Themenblock: Erstellung eines Cube
|
|
|
- Hedwig Winkler
- vor 10 Jahren
- Abrufe
Transkript
1 Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining
2 Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen Menge von Grundoperationen Produkt Oracle Datenbank 2
3 Relationenname Relationenmodell Attribut Stadt Name CID Population Paris FR Tokyo JA Hamburg GM Stockholm SW Seoul KS Berlin GM Relationenschema Relation Tupel Attributwert 3
4 Primärschlüssel Schlüssel Identifiziert ein Tupel eindeutig Fremdschlüssel Referenziert von einem Tupel auf ein anderes Tupel 4
5 Eigenschaften SQL die Sprache für relationale Datenbanken mengenorientiert & deklarativ Konstrukte zur Datenmanipulation CREATE, INSERT, UPDATE, DELETE Konstrukt für Datenabfragen SELECT 5
6 Datentypen Zeichenketten CHARACTER(N), CHAR(n) VARCHAR(n) Zahlen INTEGER, INT NUMERIC(p, s) FLOAT Datum und Uhrzeit DATE 6
7 Anlegen von Relationen SQL - Create Syntax CREATE TABLE <Relation> ( ) <Attribut><Datentyp>, PRIMARY KEY (<Attribut>) FOREIGN KEY <Attribut> REFERENCES <Relation>(<Attribut>) 7
8 SQL Insert und Update Einfügen von Tupeln in Relation Syntax INSERT INTO <Relation> VALUES (<Datum1>, '<Datum2>', ) Ändern von Tupeln Syntax UPDATE <Relation> SET <Attribut> = <Datum> WHERE <Attribut> = <Datum> 8
9 SQL - Delete Löschen von Tupeln aus einer Relation Syntax DELETE FROM <Relation> WHERE <Attribut> = <Datum> Löschen von Realtionen Syntax DELETE FROM <Relation> 9
10 Anfragen - Grundgerüst Anfragen an den Datenbestand Syntax SELECT <Attribut>, FROM <Relation> WHERE <Selektionsbedingung> GROUP BY <Attribut> 10
11 Projektion Auswahl von Spalten einer Relation Syntax SELECT <Attribut>, FROM <Relation> Name Paris Tokyo Hamburg Stockholm Seoul Berlin CID FR JA GM SW KS GM Population
12 Anfragen - Selektion Auswahl von Tupeln einer Relation Syntax SELECT * FROM <Relation> WHERE <Selektionsbedingung> Name Paris Tokyo Hamburg Stockholm Seoul Berlin CID FR JA GM SW KS GM Population
13 Anfragen - Verbund Kombination mehrerer Relationen Syntax SELECT <Attribut>, FROM <Relation1>, <Relation2> WHERE <Relation1>.<Attribut> = <Relation2>.<Attribut> 13
14 Anfragen Aggregatfunktionen Berechnung von Aggregaten auf Relationen Syntax SELECT <Aggregat>(<Attribut>) AS <Name> FROM <Relation> Wichtige Aggregatfunktionen: COUNT SUM MIN MAX AVG 14
15 Anfragen Gruppierung Gruppierung von gleichen Attributwerten Syntax SELECT <Attribut> FROM <Relation> GROUP BY <Attribut> HAVING <Gruppenbedingung> 15
16 Anfragen - Mengenoperationen Mengenoperationen auf Anfrageergebnissen (SELECT <Attribut>, FROM <Relation>) INTERSECT UNION MINUS (SELECT <Attribut>, FROM <Relation>) 16
17 Vorgehen bei der Definition von Anfragen FROM Ausgangsrelationen WHERE GROUP BY HAVING SELECT Selektion von Tupeln, die der Bedingung genügen Gruppierung von Tupeln gemäß gleicher Attributwerte Selektion von Gruppen, die der Bedingung genügen Projektion der gewählten Attribute 17
18 isql*plus SQL mit Oracle Webinterface zur Eingabe von SQL-Befehlen URL: Anmeldung mit Benutzername, Passwort Datenbank: dwm ( Connect-Bezeichner ) 18
19 Data Warehousing mit Oracle Enterprise Manager Informationen zur Systemperformanz Administrationsaufgaben Teilbereich Warehouse Benutzung URL: Anmeldung mit Benutzername, Passwort 19
20 Der Enterprise Manager 20
21 Beobachtungen Sichten I Gleiche Teile von Relation häufig benutzt (Teil-)Anfragen treten sehr häufig auf Anfragen sehr komplex Lösung (materialisierte) Sichten Vorgehen Anfrageergebnisse werden gespeichert 21
