Inverted Files for Text Search Engines
|
|
|
- Oswalda Knopp
- vor 9 Jahren
- Abrufe
Transkript
1 Inverted Files for Text Search Engines Justin Zobel, Alistair Moffat PG 520 Intelligence Service Emel Günal 1
2 Inhalt Einführung Index - Inverted Files - Indexkonstruktion - Indexverwaltung Optimierung - Indexkompression Weitere Ansätze zur Indexierung 2
3 Einführung Wie suchen wir? 1) Angabe einer Frage, meist Schlagwörter: Albert Einstein, Katzenklo 2) Durchsuchen Liste mit Antworten 3) Folgen der Links Bei Unzufriedenheit Frage modifizieren Suchdomäne beschränken Einbeziehen od. Auslassen von Ausdrücken 3
4 Allgemeines Suchmaschinen: Werkzeuge um bestimmte Dokumente in Sammlungen zu finden Liefern leichten Zugang zu Informationen Viele Suchmaschinen sind Indexbasiert Index? 4
5 Was ist ein Index? Datenstruktur für eine effiziente Suche 2 Varianten: 1) word-level-index - Abspeicherung der Wortpositionen - Zeigt an, wo der Ausdruck im Dokument vorkommt 2) document-level-index - Anzeige darüber, ob Ausdruck in einem Dokument vorkommt - keine Information, wo der Ausdruck erscheint Effizienteste Indexstruktur: Inverted File 5
6 Inverted Files- Aufbau Sammlung von Listen Abspeicherung aller Terme die in Dokumenten vorkommen Warum Invertiert? Üblich: Dokument Term - jedem Dokument Zuordnung einer Menge von Termen Hier: Term Dokument - jedem Term Zuordnung einer Liste von Informationen über das Vorkommen des Terms in Dokumenten 6
7 Inverted Files- Beispiel Dok.1: Die Hauptstadt von Deutschland heißt Berlin. Dok.2: Berlin ist die Hauptstadt von Deutschland Dok.3: Die Hauptstädte von Deutschland bzw. Spanien heißen Berlin bzw. Madrid Anfrage: Hauptstadt Deutschland Erweiterung: Stopping Stemming Wordpositionen Inverted File: bzw. 3 die 1,2,3 Spanien 3 Deutschland 1,2,3 Hauptstadt 1,2 Hauptstädte 3 heißen 3 heißt 1 ist 2 Madrid 3 Berlin 1,2,3 von 1,2,3 7
8 Inverted Files- Implementierung Besteht aus: Wörterbuch (Vocabulary): Menge aller vork. Terme Meist im Speicher gehalten Schnell Posting File: Speichert noch zusätzliche (anwendungsabhängige) Information, z.b.: TermVorkommen, Wortposition,... Wörterbuch bzw. die Spanien Deutschland Hauptstadt Hauptstädte heißen heißt ist Madrid Berlin von Posting File 3 1, 2, 3 3 1, 2, 3 1, , , 2, 3 1, 2, 3 8
9 Inverted Files Vor- und Nachteile Vorteile: Schneller Zugriff auf Terme, Dokumente Kurze Suchzeit Verwaltung zusätzlicher Informationen (Position im Satz) Nachteile: Hoher Speicheraufwand Aufbau und Aktualisierung aufwendig 9
10 Techniken um Suche effektiv zu machen Stemming auf Stammwörter reduzieren: neues neu, heißt heiß Stopping Stopwörter( die, ist, und, bzw..) raus Thesaurus: Zusammenfassung unterschiedlicher Worte gleicher Bedeutung Vorteil: Platzsparend Suche effektiv Index kleiner Nachteil: Ergebnis wird vielleicht schlechter 10
11 Indexkonstruktion Die Indexkonstruktion (Invertierung) besteht aus folgenden Schritten: 1. Parsen der Dokumente 2. Sortieren der Listen 3. Zusammenfassen doppelter Einträge Mögliche Probleme: Hoher Speicherverbrauch Lange Sortierzeit 11
12 Indexkonstruktion 1) Parsen der Dokumente Durchlaufen der zu indizierenden Dokumente von vorne bis hinten Anlegen einer Liste der gefundenen Wörter mit der dazugehörigen Dokumentnr. (Stopwörter ignorieren) Liste noch unsortiert Doppelte Einträge noch nicht zusammengefasst 12
13 Indexkonstruktion 2) Sortieren der Listen Alphabetische Sortierung der Liste mittels Sortieralgorithmus Doppelte Einträge werden noch nicht entfernt 3) Zusammenfassen doppelter Einträge Zusammenfassung doppelt vorkommender Wörter 13
