Thoriumfluorid-Flüssigsalz-Reaktoren (LFTR) Eine interessante Alternative zur etablierten Atomkraft

Größe: px
Ab Seite anzeigen:

Download "Thoriumfluorid-Flüssigsalz-Reaktoren (LFTR) Eine interessante Alternative zur etablierten Atomkraft"

Transkript

1 Thoriumfluorid-Flüssigsalz-Reaktoren (LFTR) Eine interessante Alternative zur etablierten Atomkraft Symposion der Piratenpartei Sachsen-Anhalt, Dessau, 31. März 2012 Dominik Wondrousch

2 Inhalt Einführung und Motivation Grundlagen der Atomkraft Uran-Leichtwasserreaktoren und ihre Probleme Der Thoriumfluorid-Flüssigsalz-Reaktor Zusammenfassung

3 Thorium Metall, 1828 entdeckt, schwach radioaktiv Benannt nach Thor, dem Donnergott Reichlich vorhanden (3x Zinn, 4x Uran, 5000x Gold) 36. häufigstes Element in der Erdkruste (1 t 6 g Th) kaum wirtschaftliche oder technische Anwendungen Nebenprodukt bei der Gewinnung vieler andere Metalle

4 Thorium Metall, 1828 entdeckt, schwach radioaktiv Benannt nach Thor, dem Donnergott Reichlich vorhanden (3x Zinn, 4x Uran, 5000x Gold) 36. häufigstes Element in der Erdkruste (1 t 6 g Th) kaum wirtschaftliche oder technische Anwendungen Nebenprodukt bei der Gewinnung vieler andere Metalle Energie: 1 kg Th 200 kg Uran kg Kohle

5 Thorium Metall, 1828 entdeckt, schwach radioaktiv Benannt nach Thor, dem Donnergott Reichlich vorhanden (3x Zinn, 4x Uran, 5000x Gold) 36. häufigstes Element in der Erdkruste (1 t 6 g Th) kaum wirtschaftliche oder technische Anwendungen Nebenprodukt bei der Gewinnung vieler andere Metalle Energie: 1 kg Th 200 kg Uran kg Kohle

6 LFTR viele Versprechungen Kleinere und sicherere Reaktoren Kostengünstiger in der Herstellung Beseitigen Probleme der Leichtwasserreaktoren Produzieren bis zu mal weniger Atommüll, der in wenigen Jahrzehnten ungefährlich ist Verbrennen bestehenden Atommüll Erzeugen wichtige Stoffe für Medizin und Industrie Reduzieren den CO 2 -Gehalt in der Atmosphäre

7 Grundlagen der Atomkraft Atome Elektronen (Chemie) + Kern (Physik)

8 Grundlagen der Atomkraft Atome Elektronen (Chemie) + Kern (Physik) Kern Protonen + Neutronen

9 Grundlagen der Atomkraft Atome Elektronen (Chemie) + Kern (Physik) Kern Protonen + Neutronen Elemente = gleiche Anzahl Protonen (Z) Proton

10 Grundlagen der Atomkraft Atome Elektronen (Chemie) + Kern (Physik) Kern Protonen + Neutronen Elemente = gleiche Anzahl Protonen (Z) Isotope = Elemente mit verschiedener Anzahl Neutronen (N) Neutron Proton

11 Grundlagen der Atomkraft Atome Elektronen (Chemie) + Kern (Physik) Kern Protonen + Neutronen Elemente = gleiche Anzahl Protonen (Z) Isotope = Elemente mit verschiedener Anzahl Neutronen (N) Mediales Problem: Jod Jod, Uran Uran Neutron Proton

12 Grundlagen der Atomkraft Atome Elektronen (Chemie) + Kern (Physik) Kern Protonen + Neutronen Elemente = gleiche Anzahl Protonen (Z) Isotope = Elemente mit verschiedener Anzahl Neutronen (N) Mediales Problem: Jod Jod, Uran Uran Neutron Proton

13 Grundlagen der Atomkraft Atome Elektronen (Chemie) + Kern (Physik) Kern Protonen + Neutronen Elemente = gleiche Anzahl Protonen (Z) Isotope = Elemente mit verschiedener Anzahl Neutronen (N) Symbol: Th Th + Neutron Proton

14 Grundlagen der Atomkraft Atome Elektronen (Chemie) + Kern (Physik) Kern Protonen + Neutronen Elemente = gleiche Anzahl Protonen (Z) Isotope = Elemente mit verschiedener Anzahl Neutronen (N) Symbol: 232 Th oder Th Th + Neutron Proton

15 Grundlagen der Atomkraft Atome Elektronen (Chemie) + Kern (Physik) Kern Protonen + Neutronen Elemente = gleiche Anzahl Protonen (Z) Isotope = Elemente mit verschiedener Anzahl Neutronen (N) Isotope sind unterschiedlich instabil Th-233 Th Neutron Unterschied 22,3 Minuten 14 Milliarden Jahre

16 Grundlagen der Atomkraft Instabile Isotope wandeln sich um?

17 Grundlagen der Atomkraft Instabile Isotope wandeln sich um Alphastrahler Ra Th 4 He

18 Grundlagen der Atomkraft Instabile Isotope wandeln sich um Alphastrahler, Betastrahler Ac Ra Elektron

19 Grundlagen der Atomkraft Instabile Isotope wandeln sich um Alpha-, Beta- und Gammastrahler g g Ni 60m 60 Ni g

20 Grundlagen der Atomkraft Instabile Isotope wandeln sich um Alpha-, Beta- und Gammastrahler Spontanzerfall 140 Xe U 96 Sr

21 Grundlagen der Atomkraft Instabile Isotope wandeln sich um Alpha-, Beta- und Gammastrahler Spontanzerfall Natürliche Vorgänge, liefern Energie als Zerfallswärme Statistischer Prozess: wann es passiert, ist Zufall Exponentieller Zerfall mit spezifischer Halbwertszeit Zerfallsprodukte selbst oft instabil Zerfallsreihen Nicht provozierbar Nicht steuerbar Nicht abrufbar