22 Performanz Sichten II Berechnung häufiger Zwischenergebnisse entfällt Zusätzliche Indexe über materialisierten Sichten Zugriff durch weniger User Keine kontinuierlichen Updates Materialisierte Sichten im Data Warehouse Speicherung des Ergebnisses von Data Cleaning Analyse historischer Entwicklung des Datenbestands 22
23 Sichten sind: Sichten III das Ergebnis einer SELECT-Anweisung "virtuelle" Relationen Syntax CREATE [MATERIALIZED] VIEW <Viewname> AS <Anfrage> 23
24 Zu Erreichen über Materialisierte Sichten Administration -> Warehouse -> Materialized Views 24
25 Einsatzbereiche Datenbanken Tagesgeschäft Transaktionsorientierte Datenzugriffe Erfassen von Daten Lesezugriffe auf Daten OLTP (Online Transactional Processing) Datenbanken Entscheidungsunterstützung Konsolidierung von Daten Betrachtung und Analyse von (aggregierten) Daten OLAP (Online Analytical Processing) Data Warehouse 25
26 Überblick Extraktion Transformation Laden Data Warehouse Analyse Data Mining Operative Datenbanken Reporting OLAP Server Data Mart 26
27 ETL-Prozess Extraktion Datenquelle Laden Basisdatenbank Data Warehouse Transformation Analyse 27
28 Data Warehouse - Eigenschaften Repository aus heterogenen Quellen Daten meist aggregiert materialisierten Sichten auf Originaldaten Multidimensionales Datenmodell Datenwürfel Entsprechenden Operationen 28
29 Data Mart Kleines Data Warehouse für bestimmte Zielgruppe z.b. Finanzabteilung, Produktentwicklung, speziell aufbereitete Teil-Daten schnellere Verfügbarkeit bei Anfragen bessere Transparenz für den Anwender 29
30 Data Cube Einführung Hilfsmittel zur Veranschaulichung von Daten verschiedene Aspekte auf gleiche Weise zugreifbar Einsatz bei OLAP Anwendungen Kennzahlen Elemente eines Würfels Dimensionen Beschreiben Daten Ermöglichen Zugriff auf Kennzahlen Können Hierarchien sein Dimension Kennzahl 30
31 Data Cube Beispiel Jahr Quartal Monat Tag Produkt. Zeit Umsatz Geographie 31
32 Relationale Umsetzung: Anforderungen Beibehaltung der Semantik z.b. Hierarchien Effiziente Verarbeitung von Anfragen Einfache Pflege z.b. beim Nachladen von Daten 32
33 Relationale Umsetzung: Faktentabelle Umsetzung des Datenwürfels ohne Hierarchien Kennzahlen, Dimensionen Spalten Zellen Tupel Jahr Quartal Produkt Monat Tag Produkt BMW 3er Zeit Geographie Karlsruhe Umsatz BMW 7er Mannheim BMW 1er Mannheim 726 Zeit Umsatz Geographie 33
34 Relationale Umsetzung: Star Schema gängiger Schematyp für Data Warehouses Beschreibung der Dimensionen durch: Dimension Tables Je eine Relation pro Dimension Nicht in dritter Normalform Hierarchien führen zu Redundanz Vorteil Performanz 34
35 Relationale Umsetzung: Star Schema - Beispiel Produkt Zeit Geographie Umsatz Jahr Quartal Produkt BMW 3er BMW 7er Karlsruhe Mannheim Monat Tag BMW 1er Mannheim 726 Tag Monat Quartal Jahr Januar Januar Q1 Q Januar Q Zeit Umsatz Geographie 35
36 Relational Umsetzung: Snowflake Schema Verfeinerung des Star Schemas Mehrere Dimension Tables pro Dimension Relation pro Ebene einer Hierarchie Normalisiert Höherer Join-Aufwand bei Anfragen Keine Redundanz 36
37 Relational Umsetzung: Snowflake - Beispiel Jahr Quartal Monat Tag Produkt Produkt BMW 3er BMW 7er BMW 1er Zeit Geographie Karlsruhe Mannheim Mannheim Umsatz Tag Bezeichnung Monat_ID Neujahr Namenstag Adelhard Namenstag Adula 1 Zeit Geographie Umsatz Monat_ID 1 2 Bezeichnung Januar Februar Quartal_ID Q1 Q1 3 März Q1 37
38 Vorgehen Dimensionen mit Oracle Namen vergeben Anlegen von Ebenen aus Relation nach Star Schema Hierarchische Anordnung der Ebenen 38