14 Indexverwaltung Updates von invertierten Listen meist Neu Einfügungen Löschen seltener Kurze invertierte Listen in Speicher fester Größe Lange Listen in zusammenhängende Speicherbereiche variabler Größe 14
15 Indexverwaltung Jede invertierte Liste beginnt als kurze Liste in einem Bucket Beim Überlauf längste darin enthaltene Liste wird zu langer Liste Was machen wir mit zu langen Listen? 15
16 Optimierung Schon kennengelernt: Stemming Stopping Indexkompression mittels - Golomb-Code - Rice-Code - Binäre Kodierung Vorteil: 1. Weniger als 50% der Textgröße 2. Auswertungszeit von Fragen geringer 3. Erstellung des Indexes in kurzer Rechenzeit 16
17 Indexkompression Zeit- und Platzsparende Speicherung von Daten bzw. Integer auf einem Computer Zugriffszeit auf Daten möglichst kurz Viele Ansätze zur Indexkompression Golomb-Code Rice-Code: Spezialfall des Golomb-Codes Unäre, Binäre Kodierung... 17
18 Golomb-Code Darstellungsform für alle positiven Zahlen Abspeicherung von Zahlen unbekannter Größe Speicher sparsam einfach umzusetzen schnelle Kodierung 18
19 Beispiel zum Golomb-Code Teil 1: Berechne q der Zahl n Quotient wird unär ausgegeben q besteht nur aus 1 Am Ende Anhängen 0 Teil 2: wird als Binärzahl aufgeschrieben n = Zahl q = Quotienten b = Parameter n = Zahl q = Quotienten b = Parameter r = Rest 19
20 Weitere Ansätze zur Indexierung Suffix Array Array, welches Suffixe eines Strings in lexikographischer Reihenfolge angibt erlaubt binäre Suche Nutzbar als Index, lokalisiert jeden Substring innerhalb des Strings Text lange Zeichenkette jedes Teilstück des Textes ist eindeutig durch seine Position bestimmt Positionen im Text frei wählbar 20
21 Weitere Ansätze zur Indexierung Signature Files Effiziente Herausfilterung von Einträgen einer Datenbasis, welche eine bestimmte Bedingung erfüllen große Textbestände, innerhalb kurzer Zeit nach Schlüsselwörtern durchsuchbar Signaturen werden durch die Abbildung von Wörtern auf Bitstrings mittels Hash-Funktion erzeugt Speicherung der Dokumente in einer Textdatei, Signaturen in einer separaten Datei Signature File Aufbau: Text wird in gleichgroße Blöcke unterteilt jeder Block repräsentiert ein Stück des Textes 21
22 Das war s Danke für eure Aufmerksamkeit! 22
Übersicht. Volltextindex Boolesches Retrieval Termoperationen Indexieren mit Apache Lucene
Übersicht Volltextindex Boolesches Retrieval Termoperationen Indexieren mit Apache Lucene 5.0.07 1 IR-System Peter Kolb 5.0.07 Volltextindex Dokumentenmenge durchsuchbar machen Suche nach Wörtern Volltextindex:
Textsuche mit Indexstrukturen. Anfragen. Inzidenz Vektoren. Term-Dokument Inzidenz Matrix
Textsuche mit Indexstrukturen Zu einer Anfrage alle Dokumente sequentiell durchsuchen? Kleine Textsammlungen (ein paar MB) Sehr viele Änderungen Indexstrukturen Mehraufwand lohnt sich erst für große Texte
IR Seminar SoSe 2012 Martin Leinberger
IR Seminar SoSe 2012 Martin Leinberger Suchmaschinen stellen Ergebnisse häppchenweise dar Google: 10 Ergebnisse auf der ersten Seite Mehr Ergebnisse gibt es nur auf Nachfrage Nutzer geht selten auf zweite
Teil VII. Hashverfahren
Teil VII Hashverfahren Überblick 1 Hashverfahren: Prinzip 2 Hashfunktionen 3 Kollisionsstrategien 4 Aufwand 5 Hashen in Java Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 7 1 Hashverfahren:
Freispeicherverwaltung
Freispeicherverwaltung Allgemeine Techniken und Anwendung unter Linux Martin Wahl, 17.11.03 Freispeicherverwaltung 1 Überblick Allgemeines Suchstrategien Verwaltungsstrategien externer / interner Verschnitt
Dateiorganisation und Zugriffsstrukturen. Prof. Dr. T. Kudraß 1
Dateiorganisation und Zugriffsstrukturen Prof. Dr. T. Kudraß 1 Mögliche Dateiorganisationen Viele Alternativen existieren, jede geeignet für bestimmte Situation (oder auch nicht) Heap-Dateien: Geeignet