22 Grundlagen der Atomkraft Halbwertszeit Kurze Halbwertszeiten, große Aktivität Große Halbwertszeiten, kleine Aktivität Mittlere Halbwertszeiten problematisch

23 Grundlagen der Atomkraft Atomkerne können mit Neutronen wechselwirken 3 Möglichkeiten: Streuung, Neutroneneinfang und Fission Wahrscheinlichkeit ist abhängig vom Isotop und der Geschwindigkeit des Neutrons (Neutronenquerschnitt) Neutroneneinfang lässt sich durch Energiespektrum steuern Neutroneneinfang 232 Th 233 Th + 1 n 14 Milliarden Jahre Aktivierung 22,3 Minuten

24 Grundlagen der Atomkraft Fission = Kernspaltung durch Neutroneneinfang induziert damit gezielt auslösbar Ba + U Kr 36

25 Grundlagen der Atomkraft Fission = Kernspaltung durch Neutroneneinfang induziert damit gezielt auslösbar Freisetzen von viel Energie durch Spaltung und Nachzerfall Erzeugt weitere schnelle Neutronen Abbremsen mit Moderator für Kettenreaktion nötig Einfangen von überschüssigen Neutronen

26 Grundlagen der Atomkraft 3 spaltbare Isotope von Bedeutung: 233 U, 235 U, 239 Pu Ausschließlich 235 U kommt in der Natur vor 1 Tonne Uran 992,7 kg 238 U (99.27%) + 7,2 kg 235 U (0.72%) Für Uranreaktoren: Anreichern auf 5% notwendig

27 Grundlagen der Atomkraft 3 spaltbare Isotope von Bedeutung: 233 U, 235 U, 239 Pu Ausschließlich 235 U kommt in der Natur vor 1 Tonne Uran 992,7 kg 238 U (99.27%) + 7,2 kg 235 U (0.72%) Für Uranreaktoren: Anreichern auf 5% notwendig Nicht chemisch möglich, da ein und das selbe Element Aufwändige Anreicherung in Gaszentrifugen: 235 U leichter als 238 U

28 Grundlagen der Atomkraft 3 spaltbare Isotope von Bedeutung: 233 U, 235 U, 239 Pu Ausschließlich 235 U kommt in der Natur vor 1 Tonne Uran 992,7 kg 238 U (99,27%) + 7,2 kg 235 U (0,72%) Für Uranreaktoren: Anreichern auf 5% notwendig 239 Pu und 233 U durch Brüten zugänglich ( fertil fissil ) Neutroneneinfang, 2x Betazerfall n U 239 U (23,5 min) 239 Np (2,4 d) 239 Pu n Th 233 Th (22,3 min) 233 Pa (27 d) 233 U

29 Grundlagen der Atomkraft 3 spaltbare Isotope von Bedeutung: 233 U, 235 U, 239 Pu Ausschließlich 235 U kommt in der Natur vor 1 Tonne Uran 992,7 kg 238 U (99.27%) + 7,2 kg 235 U (0.72%) Für Uranreaktoren: Anreichern auf 5% notwendig 239 Pu und 233 U durch Brüten zugänglich ( fertil fissil ) Neutroneneinfang, 2x Betazerfall n U 239 U (23,5 min) 239 Np (2,4 d) 239 Pu n Th 233 Th (22,3 min) 233 Pa (27 d) 233 U Thorium muss nicht angereichert werden ( 232 Th 100%)

30 Leichtwasserreaktoren Im Wesentlichen 2 Reaktortypen: Siedewasserreaktor und Druckwasserreaktor Leichtes Wasser: Moderator und Wärmetransport Angereichertes Uranoxid (5% 235 U) als Brennstäbe

31 Siedewasserreaktor

32 Leichtwasserreaktoren Im Wesentlichen 2 Reaktortypen: Siedewasserreaktor und Druckwasserreaktor Leichtes Wasser: Moderator und Wärmetransport Angereichertes Uranoxid (5% 235 U) als Brennstäbe Siedewasserreaktor Kontaminiertes Wasser in Turbine 286 C und 71 bar Druck Wasser wird direkt verdampft Druckwasserreaktor Zweiter Wasserkreislauf mit Turbine (keine Kontamination) 315 C und 157 bar Druck Wasser im 1. Kreislauf flüssig, verdampft Wasser im 2.

33 Leichtwasserreaktoren Leichtes Wasser: Moderator und Wärmetransport Leichtes Wasser = gewöhnliches Wasser ( 1 H) 2 O Guter Moderator (streut Neutronen) Aber absorbiert Neutronen: n + 1 H 2 H mehr Neutronen notwendig, mehr Brennstoff eingesetzt Hohe Temperatur notwendig für guten Wirkungsgrad Niedrige Siedetemperatur = hoher Druck notwendig Schlechter Wärmeüberträger

34 Leichtwasserreaktoren Brennstäbe: Angereichertes Uranoxid (5% 235 U) Feststoff (Keramik), Wärmeübertrag nur an Oberfläche Spaltprodukte z.t. gasförmig (Xe,Rn), kein Entweichen Thermische Belastung der Brennstäbe ( 238 U, Np, Pu) Neutroneneinfang langlebige Transurane Kein Entfernen von Spaltprodukten Brennelemente werden brüchig

35 Leichtwasserreaktoren Brennstäbe: Angereichertes Uranoxid (5% 235 U) Viel Brennmaterial nötig (100 Tonnen im Reaktor) Zeitiger Austausch (⅓ der Stäbe alle Monate) Lagerung von 1 3 Jahren im Abklingbecken Nur ein Bruchteil des Brennstoffs verbrannt Aufarbeitung (Stofftrennung, Anreicherung) unökonomisch Nur wenige Zyklen, dann Einlagerung (95% ungenutzt)

