschichte................................
Übersicht der wichtigsten MySQL-Befehle
Übersicht der wichtigsten MySQL-Befehle 1. Arbeiten mit Datenbanken 1.1 Datenbank anlegen Eine Datenbank kann man wie folgt erstellen. CREATE DATABASE db_namen; 1.2 Existierende Datenbanken anzeigen Mit
(Von der Nähe zur Distanz zum User geordnet)
Datebanken Was ist eigentlich eine Datenbank? Datenbanken, Datenhaltungsschicht und Datenbankensysteme (hier als Synonyme zu verstehen) finden viele unterschiedliche Anwendungsbereiche. Datenbanken kann
SQL Teil 2. SELECT Projektion Selektion Vereinigung, Schnitt, Differenz Verbund Komplexer SELECT-Ausdruck
SELECT Projektion Selektion Vereinigung, Schnitt, Differenz Verbund Fahren fort mit SQL Befehlen. Bilden Relationenalgebra auf SQL ab. So Umsetzung von Anfragen an die DB (bzw. Tabellen) möglich. SELECT
WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #4. SQL (Teil 2)
Vorlesung #4 SQL (Teil 2) Fahrplan Eine weitere Aggregation: median Geschachtelte Anfragen in SQL Korrelierte vs. Unkorrelierte Anfragen Entschachtelung der Anfragen Operationen der Mengenlehre Spezielle
Datenbanken (Übung 12)
Datenbanken (Übung 12) Prof. Dr.-Ing. Norbert Fuhr Dipl.-Inform. Thomas Beckers ([email protected]) Universität Duisburg-Essen Fachgebiet Informationssysteme 1. 2. Februar 2012 Dipl.-Inform. Thomas
DB I S. 1 Relationenalgebra [8 P.] Gegeben seien die folgenden Relationenschemata: Person(PNR, Vorname, Nachname, Geburtsdatum, Wohnort Ort.
1 Relationenalgebra Gegeben seien die folgenden Relationenschemata: [8 P.] Person(PNR, Vorname, Nachname, Geburtsdatum, Wohnort Ort.ONR) Jugendherberge(JNR, Name, Ort Ort.ONR, Manager Person.PNR) Ort(ONR,
Datenbank und Tabelle mit SQL erstellen
Datenbank und Tabelle mit SQL erstellen 1) Übung stat Mit dem folgenden Befehlen legt man die Datenbank stat an und in dieser die Tabelle data1 : CREATE DATABASE stat; USE stat; CREATE TABLE data1 ( `id`
Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung
Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,
Teil III. Relationale Datenbanken Daten als Tabellen
Teil III Relationale Datenbanken Daten als Tabellen Relationale Datenbanken Daten als Tabellen 1 Relationen für tabellarische Daten 2 SQL-Datendefinition 3 Grundoperationen: Die Relationenalgebra 4 SQL
Wirtschaftsinformatik 7a: Datenbanken. Dozent: R. Witte
Wirtschaftsinformatik 7a: Datenbanken Dozent: R. Witte Drei Gäste bezahlen nach einem gemeinsamen Abendessen eine Rechnung von 30 Euro, so dass jeder 10 Euro gibt. Der Wirt gibt dem Kellner den Auftrag
Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5
Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B
Moderne Datenbankkonzepte
Verteilte Datenbanken Moderne Datenbankkonzepte Wünschenswert, aber extrem aufwändig ( Zweiphasen Commit) Objektrelationale Datenbanken Kompromiss zwischen relational und rein objektorientiert seit 1999
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Übung zur Vorlesung Einführung in die Informatik 2 für Ingenieure (MSE) Alexander van Renen ([email protected])
(4 Punkte) Aufgabe 1: Relationenalgebra - Relationenkalkül
Musterlösunq zur Klausur 1665 Datenbanksvsteme 19.03.2005 Aufgabe 1: Relationenalgebra - Relationenkalkül (4 Punkte) In der Relationenalgebra werden die gewünschten Relationen durch Angabe einer Folge
4. Objektrelationales Typsystem Kollektionstypen. Nested Table
Nested Table Bei einer Nested Table handelt es sich um eine Tabelle als Attributwert. Im Gegensatz zu Varray gibt es keine Beschränkung bei der Größe. Definition erfolgt auf einem Basistyp, als Basistypen
Datenbank- und Informationssysteme - Übungsblatt 6 -
Datenbank- und Informationssysteme - Übungsblatt 6 - Prof. Dr. Klaus Küspert Dipl.-Inf. Andreas Göbel Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken und Informationssysteme 0) Vorbereitung
Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)
Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data