Algorithmen und Datenstrukturen 12
12. Juli 2012 1 Besprechung Blatt 11 Fragen 2 Binary Search Binäre Suche in Arrays Binäre Suchbäume (Binary Search Tree) 3 Sortierverfahren Allgemein Heapsort Bubblesort Insertionsort Mergesort Quicksort
Indexstrukturen in Datenbanken
für Zeichendaten und Texte sowie mehrdimensionale Dateiorganisation und Zugriffspfade 3. Juli 2014 Inhaltsverzeichnis 1 Einleitung 2 Präfix B+-Baum 3 Tries 4 k-dimensionale Bäume 5 Grid-File 6 mehrdimensionales
Verkettete Datenstrukturen: Listen
Verkettete Datenstrukturen: Listen 2 Listen Formal: Liste = endliche Folge von Elementen [a 1, a 2,..., a n ]. Spezialfall: leere Liste [ ]. Länge einer Liste = Anzahl der Elemente (bei leerer Liste: 0).
Text Analytics. Referat: Improving Suffix Array Locality for Fast Pattern Matching on Disk
Text Analytics Referat: Improving Suffix Array Locality for Fast Pattern Matching on Disk Nils Alberti & Jürgen Eicher, 12. Juni 2008 Einführung Stringmatching bisher: Analyse des Patterns zum schnellen
SPRACHTECHNOLOGIE IN SUCHMASCHINEN IR-GRUNDLAGEN
SPRACHTECHNOLOGIE IN SUCHMASCHINEN IR-GRUNDLAGEN HAUPTSEMINAR SUCHMASCHINEN COMPUTERLINGUISTIK SOMMERSEMESTER 2016 STEFAN LANGER [email protected] -MUENCHEN.DE Übung (Gruppenarbeit, 10-15 min.) Sie
Zeichenketten Benedikt Straßner. Programming Systems Group Martensstr Erlangen Germany
Zeichenketten 16.04.2018 Benedikt Straßner Programming Systems Group Martensstr. 3 91058 Erlangen Germany Übersicht String Matching Algorithmen Naive Stringsuche Knuth Morris Pratt (KMP) Algorithmus Boyer-Moore
Listen. Für die Verarbeitung von Listen durch den Rechner ist relevant:
Listen Für die Verarbeitung von Listen durch den Rechner ist relevant: Anzahl der Listenelemente - beim erstmaligen Erstellen der Liste bekannt/unbekannt - stabil vs. wechselhaft - Existenz eines Maximalwerts
Inhalt. Einführung in die Strukturierte Programmierung 15
Inhalt Einführung in die Strukturierte Programmierung 15 1.1 Was bedeutet Programmieren? 17 1.2 Was bedeutet Strukturierte Programmierung? 18 1.3 Was ist Pascal? 19 1.4 Was ist PS/k? 20 1.5 Warum wird
Wiederholung: Zusammenfassung Felder. Algorithmen und Datenstrukturen (für ET/IT) Definition Abstrakter Datentyp. Programm heute
Wiederholung: Zusammenfassung Felder Algorithmen und Datenstrukturen (für ET/IT) Wintersemester / Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Ein Feld A kann repräsentiert
9. Vektoren. (auch Felder/array)
9. Vektoren (auch Felder/array) Motivation Hat man mehrere Objekte gleichen Datentyps, so kann man sie explizit deklarieren, wenn die Anzahl bekannt ist double x1,x2,x3,x4; Nachteile: versagt, -wenn die
Pat Trees und Pat Arrays Datenstrukturen zur effizienten Suche in Texten
Pat Trees und Pat Arrays Datenstrukturen zur effizienten Suche in Texten Ruprecht-Karls-Universität Heidelberg HS Information Retrieval Dozentin: Dr. Karin Haenelt Referenten: Doina Gliga und Katja Niemann
Freispeicherverwaltung Martin Wahl,
Freispeicherverwaltung Martin Wahl, 17.11.03 Allgemeines zur Speicherverwaltung Der physikalische Speicher wird in zwei Teile unterteilt: -Teil für den Kernel -Dynamischer Speicher Die Verwaltung des dynamischen
2.4 Effiziente Datenstrukturen
2.4 Effiziente Datenstrukturen Effizienz des Systems bezeichnet den sparsamer Umgang mit Systemressourcen und die Skalierbarkeit auch über große Kollektionen. Charakteristische Werte für Effizienz sind
Stabiles Sortieren. Dieses Prinzip lässt sich natürlich auf beliebiege andere Zahlensystem oder auch komplett anders gestaltete Mengen übertragen.