36 Leichtwasserreaktoren Sicherheitsaspekte Überhitzung regelt Reaktor herunter (neg. Voidkoeffizient) Reaktorabschaltung durch Kontrollstäbe bei Stromausfall Druckabfall Wasser wird sofort zu Dampf (keine Kühlung) Nachwärme (ca. 7% des Betriebs) Problem ohne Kühlung Überhitzen (sogar Schmelzen) der Brennstäbe möglich Bei hoher Temperatur Bildung von Knallgas (Explosion)

37 Thoriumfluorid-Flüssigsalz-Reaktor LFTR Brutreaktor: 232 Th als fertiles und 233 U als fissiles Material Komplett anderes, kompakteres Reaktordesign Hohe Temperatur (>800 C), Atmosphärendruck (1 bar) Keine Brennstäbe, kein Wasser

38 Thoriumfluorid-Flüssigsalz-Reaktor LFTR

39 Thoriumfluorid-Flüssigsalz-Reaktor LFTR Wasserentsalzung Wasserstoff- oder Methanol-Produktion

40 Thoriumfluorid-Flüssigsalz-Reaktor LFTR Brutreaktor: 232 Th als fertiles und 233 U als fissiles Material Komplett anderes, kompakteres Reaktordesign Hohe Temperatur (>800 C), Atmosphärendruck (1 bar) Keine Brennstäbe, kein Wasser Salzschmelze Neutronen besser genutzt: 1 Tonne Thorium im Reaktor Bedarfsgerechtes Erbrüten von 233 U Neutronenabschirmung durch 232 Th-Blanket Entnahme und Zugabe von Stoffen während des Betriebs Abfuhr von Spaltprodukten, vollständiges Verbrennen

41 Thoriumfluorid-Flüssigsalz-Reaktor LFTR Vorteile Salzschmelze: sehr guter Wärmeleiter, direkte Konvektion Hohe Temperatur hoher Wirkungsgrad (50%) Abwärme vielfach nutzbar: Methanol aus CO 2 der Luft Selbstständige Temperaturregulierung durch Ausdehnen und Zusammenziehen der Salzschmelze Salz erstarrt unterhalb von 600 C, chemisch stabil, nicht brennbar, reagiert weder mit Luft noch Wasser

42 Thoriumfluorid-Flüssigsalz-Reaktor LFTR Vorteile Drucklos: keine großräumige Verteilung bei Defekt Inhärente Sicherheit durch Freeze Plug und Passivkühlung Fährt notfalls ohne menschliches Eingreifen herunter Verbesserte Sicherheit Kleine Reaktoren, industriell fertigbar, kostengünstig Dezentral einsetzbar

43 Thoriumfluorid-Flüssigsalz-Reaktor LFTR Vorteile Medizinisch ( 99 Mo für PES) und technisch ( 238 Pu-Batterie) wichtige Isotope zugänglich Zusatz und Verbrennen bestehenden Atommülls Kleine Beladung, hoher Abbrand weniger Abfall: 83% nach 10 Jahren, 17% nach 300 Jahren unbedenklich Chemische Aufbereitung und Recycling direkt vor Ort

44 LFTR viele Versprechen Kleinere und sicherere Reaktoren Kostengünstiger in der Herstellung Beseitigen Probleme der Leichtwasserreaktoren Produzieren bis zu mal weniger Atommüll, der in wenigen Jahrzehnten ungefährlich ist Verbrennen bestehenden Atommüll Erzeugen wichtige Stoffe für Medizin und Industrie Reduzieren den CO 2 -Gehalt in der Atmosphäre

45 232 Th ank you 90

46 Literatur Wikipedia (en+de, LFTR, MSR, Thorium, Uran, Plutonium, Siedewasser- und Druckwasserreaktor, Thorium fuel cycle, Neutron cross section, Radioaktivität, ) Hargraves R, Moir R (2010) American Scientist 98: 304 Cooper N, Minakata D, Begovic M, Crittenden J (2011) Environ. Sci. Technol. 45: 6237, DOI: /es MacPhearson HG (1985) Nuclear Sci. Eng. 90: LFTR Graphik: angepasste Version basiert auf Original von Adam Freidin (CC-by) Andere Graphiken: Originale oder Bearbeitungen gemeinfreier Werke oder in Fair-Use

Kernkraftwerke. Kernkraftwerk mit Siedewasserreaktor

Kernkraftwerke. Kernkraftwerk mit Siedewasserreaktor 1 Kernkraftwerke Es werden zur Zeit vier Reaktortypen zur Energiegewinnung verwendet. 54. Siedewasserreaktor 55. Druckwasserreaktor 56. Schneller Brutreaktor 57. Thorium Hochtemperaturreaktor Im Folgenden

Mehr

n U f 1 * + f 2 * + ν n

n U f 1 * + f 2 * + ν n Ergänzungen zu Kapitel 3.5: Kernspaltung Ablauf des Spaltprozesses: n + 235 U f 1 * + f 2 * + ν n Es entstehen i. Allg. hochangeregte Spaltprozesse f 1 *, f 2 * Diese liegen weit weg vom Tal der stabilen

Mehr

Oberthema: Atom- und Kernenergie Datum: Thema: Kernkraftwerke (nach Lehrbuch Dorn-Bader zusammengestellt) Seite: 2 von 6

Oberthema: Atom- und Kernenergie Datum: Thema: Kernkraftwerke (nach Lehrbuch Dorn-Bader zusammengestellt) Seite: 2 von 6 Thema: Kernkraftwerke (nach Lehrbuch Dorn-Bader zusammengestellt) Seite: 2 von 6 Grundlagen der Kernspaltung 1. Neutronen müssen langsam sein! Warum müssen kernspaltende Neutronen langsam sein? Viele Neutronen,