39 Dimensionen Anlegen von Hierarchieebenen Zu Erreichen über Administration->Warehouse->Dimensions 39
40 Dimensionen Anordnung der Ebenen 40
41 Zu Erreichen über Cube mit Oracle erstellen Administration->Warehouse->Cubes 41
42 Cube um Dimensionen erweitern 42
43 Cube um Kennzahlen erweitern 43
44 Beispieldaten Faktentabelle Sales Dimensionstabellen Promotions, Times, Products, Customers, Channels Sind im Starschema Promotions Sales Channels Times Products Customers 44
45 Beispieldaten Beschreibung Faktentabelle Sales Kennzahlen + Fremdschlüssel zu Dimensionstabellen Dimensionstabellen Promotions beschreibt Werbeaktionen Products Produktbeschreibungen Customers Times Daten über die Kunden Zeitabschnitte 45
Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.
Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen
Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL
Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining 2 Eigenschaften eines Data Warehouse Referenzarchitektur Integrierte Sicht auf beliebige Daten aus verschieden Datenbanken
SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software
SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4
Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.
Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten
DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER
DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.
SQL/ETL. Praktikum: Data Warehousing und. Praktikum Data Warehousing und Mining, Sommersemester 2010
Data Warehousing (I): SQL/ETL Praktikum: Data Warehousing und Data Mining Praktikum Data Warehousing und Mining, Sommersemester 2010 Weitere Termine Praktikum Data Warehousing und Mining, Sommersemester
IV. Datenbankmanagement
Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.
OLAP und Data Warehouses
OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting
SQL structured query language
Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query
SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar
Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-
Data Warehouse Technologien
Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............
Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5
Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B
DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt
DBS ::: SERIE 5 Die Relation produkt enthält Hersteller, Modellnummer und Produktgattung (pc, laptop oder drucker aller Produkte. Die Modellnummer ist (der Einfachheit halber eindeutig für alle Hersteller
Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin
Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin PhpMyAdmin = grafsches Tool zur Verwaltung von MySQL-Datenbanken Datenbanken erzeugen und löschen Tabellen und Spalten einfügen,
Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien
Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...
Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)
Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der
Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198
Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen
Referenzielle Integrität SQL
Referenzielle Integrität in SQL aus Referential Integrity Is Important For Databases von Michael Blaha (Modelsoft Consulting Corp) VII-45 Referenzielle Integrität Definition: Referenzielle Integrität bedeutet
Vorlesung Datenbankmanagementsysteme
Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse & Einführung Online Analytical Processing (OLAP) (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse M. Lange, S.