Prof. Thomas Richter 3. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg [email protected] Material zur Vorlesung Algorithmische Mathematik II am 27.04.2017 Stabiles
Beispiele elementarer Datentypen Ganze Zahlen (integer) Unterbereiche Gleitkommazahlen Festkommazahlen
Beispiele elementarer Datentypen Ganze Zahlen (integer) - Werte sind ganze Zahlen in vorgegebenen Bereich (z. B. -2 31 bis 2 31-1) - Übliche Operationen: Arithmetik (z. B. +,-,*, Division mit Rest, Rest
Systeme 1. Kapitel 3 Dateisysteme WS 2009/10 1
Systeme 1 Kapitel 3 Dateisysteme WS 2009/10 1 Letzte Vorlesung Dateisysteme Hauptaufgaben Persistente Dateisysteme (FAT, NTFS, ext3, ext4) Dateien Kleinste logische Einheit eines Dateisystems Dateitypen
Kapitel 12: Induktive
Kapitel 12: Induktive Datenstrukturen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2009 Folien nach einer Vorlage von H.-Peter
B*-BÄUME. Ein Index ist seinerseits wieder nichts anderes als eine Datei mit unpinned Records.
B*-Bäume 1 B*-BÄUME Beobachtung: Ein Index ist seinerseits wieder nichts anderes als eine Datei mit unpinned Records. Es gibt keinen Grund, warum man nicht einen Index über einem Index haben sollte, und
Slotted Pages Wie ordnet man eine Menge von Sätzen auf eine Seite an? ffl Seite besteht aus drei Teilen fixer Seitenkopf (z.b. mit Seitennr, LSN) Slot
Satzverwaltung Aufgabe Abbildung von Sätzen auf Blöcken ffl Techniken der Satzadressierung TID Konzept (direkt) Zuordnungstabelle (indirekt) ffl Abbildung von Sätzen ffl Realisierung langer Felder" ffl
Was ist ein assoziativer Speicher?
Überblick 17. Datenstrukturen 17.1 Einleitung 17.2 Listen 17.3 Assoziative Speicher 17.4 Bäume 17.5 Mengen 17.6 Das Collections-Framework in Java 17.7 Zusammenfassung 17 Datenstrukturen 3 Assoziative Speicher
Datenstrukturen sind neben Algorithmen weitere wichtige Bausteine in der Informatik
5. Datenstrukturen Motivation Datenstrukturen sind neben Algorithmen weitere wichtige Bausteine in der Informatik Eine Datenstruktur speichert gegebene Daten und stellt auf diesen bestimmte Operationen
Übrigens: um den Algorithmus im Unterricht einzuführen, sind keine Formeln notwendig! Warum reicht die normale ASCII-Codierung nicht aus?