Mehr

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter Maße wie Gammastrahlen abgeschwächt werden. Im Gegensatz zu den Gammastrahlen sind die Neutronenstrahlen auch Teilchenstrahlen wie Alpha- und Betastrahlen. Die Reichweiten von Strahlen mit einer Energie

Mehr

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen Wiederholung der letzten Vorlesungsstunde: Experiment von Rutherford, Atombau, atomare Masseneinheit u, 118 bekannte Elemente, Isotope, Mischisotope, Massenspektroskopie, Massenverlust 4H 4 He, Einstein:

Mehr

Wiederholung: Spaltung und Fusion

Wiederholung: Spaltung und Fusion Wiederholung: Spaltung und Fusion Tröpfchenmodell: Stabilste Kerne liegen im Bereich A~60 Große Energiemenge kann bei der Spaltung eines schweren Kernes in zwei mittelschwere Kerne und bei der Fusion von

Mehr

Technische Nutzung der Kernspaltung. Kernkraftwerke

Technische Nutzung der Kernspaltung. Kernkraftwerke Technische Nutzung der Kernspaltung Kernkraftwerke Kettenreaktionen bilden die Grundlage der Energiegewinnung durch Kernspaltungsprozesse Voraussetzungen: spaltbares Material (U-235; Pu-239) Im natürlichen

Mehr

Radioaktivität, Kernspaltung. medizinische, friedliche und kriegerische Nutzungen der Radioaktivität

Radioaktivität, Kernspaltung. medizinische, friedliche und kriegerische Nutzungen der Radioaktivität Radioaktivität, Kernspaltung. medizinische, friedliche und kriegerische Nutzungen der Radioaktivität LaCh Seite 1 von 7 1. Grundlagen der Atomtheorie... 3 Aufbau eines Atoms... 3 2. Eigenschaften der radioaktiven

Mehr

= strahlungsaktiv; Teilchen oder Energie abstrahlend. Eine dem Licht verwandte energiereiche Strahlung, die bei vielen Kernprozessen auftritt.

= strahlungsaktiv; Teilchen oder Energie abstrahlend. Eine dem Licht verwandte energiereiche Strahlung, die bei vielen Kernprozessen auftritt. Radioaktivität 1 Die Bausteine des Kernes (n 0 und p + ) halten mittels der sehr starken aber nur über eine sehr kurze Distanz wirkenden Kernkräfte zusammen. Sie verhindern ein Auseinanderbrechen der Kerne

Mehr

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 426 - Physik B3 9.3 Kernenergie Kernenergie ist eine interessante Möglichkeit, nutzbare Energie zu gewinnen. Das kann man sehen wenn man vergleicht, wie viel Energie in 1 kg unterschiedlicher

Mehr

1. Vervollständigen Sie bitte das Diagramm. 2. Ergänzen Sie bitte.

1. Vervollständigen Sie bitte das Diagramm. 2. Ergänzen Sie bitte. Energie aus Atomen Im Dezember 1938 machte der Chemiker Otto Hahn in Berlin folgendes Experiment: Er bestrahlte Uran mit Neutronen. Hahn hatte sich die Frage gestellt, ob die Atomkerne des Urans in der

Mehr

Atomenergie durch Kernspaltung

Atomenergie durch Kernspaltung Atomenergie durch Sommerakademie Salem 2008 Die Zukunft der Energie 17. August - 30. August 2008 Atomenergie durch Inhalt 1 Kernphysik Grundlagen Bindungsenergie Bethe-Weizsäcker-Formel Radioaktivität

Mehr

7 Ausblick auf Kerntechnik und Elementarteilchenphysik

7 Ausblick auf Kerntechnik und Elementarteilchenphysik 7 Ausblick auf Kerntechnik und Elementarteilchenphysik 7.1 Grundlagen der Kernenergietechnik; Kernspaltung, Kernenergie; Entsorgung, Wiederaufbereitung Kernspaltung 1938 entdeckten Otto Hahn (1879-1968,

Mehr

4. Radiochemie und Kerntechnik

4. Radiochemie und Kerntechnik 4. Radiochemie und Kerntechnik Bindungsenergiekurve - Für alle Atomkerne mit Nukleonenzahlen zwischen 30 und 150 beträgt die mittlere Bindungsenergie je Nukleon ca. 8,5 MeV die halbempirische Bethe-Weizsäcker-Formel

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Arbeitsfragen zur Vorbereitung auf den Quali

Arbeitsfragen zur Vorbereitung auf den Quali Arbeitsfragen zur Vorbereitung auf den Quali Atombau 1 Was bedeutet das Wort Atom? 2 Welche Aussage mache Dalton über die Atome? 3 Was ist der größte Teil eines Atoms? 4 Was sind Moleküle? 5 Durch welchen

Mehr

2.7 Kernspaltung 100 KAPITEL 2. KERN- UND TEILCHENPHYSIK

2.7 Kernspaltung 100 KAPITEL 2. KERN- UND TEILCHENPHYSIK 100 KAPITEL 2. KERN- UND TEILCHENPHYSIK 8 Bindungsenergie/A [MeV] 6 4 0 50 100 150 200 250 Massenzahl A Abbildung 2.16: Experimentelle Werte für die Bindungsenergie pro Nukleon für die Atomkerne mit verschiedenen

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

Kernspaltung. Posten 11

Kernspaltung. Posten 11 Posten 11 Kernspaltung Sozialform Dreier-Gruppen (auch Einzel- oder Partnerarbeit möglich) Bearbeitungszeit 30 Minuten Voraussetzung Posten 5 "E=mc 2 " Posten 6 "Sind Massen immer gleich massiv?" 11.1

Mehr

Einführung in die Kern- und Teilchenphysik I Vorlesung Kernspaltung: Energieerzeugung Funktionsweise von Reaktoren