Fortgeschrittene OLAP Analysemodelle
Fortgeschrittene OLAP Analysemodelle Jens Kübler Imperfektion und erweiterte Konzepte im Data Warehousing 2 Grundlagen - Datenanalyse Systemmodell Datenmodell Eingaben System Schätzer Datentypen Datenoperationen
Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P
Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören
Kapitel 3: Datenbanksysteme
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:
SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:
SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In
Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse
Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher
Das Multidimensionale Datenmodell
Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension
7. Übung - Datenbanken
7. Übung - Datenbanken Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: DBS a Was ist die Kernaufgabe von Datenbanksystemen? b Beschreiben Sie kurz die Abstraktionsebenen
Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014
Lehrstuhl für Praktische Informatik III Prof. Dr. Guido Moerkotte Email: [email protected] Marius Eich Email: [email protected] Datenbanksysteme 2 8. Übungsblatt Frühjahr-/Sommersemester
Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY
Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung
Oracle 10g Einführung
Kurs Oracle 10g Einführung Teil 5 Einführung Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 16 Seite 1 von 16 Agenda 1 Tabellen und Views erstellen 2 Indizes
SQL und MySQL. Kristian Köhntopp
SQL und MySQL Kristian Köhntopp Wieso SQL? Datenbanken seit den frühen 1950er Jahren: Hierarchische Datenbanken Netzwerkdatenbanken Relationale Datenbanken = SQL Relational? 10 9 8 7 6 f(y) := y = x r(y)
105.3 SQL-Datenverwaltung
LPI-Zertifizierung 105.3 SQL-Datenverwaltung Copyright ( ) 2009 by Dr. W. Kicherer. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 2.0 Germany License. To view a
Wiederholung VU Datenmodellierung
Wiederholung VU Datenmodellierung VL Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester
Wiederholung VU Datenmodellierung
Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester
5.3 Datenänderung/-zugriff mit SQL (DML)
5.3 Datenänderung/-zugriff mit SQL (DML) Hinweis: - DML-Anweisungen sind mengenorientiert - Mit einer Anweisungen kann mehr als ein Tupel eingefügt, geändert, gelöscht oder gelesen werden Benutzungs- und
SQL: statische Integrität
SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen
Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009
Hochschule Darmstadt DATENBANKEN Fachbereich Informatik Praktikum 3 Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 PL/SQL Programmierung Anwendung des Cursor Konzepts und Stored Procedures Und Trigger
Aufgabe 1: [Logische Modellierung]
Aufgabe 1: [Logische Modellierung] a) Entwerfen Sie für das von Ihnen entworfene Modell aus Aufgabe 2 des 1. Übungsblattes ein Star-Schema. b) Entwerfen Sie für das vorangegangene Modell einen Teil eines
Labor 3 - Datenbank mit MySQL
Labor 3 - Datenbank mit MySQL Hinweis: Dieses Labor entstand z.t. aus Scripten von Prof. Dr. U. Bannier. 1. Starten des MySQL-Systems MySQL ist ein unter www.mysql.com kostenlos erhältliches Datenbankmanagementsystem.
Seminar 2. SQL - DML(Data Manipulation Language) und. DDL(Data Definition Language) Befehle.
Seminar 2 SQL - DML(Data Manipulation Language) und DDL(Data Definition Language) Befehle. DML Befehle Aggregatfunktionen - werden auf eine Menge von Tupeln angewendet - Verdichtung einzelner Tupeln yu
SQL (Structured Query Language) Schemata Datentypen
2 SQL Sprachelemente Grundlegende Sprachelemente von SQL. 2.1 Übersicht Themen des Kapitels SQL Sprachelemente Themen des Kapitels SQL (Structured Query Language) Schemata Datentypen Im Kapitel SQL Sprachelemente
WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1)
Vorlesung #3 SQL (Teil 1) Fahrplan Wiederholung/Zusammenfassung Relationales Modell Relationale Algebra Relationenkalkül Geschichte der Sprache SQL SQL DDL (CREATE TABLE...) SQL DML (INSERT, UPDATE, DELETE)
Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL
Relationales Modell: SQLDDL SQL als Definitionssprache SQLDDL umfaßt alle Klauseln von SQL, die mit Definition von Typen Wertebereichen Relationenschemata Integritätsbedingungen zu tun haben Externe Ebene
Arbeiten mit einem lokalen PostgreSQL-Server