Huffman-Code Dieser Text ist als Hintergrundinformation ausschliesslich für die Lehrperson gedacht. Der Text ist deshalb eher technisch gehalten. Er lehnt sich an das entsprechende Kapitel in "Turing Omnibus"
Vom Leichtesten zum Schwersten Sortieralgorithmen
Aktivität 7 Vom Leichtesten zum Schwersten Sortieralgorithmen Zusammenfassung Häufig verwendet man Computer dazu Listen von Elementen in eine bestimmte Ordnung zu bringen. So kann man beispielsweise Namen
Algorithmen und Datenstrukturen
Thomas Ottmann / Peter Widmayer Algorithmen und Datenstrukturen 4. Auflage Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis 1 Grundlagen 1.1 Algorithmen und ihre formalen Eigenschaften
Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen
Algorithmen und Datenstrukturen 2 Dynamische Datenstrukturen Algorithmen für dynamische Datenstrukturen Zugriff auf Variable und Felder durch einen Ausdruck: Namen durch feste Adressen referenziert Anzahl
Verkettete Datenstrukturen: Bäume
Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller
Grundlagen der Programmierung
Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung
Sortieren und Suchen. Jens Wächtler Hallo Welt! -Seminar LS 2
Sortieren und Suchen Jens Wächtler 17.05.2017 Hallo Welt! -Seminar LS 2 Überblick Sortieren kurze Wiederholung Binäre & Ternäre Suche Binäre Suche in einer Liste Bisektionsverfahren (Nullstellensuche)
Nachtrag: Vergleich der Implementierungen von Stack
Nachtrag: Vergleich der Implementierungen von Stack In der letzten Vorlesung hatten wir zwei Implementierung der Klasse Stack: eine Implementierung als Liste (Array): liststack eine Implementierung als
C++ - Objektorientierte Programmierung Konstante und statische Elemente
C++ - Objektorientierte Programmierung Konstante und statische Elemente hat eine Kantenlänge hat eine Füllfarbe Kantenlänge setzen Füllfarbe lesen Volumen berechnen Leibniz Universität IT Services Anja
Onlinehilfe Maildatenbank
1 Onlinehilfe Maildatenbank Dieser Hilfetext ist nur über das ebüro-symbol in der Maildatenbank ( )zu erreichen, um die generelle Lotus-Notes- Hilfe (F1) nicht zu beeinflussen. In den anderen ebüro-datenbanken
Datenstrukturen und Algorithmen. 7. Suchen in linearen Feldern
Datenstrukturen und Algorithmen 7. Suchen in linearen Feldern VO 708.031 Suchen in linearen Feldern [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische
3. Übungsblatt zu Algorithmen I im SoSe 2017
Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799
ADS: Algorithmen und Datenstrukturen
ADS: Algorithmen und Datenstrukturen Teil X Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig 13.
Semiautomatische Erschließung von Psychologie-Information
PETRUS-Workshop "Automatische Erschließungsverfahren" 21./22.03.2011 Dipl.-Psych. Michael Gerards Semiautomatische Erschließung von Psychologie-Information Kontext Die Literaturdatenbank PSYNDEX: Erschließt
Index mit Adobe Acrobat Professional erstellen. Leibniz Universität IT Services Anja Aue
Index mit Adobe Acrobat Professional erstellen Leibniz Universität IT Services Anja Aue Index Liste aller, im Dokument, enthaltenen Wörter und deren Fundstelle. Nachschlageregister von Wörtern. Beschleunigung
Grundlagen der Informatik
Grundlagen der Informatik Klausur 1. August 2008 1. Dynamische Datenstrukturen und objektorientierte Programmierung (45 Punkte) Gegeben sei eine Datenstruktur mit folgendem Aufbau struct lelem { int w;
Datenbanken: Indexe. Motivation und Konzepte
Datenbanken: Indexe Motivation und Konzepte Motivation Warum sind Indexstrukturen überhaupt wünschenswert? Bei Anfrageverarbeitung werden Tupel aller beteiligter Relationen nacheinander in den Hauptspeicher
Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph
Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen
Informatik II, SS 2014
Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative
Datenstrukturen Teil 1. Arrays, Listen, Stapel und Warteschlange. Arrays. Arrays. Array
Datenstrukturen Teil 1,, und Sammelbegriff für Anordnung, Aufstellung, Reihe von gleichen Elementen in festgelegter Art und Weise Werden unterschieden in Standardarrays und assoziative Können ein- oder
Algorithmen und Datenstrukturen (für ET/IT) Wiederholung: Ziele der Vorlesung. Wintersemester 2012/13. Dr. Tobias Lasser
Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Wiederholung: Ziele der Vorlesung Wissen: Algorithmische
B / B* - Bäume. Guido Hildebrandt Seminar Datenbanksysteme
B / B* - Bäume Guido Hildebrandt Seminar Datenbanksysteme 25.11.2010 Gliederung Einleitung Binärbaum B - Baum B* - Baum Varianten Zusammenfassung Quellen Gliederung Einleitung Binärbaum B - Baum B* - Baum
Algorithmen und Datenstrukturen (für ET/IT)
Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Wiederholung: Ziele der Vorlesung Wissen: Algorithmische
13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n)
AVL-Bäume: Ausgabe aller Elemente in O(n) Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) Frage: Kann man Einfügen, Löschen und Suchen in O(1) Zeit? 1 Hashing einfache Methode
Algorithms & Data Structures 2
Algorithms & Data Structures Digital Sorting WS B. Anzengruber-Tanase (Institute for Pervasive Computing, JKU Linz) (Institute for Pervasive Computing, JKU Linz) WIEDERHOLUNG :: UNTERE SCHRANKE FÜR SORTIEREN
Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen
Rückblick Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen Vektorraummodell stellt Anfrage und Dokumente als Vektoren in gemeinsamen Vektorraum dar
Algorithmen in der Sekundarstufe I
Algorithmen in der Sekundarstufe I Am Ende der Primarstufe sollte Schüler/innen diese Grundkonzepte kennen und anwenden können: Abläufe planen und ausführen wenn Wand berührt, dann Spiel verloren Vom Problem
Neue Ansätze der Softwarequalitätssicherung
Neue Ansätze der Softwarequalitätssicherung Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik
Datenstrukturen und Algorithmen
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/32 Datenstrukturen und Algorithmen Vorlesung 7: Sortieren (K2) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group
Grundlagen der Informatik 0
Technische Universität Darmstadt 01.07.2013 Grundlagen der Informatik 0 Vorlesung 0 Java ist eine Programmiersprache Ilkay Baytekin Douglas Crockford http://media.smashingmagazine.com/wp-content/uploads/2012/04/doug-crockford-image.jpg
C# - Einführung in die Programmiersprache Arrays, Enumeration und Collections. Leibniz Universität IT Services Anja Aue
C# - Einführung in die Programmiersprache Arrays, Enumeration und Collections Leibniz Universität IT Services Anja Aue Arrays... speichern mehrere Werte vom gleichen Datentyp. fassen zusammenhängende Werte
Übungs- und Praktikumsaufgaben zur Systemprogrammierung Dipl.-Ing. H. Büchter (Lehrbeauftragter) FH-Dortmund WS 2001/2002 / SS 2002
1. Stellen Sie die schrittweise Verbesserung eines Compilers durch das Bootstrap- Verfahren mit Hilfe von T-Diagrammen dar. Gegeben ist ein auf der Maschine M lauffähiger Compiler C 1, der in S geschrieben
Indizes. Index. Datenfeld Normale Tabelle. Gesucht wird: Zugriff. 3. Zugriff 1. Zugriff.
Indizes Gesucht wird: 44791 Index Normale Tabelle 1. Zugriff 1 44789 2. Zugriff 2 44801 3. Zugriff 3 44797 4. Zugriff 4 44388 5. Zugriff 5 44746 6. Zugriff 6 44787 7. Zugriff 7 44793 8. Zugriff 8 44799
Mapra: C++ Teil 4. Felix Gruber. 6. Mai IGPM, RWTH Aachen. Felix Gruber (IGPM, RWTH Aachen) Mapra: C++ Teil 4 6.
Mapra: C++ Teil 4 Felix Gruber IGPM, RWTH Aachen 6. Mai 2015 Felix Gruber (IGPM, RWTH Aachen) Mapra: C++ Teil 4 6. Mai 2015 1 / 22 Themen vom letzten Mal Kompilieren mit Makefiles Ein-/Ausgabe über Dateien
Algorithmen und Datenstrukturen 1
Algorithmen und Datenstrukturen 1 10. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Suchverfahren für große Datenmengen bisher betrachtete Datenstrukturen
Algorithmen und Datenstrukturen (für ET/IT)
Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2016 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Grundlagen von Algorithmen
Übungsklausur Programmieren / Algorithmen und Datenstrukturen 2
Programmieren / Algorithmen und Datenstrukturen 2 Autor: Prof. Dr. Bernhard Humm, FB Informatik, Hochschule Darmstadt Datum: 20.1.2014 Übungsklausur Programmieren / Algorithmen und Datenstrukturen 2 1
Algorithmen und Datenstrukturen II: Hashverfahren
Algorithmen und Datenstrukturen II: Hashverfahren Prof. Dr. Oliver Braun Letzte Änderung: 10.05.2017 16:21 Algorithmen und Datenstrukturen II: Hashverfahren 1/28 Hashverfahren bisher jeder Datensatz durch