Einführung in die Kern- und Teilchenphysik I Vorlesung Kernspaltung: Energieerzeugung Funktionsweise von Reaktoren Einführung in die Kern- und Teilchenphysik I Vorlesung 12 6.12.2013 Kernspaltung: Energieerzeugung Funktionsweise von Reaktoren Anwendungen der Kernphysik Medizinische Anwendungen Zur Erinnerung: Masse

Mehr

Kernenergie. Handout zum Vortrag im Rahmen des Fortgeschrittenenseminars im SS 13. Sonja Spies. Betreuung: Prof. Dr. Frank Maas

Kernenergie. Handout zum Vortrag im Rahmen des Fortgeschrittenenseminars im SS 13. Sonja Spies. Betreuung: Prof. Dr. Frank Maas Kernenergie Handout zum Vortrag im Rahmen des Fortgeschrittenenseminars im SS 13 Sonja Spies Betreuung: Prof. Dr. Frank Maas 1 Inhaltsverzeichnis 1 Einleitung 2 2 Physikalische Grundlagen 2 2.1 Bindungsenergie.........................

Mehr

38. Lektion Wie alt ist Ötzi wirklich, oder wie wird eine Altersbestimmung durchgeführt?

38. Lektion Wie alt ist Ötzi wirklich, oder wie wird eine Altersbestimmung durchgeführt? 38. Lektion Wie alt ist Ötzi wirklich, oder wie wird eine Altersbestimmung durchgeführt? Lernziel: Radioaktive Isotope geben Auskunft über das Alter von organischen Materialien, von Gesteinen und von der

Mehr

Wechselwirkung von Neutronen

Wechselwirkung von Neutronen Wechselwirkung von Neutronen Inhalt des 8.Kapitels Freie Neutronen Kernreaktionen und Kernspaltung Neutronenenergien Reaktionsarten von Neutronen Neutronenwechselwirkungen im Gewebe Abschirmung von Neutronen

Mehr

Grundwissen Atome und radioaktiver Zerfall

Grundwissen Atome und radioaktiver Zerfall Atome, Radioaktivität und radioaktive Abfälle Arbeitsblatt 6 1 Grundwissen Atome und radioaktiver Zerfall Repetition zum Atombau Die Anzahl der... geladenen Protonen bestimmt die chemischen Eigenschaften

Mehr

Kapitel 11. Kernreaktionen Induzierte Kernspaltung

Kapitel 11. Kernreaktionen Induzierte Kernspaltung Kapitel 11 Kernreaktionen Es gibt eine Fülle experimentellen Materials über Kernreaktionen und deren theoretische Beschreibung. In diesem Kapitel werden wir uns auf nur zwei Reaktionen beschränken, die

Mehr

Kernreaktionen chemisch beschrieben

Kernreaktionen chemisch beschrieben Physics Meets Chemistry Kernreaktionen chemisch beschrieben 1 Kernreaktionen chemisch beschrieben 1. Ausgangslage 2. Ziele 3. Unterrichtsvorschlag mit Übungen Physics Meets Chemistry Kernreaktionen chemisch

Mehr

Radioaktivität. Bildungsstandards Physik - Radioaktivität 1 LEHRPLANZITAT. Das radioaktive Verhalten der Materie:

Radioaktivität. Bildungsstandards Physik - Radioaktivität 1 LEHRPLANZITAT. Das radioaktive Verhalten der Materie: Bildungsstandards Physik - Radioaktivität 1 Radioaktivität LEHRPLANZITAT Das radioaktive Verhalten der Materie: Ausgehend von Alltagsvorstellungen der Schülerinnen und Schüler soll ein grundlegendes Verständnis

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

7) Anwendungen radioaktiver Strahlung in Wissenschaft und Technik (1) Analytische Anwendungen (Radiometrische Titration)

7) Anwendungen radioaktiver Strahlung in Wissenschaft und Technik (1) Analytische Anwendungen (Radiometrische Titration) 7) Anwendungen radioaktiver Strahlung in Wissenschaft und Technik (1) (Radiometrische Titration) Der radioaktive Stoff dient als Indikator Fällungsreaktionen Komplexbildungsreaktionen Prinzip einer Fällungstitration:

Mehr

Bau und Funktion eines KKW Lehrerinformation

Bau und Funktion eines KKW Lehrerinformation Lehrerinformation 1/8 Arbeitsauftrag Ziel Material Sozialform Die SuS lesen den Infotext und beantworten parallel dazu die Leitfragen. Sie setzen die Bruchstücke eines ihnen nicht näher bekannten Siedewasserreaktors

Mehr

Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie

Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie 21.04.2011, Regenstein, Gebert, Schmidt, Wüsthoff, Guber, Polster 1 physikalische Grundlagen der Kernenergietechnik 21.04.2011,

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

Kernreaktionen. d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke /s mit keV Deuteronen Energieabhängigkeit

Kernreaktionen. d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke /s mit keV Deuteronen Energieabhängigkeit Kernreaktionen d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke 10 10 /s mit 100-300keV Deuteronen Energieabhängigkeit 4 E n = E d + 2 (2 E d E n ) 1/2 cos(θ) + 3Q E d = 300 kev Emission

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

Uran. Uran ist ein silberglänzendes, weiches, radioaktives Metall. Es bildet eine Vielzahl verschiedener Legierungen.

Uran. Uran ist ein silberglänzendes, weiches, radioaktives Metall. Es bildet eine Vielzahl verschiedener Legierungen. Uran Uran ist ein silberglänzendes, weiches, radioaktives Metall. Es bildet eine Vielzahl verschiedener Legierungen. Bei Raumtemperatur läuft auch massives Uranmetall an der Luft an. Dabei bilden sich

Mehr

Kernenergie A = N + Z. A Massenzahl N Neutronenzahl Z Protonenzahl

Kernenergie A = N + Z. A Massenzahl N Neutronenzahl Z Protonenzahl Kernenergie A = N + Z A Massenzahl N Neutronenzahl Z Protonenzahl Massendefekt: M Z m p + N m n M A Bindungsenergie: B M x c 2 c Lichtgeschwindigkeit 1 ev = 1,602 10-19 J Mittlere Bindungsenergie je Nukleon

Mehr

Deutschlands wissenschaftliche Atomforschung: Nur Dual-use oder offen für Atomwaffen?