Arbeiten mit einem lokalen PostgreSQL-Server Download für das Betriebssystem Windows PostgreSQL-Server und pgadmin: http://www.enterprisedb.com/products-servicestraining/pgdownload#windows pgadmin: http://www.pgadmin.org/download/windows.php
Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten
Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem
3.17 Zugriffskontrolle
3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man
Übung Datenbanken in der Praxis. Datenmodifikation mit SQL
Datenmodifikation mit SQL Folie 45 SQL - Datenmodifikation Einfügen INSERT INTO Relation [(Attribut, Attribut,...)] VALUES (Wert, Wert,...) INSERT INTO Relation [(Attribut, Attribut,...)] SFW-Anfrage Ändern
SQL-Befehlsliste. Vereinbarung über die Schreibweise
Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche Teile
Views in SQL. 2 Anlegen und Verwenden von Views 2
Views in SQL Holger Jakobs [email protected], [email protected] 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig
Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort... 13
Auf einen Blick Vorwort... 13 Teil 1 Vorbereitung Kapitel 1 Einleitung... 17 Kapitel 2 SQL der Standard relationaler Datenbanken... 21 Kapitel 3 Die Beispieldatenbanken... 39 Teil 2 Abfrage und Bearbeitung
Die Anweisung create table
SQL-Datendefinition Die Anweisung create table create table basisrelationenname ( spaltenname 1 wertebereich 1 [not null],... spaltenname k wertebereich k [not null]) Wirkung dieses Kommandos ist sowohl
Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15
Vorwort..................................................... 13 Kapitel 1 Einleitung.......................................... 15 Kapitel 2 SQL der Standard relationaler Datenbanken... 19 2.1 Die Geschichte................................
Hetero-Homogene Data Warehouses
Hetero-Homogene Data Warehouses TDWI München 2011 Christoph Schütz http://hh-dw.dke.uni-linz.ac.at/ Institut für Wirtschaftsinformatik Data & Knowledge Engineering Juni 2011 1 Data-Warehouse-Modellierung
6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015
6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema
Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13
Auf einen Blick Vorwort 13 Teil 1 Vorbereitung Kapitel 1 Einleitung 17 Kapitel 2 SQL - der Standard relationaler Datenbanken 21 Kapitel 3 Die Beispieldatenbanken 39 Teil 2 Abfrage und Bearbeitung Kapitel
mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007
6. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007 Aufgabe 1: Rekursion Betrachten Sie die folgende Tabelle
Das SQL-Schlüsselwort ALL entspricht dem Allquantor der Prädikatenlogik
Beispielaufgaben Informationssysteme erstellt von Fabian Rump zur IS Vorlesung 2009/10 1 Multiple Choice Aussage richtig falsch Eine SQL-Abfrage beginnt immer mit dem Schlüsselwort SELECT Eine Datenbank
Create-Table-Befehl. CREATE TABLE Tabellenname ( { Spalte { Datentyp Gebietsname } [ Spaltenbedingung [ ] ] Tabellenbedingung }
Create-Table-Befehl CREATE TABLE Tabellenname ( { Spalte { Datentyp Gebietsname } [ Spaltenbedingung [ ] ] Tabellenbedingung } [, ] ) Liste der wichtigsten Datentypen in SQL INTEGER INT SMALLINT NUMERIC(x,y)
Informatik 12 Datenbanken SQL-Einführung
Informatik 12 Datenbanken SQL-Einführung Gierhardt Vorbemerkungen Bisher haben wir Datenbanken nur über einzelne Tabellen kennen gelernt. Stehen mehrere Tabellen in gewissen Beziehungen zur Beschreibung
Inhaltsverzeichnis. Vorwort 13. Kapitel 1 Einleitung 15
Vorwort 13 Kapitel 1 Einleitung 15 Kapitel 2 SQL-der Standard relationaler Datenbanken... 19 2.1 Die Geschichte 19 2.2 Die Bestandteile 20 2.3 Die Verarbeitung einer SQL-Anweisung 22 2.4 Die Struktur von
Referentielle Integrität
Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische
Whitepaper. Produkt: combit Relationship Manager. Datensatzhistorie mit dem SQL Server 2000 und 2005. combit GmbH Untere Laube 30 78462 Konstanz
combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager Datensatzhistorie mit dem SQL Server 2000 und 2005 Datensatzhistorie mit dem SQL Server 2000 und 2005-2 - Inhalt
Referentielle Integrität
Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische
Sructred Query Language
Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen
SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99
SQL Früherer Name: SEQUEL SQL: Structured Query Language Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL ist eine deklarative Anfragesprache Teile von SQL Vier große Teile:
Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt.