Deutschlands wissenschaftliche Atomforschung: Nur Dual-use oder offen für Atomwaffen? 60 Jahre nach den Göttinger 18: Deutschland atomwaffenfrei oder Nuklearmacht? Veranstaltung von IALANA, INES, IPPNW, NatWiss, VdW - Berlin, 6. April 2017 Deutschlands wissenschaftliche Atomforschung: Nur

Mehr

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde.

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde. Atommodelle 1. Vervollständige den Lückentext. Atome bestehen aus einer mit negativ geladenen und einem mit positiv geladenen und elektrisch neutralen. Die Masse des Atoms ist im konzentriert. Die Massenzahl

Mehr

Kernchemisches Praktikum I Transurane Die Chemie des Neptuniums (Element 93)

Kernchemisches Praktikum I Transurane Die Chemie des Neptuniums (Element 93) Kernchemisches Praktikum I Transurane Die Chemie des Neptuniums (Element 93) Johannes Gutenberg-Universität Mainz Institut für Kernchemie Folie Nr. 1 Die Actiniden (1) 1 3 H Li Be B C N O F Ne 4 Spaltprodukte

Mehr

«Neue Generationen von Kernreaktoren»

«Neue Generationen von Kernreaktoren» Naturwissenschaftliche Gesellschaft Winterthur Wissenschaft um 11 20. Januar 2012, Alte Kaserne Winterthur «Neue Generationen von Kernreaktoren» Horst-Michael Prasser Generationen von Kernkraftwerken Nachhaltigkeit

Mehr

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität Radioaktive Strahlung Entstehung Nutzen Gefahren du weisst, Lernziele zu Radioaktivität 1 dass Elementarteilchen nur bedingt «elementar» sind. welche unterschiedlichen Arten von radioaktiven Strahlungen

Mehr

Atomenergie durch Kernspaltung

Atomenergie durch Kernspaltung Atomenergie durch Kernspaltung Die Kernkraft spielt neben der Kohle, dem Erdöl und dem Erdgas für die Weltenergieversorgung eine wichtige Rolle und viele Länder können und wollen auf Atomenergie auch in

Mehr

Bau und Funktion eines KKW Lehrerinformation

Bau und Funktion eines KKW Lehrerinformation Lehrerinformation 1/8 Arbeitsauftrag Ziel Material Sozialform Die SuS lesen den Infotext und beantworten parallel dazu die Leitfragen. Sie setzen die Bruchstücke eines ihnen nicht näher bekannten Siedewasserreaktors

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel 4: Zerfälle instabiler Kerne

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

1. Physikalische Grundlagen

1. Physikalische Grundlagen 1.2. Kernumwandlung und Radioaktivität - Entdeckung Antoine Henri Becquerel Entdeckte Radioaktivität 1896 Ehepaar Marie und Pierre Curie Nobelpreise 1903 und 1911 Liese Meitner, Otto Hahn 1. Kernspaltung

Mehr

Natürliche Radioaktivität Lehrerinformation

Natürliche Radioaktivität Lehrerinformation Lehrerinformation 1/7 Arbeitsauftrag Ziel Material Sozialform Die SuS lesen den Informationstext. Als Verständnishilfe verwenden sie gleichzeitig das Arbeitsblatt Leitfragen zum Text. In Partnerarbeit

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

D i e E n e r g i e w i r t s c h a f t

D i e E n e r g i e w i r t s c h a f t D i e E n e r g i e w i r t s c h a f t Energiegewinnung Allgemeines E n e r g i e = g e s p e i c h e r t e A r b e i t nicht regenerierbar regenerierbar Primärenergie Torf Braunkohle Steinkohle Erdöl

Mehr

BULLETIN Nr. 71 November 2014

BULLETIN Nr. 71 November 2014 AVES Pfannenstil Aktion für vernünftige Energiepolitik Schweiz (AVES) Regionalgruppe Pfannenstil c/o Dr. Hans R. Moning AG, Gotthardstrasse 10, 8800 Thalwil Postkonto 80-10120-3 www.aves-zh.ch BULLETIN

Mehr

Referat Atomenergie Freitag, 14. Dezember 2001

Referat Atomenergie Freitag, 14. Dezember 2001 Physik Referat Atomenergie Freitag, 14. Dezember 2001 Geschichte der Kernreaktoren Wie so oft in der Geschichte von neuen Technologien, wurde auch die ersten Kernreaktoren für das Militär entwickelt. 1944

Mehr

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom Das Bohrsche Atomodell Nils Bohr 1885-1962 Atomdurchmesser 10 d 10 m Atom Kerndurchmesser 14 http://www.matrixquantenenergie.de d 10 m Kern 14 dkern 10 m 10 datom 10 m Masse und Ladung der Elementarteilchen

Mehr

Lagerung des Abfalls. radioaktiver Abfall

Lagerung des Abfalls. radioaktiver Abfall Lagerung des Abfalls radioaktiver Abfall Radioaktivität Was ist Radioaktivität? Welche Eigenschaften besitz sie? Welche Auswirkungen kann sie haben? Warnung vor radioaktiver Strahlung Internationale Strahlenschutzzeichen

Mehr

Planungsblatt Physik für die 4D

Planungsblatt Physik für die 4D Planungsblatt Physik für die 4D Datum: 21.10-25.10 Stoff Wichtig!!! Nach dieser Woche verstehst du: (a) Aufbau der Materie und das Periodensystem (b) Radioaktivität und Halbwertszeit (c) Potenzen von Zehn

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 10 Kernphysik Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 29. Juni 2009 Nachdem in den vorangegangenen Kapiteln die Moleküle

Mehr

Basics of Electrical Power Generation Nukleartechnik

Basics of Electrical Power Generation Nukleartechnik Basics of Electrical Power Generation Nukleartechnik 1/ 43 GE Global Research Freisinger Landstrasse 50 85748 Garching kontakt@reg-energien.de Inhalte 1. Kernkraftwerke 2. Kraftwerkstypen 3. Der Brennstoffkreislauf

Mehr

Grundlagen der Kernphysik

Grundlagen der Kernphysik Ausgabe 2008-05 Grundlagen der Kernphysik (Erläuterungen) Die Kernphysik ist wesentlicher Bestandteil der Atomphysik und untersucht den Aufbau der Atomkerne, die Eigenschaften der Atomkerne und deren Elementarteilchen,

Mehr

Reaktortypen. Kernbrennstoffe

Reaktortypen. Kernbrennstoffe H1 Reaktortypen Kernreaktoren erzeugen primär Wärme und unterscheiden sich dadurch nicht von Kraftwerktypen, die fossile Brennstoffe verfeuern. Es soll daher hier nicht auf die Umwandlung von Wärme in

Mehr

Kernchemisches Praktikum I. Kernspaltung. Institut für Kernchemie Universität Mainz

Kernchemisches Praktikum I. Kernspaltung. Institut für Kernchemie Universität Mainz Kernchemisches Praktikum I Kernspaltung Institut für Kernchemie Universität Mainz Folie Nr. 1 Historisches 1932 J. Chadwick entdeckt das Neutron beim Beschuss von Be mit. 1934 E. Fermi et al. überführen

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 25..203 Oberstufe: se und ausführliche Lösungen zur Klassenarbeit zur Elektrik und Kernphysik se: E Eine Glühlampe 4V/3W (4 Volt, 3 Watt) soll an eine Autobatterie

Mehr

Physik am Samstagmorgen 19. November Radioaktivität. Ein unbestechlicher Zeitzeuge. Christiane Rhodius

Physik am Samstagmorgen 19. November Radioaktivität. Ein unbestechlicher Zeitzeuge. Christiane Rhodius Physik am Samstagmorgen 19. November 2005 Radioaktivität Ein unbestechlicher Zeitzeuge Christiane Rhodius Archäochronometrie Warum und wie datieren wir? Ereignisse innerhalb der menschlichen Kulturentwicklung

Mehr

Dieser Artikel wurde ausgedruckt unter der Adresse:

Dieser Artikel wurde ausgedruckt unter der Adresse: Dieser Artikel wurde ausgedruckt unter der Adresse: http://www.planet-wissen.de/technik/atomkraft/grundlagen_der_atomkraft/index.html P Atomenergie: So funktioniert sie Planet Wissen 25.04.2016 02:41 Min.

Mehr

Radioaktivität Haller/ Hannover-Kolleg 1

Radioaktivität Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 2 Radioaktivität 1. Was verstehe ich darunter? 2. Welche Wirkungen hat die Radioaktivität? 3. Muss

Mehr

3) Natürliche und künstliche Radioaktivität (1)

3) Natürliche und künstliche Radioaktivität (1) 3) Natürliche und künstliche Radioaktivität (1) Kosmische Strahlung - Protonen (93 %) - Alpha-Teilchen (6.3 %) - schwerere Kerne (0. %) - Ohne Zerfallsreihen - 0 radioaktive Nuklide, die primordial auf

Mehr

Strahlungslose Übergänge. Pumpen Laser

Strahlungslose Übergänge. Pumpen Laser Prof Ch Berger, Physik f Maschinenbauer, WS 02/03 15 Vorlesung 44 Strahlungsprozesse 441 Das Zerfallsgesetz Elektronen aus energetisch hoher liegenden Zustanden gehen in die tieferen Zustande uber, falls

Mehr

Physikalische Grundlagen für einen sicheren nuklearen Reaktor auf der Basis der Kernspaltung bei überkritischen Kühlmittelzuständen

Physikalische Grundlagen für einen sicheren nuklearen Reaktor auf der Basis der Kernspaltung bei überkritischen Kühlmittelzuständen Physikalische Grundlagen für einen sicheren nuklearen Reaktor auf der Basis der Kernspaltung bei überkritischen Kühlmittelzuständen Ziele und Umfang der Untersuchung Heutige Kernkraftwerke haben mit der

Mehr

Physik-Vorlesung. Radioaktivität.

Physik-Vorlesung. Radioaktivität. 3 Physik-Vorlesung. Radioaktivität. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH 5 Themen Aufbau der Atomkerns Isotope Zerfallsarten Messgrößen Strahlenschutz 6 Was ist Radioaktivität? Radioaktivität = Umwandlungsprozesse

Mehr

Kernbrennstoff Uran Lehrerinformation

Kernbrennstoff Uran Lehrerinformation Lehrerinformation 1/5 Arbeitsauftrag Die SuS lesen den Infotext und beantworten anschliessend die Fragen dazu. Ziel Material Die SuS erfahren, was Uran ist, woher es stammt und wie es als Brennstoff in

Mehr

Fachdidaktik Chemie ETH Grundlagenfach: Radioaktivität S. 1

Fachdidaktik Chemie ETH Grundlagenfach: Radioaktivität S. 1 Fachdidaktik Chemie ETH Grundlagenfach: Radioaktivität S. 1 Radioaktivität Radioaktivität, ein Thema für die Chemie? Gründe das Thema Radioaktivität im Grundlagenfach Chemie zu unterrichten Gründe Radioaktivität

Mehr

Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz NLWKN Direktion

Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz NLWKN Direktion Behördliche Überwachung des KKU im Restbetrieb und Rückbau Teil 2: Überwachung des Luftpfades Überwachung der Emissionen Umgebungsüberwachung Anpassungen an den Rückbau Dr. Kirsten Rupprecht Überwachung

Mehr

SEITE 1. Stichpunkte. Erläuterungen

SEITE 1. Stichpunkte. Erläuterungen SEITE 1 Erläuterungen Diese Folie dient als Titelbild für die Präsentation und soll einen ersten Blick auf das Thema vermitteln. Diese Folie ist nicht Teil der eigentlichen Präsentation. Quellen: Bild

Mehr

Ungelöst: Endlagerung in Deutschland

Ungelöst: Endlagerung in Deutschland Ungelöst: Endlagerung in Deutschland Warum ein Neubeginn der Endlagersuche unerlässlich ist! Veranstaltung der Transmutation und Langzeitzwischenlagerung unter sicherheitstechnischen Gesichtspunkten 1.