Zeit Pivotieren Themenblock: Anfragen auf dem Cube Praktikum: Data Warehousing und Data Mining Zeit Zeit 2 Roll-up und Drill-down Slicing und Dicing Drill-down Januar 2 3 33 1. Quartal 11 36 107 Februar
Inhalt. 1. MySQL-Einführung 1. 2. Datenbankentwurf 27
Inhalt 1. MySQL-Einführung 1... 1.1 Geschichte von MySQL... 1 1.2 Entscheidungskriterien für MySQL... 2 1.3 Installation eines MySQL-Servers... 3 1.3.1 Linux... 5 1.3.2 Windows 9x/Me/NT/2000/XP... 7 1.3.3
SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2
SQL SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R IV-1 Beispielrelationen Filiale ( Name Leiter Stadt Einlagen ) Konto ( KontoNr KundenNr FilialName Saldo ) Kredit
4. Datenbanksprache SQL
4. Datenbanksprache SQL Standard-Sprache für das Arbeiten mit relationalen Datenbanken: Structured Query Language Datendefinition: Anlegen, Ändern und Löschen von Datenbankstrukturen Datenmanipulation:
Relationales Datenbanksystem Oracle
Relationales Datenbanksystem Oracle 1 Relationales Modell Im relationalen Modell wird ein relationales Datenbankschema wie folgt beschrieben: RS = R 1 X 1 SC 1... R n X n SC n SC a a : i=1...n X i B Information
6. Datenintegrität. Integritätsbedingungen
6. Integritätsbedingungen dienen zur Einschränkung der Datenbankzustände auf diejenigen, die es in der realen Welt tatsächlich gibt. sind aus dem erstellten Datenmodell ableitbar (semantisch) und können
Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch
Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische
Benutzerverwaltung, Sichten und Datenintegrität
Benutzerverwaltung, Sichten und Einige Vergleiche zwischen MySQL, Oracle und PostgreSQL OStR Michael Dienert, StR Ahmad Nessar Nazar 29. November und 30. November 2011 1 von 113 OStR Michael Dienert, StR
OPERATIONEN AUF EINER DATENBANK
Einführung 1 OPERATIONEN AUF EINER DATENBANK Ein Benutzer stellt eine Anfrage: Die Benutzer einer Datenbank können meist sowohl interaktiv als auch über Anwendungen Anfragen an eine Datenbank stellen:
SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Datenbanksysteme I
SQL SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R VII-1 Beispielrelationen Filiale ( Name Leiter Stadt Einlagen ) Konto ( KontoNr KundenNr FilialName Saldo ) Kredit
Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL
Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) DDL ist Teil von SQL (Structured
Datenbanken: Datenintegrität. www.informatikzentrale.de
Datenbanken: Datenintegrität Definition "Datenkonsistenz" "in der Datenbankorganisation (...) die Korrektheit der gespeicherten Daten im Sinn einer widerspruchsfreien und vollständigen Abbildung der relevanten
Schlüssel bei temporalen Daten im relationalen Modell
Schlüssel bei temporalen Daten im relationalen Modell Gesine Mühle > Präsentation > Bilder zum Inhalt zurück weiter 322 Schlüssel im relationalen Modell Schlüssel bei temporalen Daten im relationalen Modell
Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH
Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -
3. Das Relationale Datenmodell
3. Das Relationale Datenmodell Das Relationale Datenmodell geht zurück auf Codd (1970): E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. of the ACM 13(6): 377-387(1970) DBMS wie
Data Warehousing und Data Mining
Data Warehousing und Data Mining 2 Cognos Report Net (CRN) Ermöglicht Erstellen von Ad-hoc-Anfragen (Query Studio) Berichten (Report Studio) Backend Data Cube Relationale Daten Übung: Cognos Report Net