Mehr

Kernchemie und Kernreaktionen

Kernchemie und Kernreaktionen Kernchemie und Kernreaktionen Die Kernchemie befaßt sich mit der Herstellung, Analyse und chemische Abtrennung von Radionukliden. Weiterhin werden ihre Methoden in der Umweltanalytik verwendet. Radioaktive

Mehr

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Atomkerne von Cl bestehen. b) Erkläre, was man unter Isotopen versteht. Gib ein Beispiel an. 3, Cl c) Im Periodensystem wird die

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

12) Die Chemie der Transuranelemente (1)

12) Die Chemie der Transuranelemente (1) 12 Die Chemie der Transuranelemente (1 Neptunium - als erstes Transuranelement 1940 durch McMillan und Abelson entdeckt - Beschuss von Uran mit thermischen Neutronen: 239 β,23,5min U ( n, γ U 239 93 -

Mehr

Radioaktivität und Bindungslehre

Radioaktivität und Bindungslehre Zusammenfassungen Chemie Radioaktivität und Bindungslehre Prüfung Montag, 13. März 2017 _ Radioaktivität und Strahlendosis 1/2 _ Atomkraftwerke 3/4 _ Bindungstypen und Lewis-Formel 5/6 _ Kovalenzbindung

Mehr

1938/39 zufällige Entdeckung: Experiment: 1939 Korrekte Interpretation: 1942 erste kontrollierte Kettenreaktion: (Argonne, Chicago)

1938/39 zufällige Entdeckung: Experiment: 1939 Korrekte Interpretation: 1942 erste kontrollierte Kettenreaktion: (Argonne, Chicago) spontane induzierte Spaltung 1938/39 zufällige Entdeckung: O.Hahn Experiment: F. Straßmann nat n + U chemische Analyse Barium (A~140) 1939 Korrekte Interpretation: L.Meitner R.Frisch theoretische Behandlung:

Mehr

Thema: Uran, vom Erz zum Brennelement

Thema: Uran, vom Erz zum Brennelement Thema: Uran, vom Erz zum Brennelement Brennelement 1 Inhaltsangabe Uranerzgewinnung Uranerzverarbeitung Prinzip des Anreicherungsverfahren Anreicherung durch Zentrifugentechnik Weitere Anreicherungsverfahren

Mehr

Kernkraftwerke der Zukunft

Kernkraftwerke der Zukunft Startseite» IT/Tech» Von wegen Atomausstieg: Kernkraftwerke der Zukunft News 27.12.2017 VON WEGEN ATOMAUSSTIEG Kernkraftwerke der Zukunft Deutschlands nichtnuklearen Sonderweg gehen wohl nur die wenigsten

Mehr

Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie

Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie 12.04.2011, Regenstein, Gebert, Schmidt, Wüsthoff, Guber, Polster 1 Was haben wir vor? 12.04.2011 2 Was haben wir vor? Loriot

Mehr

Kann Transmutation die Lösung sein?

Kann Transmutation die Lösung sein? 1 Kann Transmutation die Lösung sein? KARLSRUHER ATOMTAGE 16. 19. JULI 2015 Prof. Dr. Bruno Thomauske RWTH Aachen Institut für Nukleare Entsorgung und Techniktransfer (NET) 2 VORTRAGSÜBERSICHT 1. Motivation

Mehr

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Kernphysik (Physik)

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Kernphysik (Physik) SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Kernphysik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1.

Mehr

B Kernenergie. 1 Physikalische Grundlagen. 1.1 Maßeinheiten der Atomphysik. 1.2 Massendefekt

B Kernenergie. 1 Physikalische Grundlagen. 1.1 Maßeinheiten der Atomphysik. 1.2 Massendefekt -VI.B1- B Kernenergie 1 Physikalische Grundlagen 1.1 Maßeinheiten der Atomphysik Da die üblichen Einheiten für Masse und Energie in der Atom und Kernphysik zu groß sind, benutzt man hier üblicherweise

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Presseinformation 2 / 2007

Presseinformation 2 / 2007 Presseinformation 2 / 2007 Eine Dokumentation wissenschaftlicher Leistungen in der Kernforschung Neuausgabe der Karlsruher Nuklidkarte erschienen Soeben ist die siebte Auflage der Karlsruher Nuklidkarte

Mehr

Spezielle Relativitätstheorie. Experimente der relativistischen Dynamik

Spezielle Relativitätstheorie. Experimente der relativistischen Dynamik Spezielle Relativitätstheorie Experimente der relativistischen Dynamik Massenzunahme Walter Kaufmann (87-947) wies 90 die Zunahme der Elektronenmasse bei wachsender Geschwindigkeit nach (bis v 0,94 c).

Mehr

Allgemeine Chemie. Der Atombau

Allgemeine Chemie. Der Atombau Allgemeine Chemie Der Atombau Dirk Broßke Berlin, Dezember 2005 1 1. Atombau 1.1. Der Atomare Aufbau der Materie 1.1.1. Der Elementbegriff Materie besteht aus... # 6.Jh.v.Chr. Empedokles: Erde, Wasser,

Mehr