Datenmanagement in Android-Apps. 16. Mai 2013
Datenmanagement in Android-Apps 16. Mai 2013 Überblick Strukturierung von datenorientierten Android-Apps Schichtenarchitektur Möglichkeiten der Datenhaltung: in Dateien, die auf der SDCard liegen in einer
2 Datenbanksysteme, Datenbankanwendungen und Middleware... 45
Vorwort 15 Teil I Grundlagen 19 i Einführung In das Thema Datenbanken 21 I.I Warum ist Datenbankdesign wichtig? 26 i.2 Dateisystem und Datenbanken 28 1.2.1 Historische Wurzeln 29 1.2.2 Probleme bei der
Konstante Relationen
Konstante Relationen values-syntax erzeugt konstante Relation values ( [, Konstante] * )[, ( [, Konstante] * )]* Beispiel values (1, eins ), (2, zwei ), (3, drei ); Resultat ist eine
SQL. DDL (Data Definition Language) Befehle und DML(Data Manipulation Language)
SQL DDL (Data Definition Language) Befehle und DML(Data Manipulation Language) DML(Data Manipulation Language) SQL Abfragen Studenten MatrNr Name Vorname Email Age Gruppe 1234 Schmidt Hans [email protected]
Data-Warehouse-Technologien
Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische und Betriebliche
Vorwort zur 5. Auflage... 15 Über den Autor... 16
Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung
Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht
Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht Thomas Kreuzer ec4u expert consulting ag Karlsruhe Schlüsselworte: Kampagnenmanagement Praxisbericht Siebel Marketing Oracle BI - ec4u
Grundzüge und Vorteile von XML-Datenbanken am Beispiel der Oracle XML DB
Grundzüge und Vorteile von XML-Datenbanken am Beispiel der Oracle XML DB Jörg Liedtke, Oracle Consulting Vortrag zum Praxis-Seminar B bei der KIS-Fachtagung 2007, Ludwigshafen Agenda
Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung
6. Datenintegrität Motivation Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung nur sinnvolle Attributwerte (z.b. keine negativen Semester) Abhängigkeiten
Unterabfragen (Subqueries)
Unterabfragen (Subqueries) Die kürzeste Formulierung ist folgende: SELECT Felderliste FROM Tabelle1 WHERE Tabelle1.Feldname Operator (SELECT Feldname FROM Tabelle2 WHERE Bedingung); wobei Tabelle1 und
SQL Intensivpraktikum SS 2008
SQL Intensivpraktikum SS 2008 Aggregation von Daten Arbeit mit Gruppen SQL1 basierend auf OAI-Kurs Copyright Oracle Corporation, 1998. All rights reserved. Gruppenfunktionen Gruppenfunktionen verarbeiten
Sichten II. Definition einer Sicht. Sichten. Drei-Ebenen-Schema-Architektur. Vorteile Vereinfachung von Anfragen Strukturierung der Datenbank
Vorteile Vereinfachung von Anfragen Strukturierung der Datenbank Sichten II logische Datenunabhängigkeit (Sichten stabil bei Änderungen der Datenbankstruktur) Beschränkung von Zugriffen (Datenschutz) Definition
Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)
Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data
<Insert Picture Here> Oracle Datenbank Einführung Ulrike Schwinn Email: [email protected]
Oracle Datenbank Einführung Ulrike Schwinn Email: [email protected] Oracle Corporation in Zahlen Gegründet 1977 Headquarter in Redwood Shores in Kalifornien 84 000 Angestellte
Multidimensionale Modellierung
Multidimensionale Modellierung Vorlesung: Übung: Patrick Schäfer Berlin, 27. November 2017 [email protected] https://hu.berlin/vl_dwhdm17 https://hu.berlin/ue_dwhdm17 Grundlagen Fakten (Kennzahlen/Messgrößen):
SQL. Fortgeschrittene Konzepte Auszug
SQL Fortgeschrittene Konzepte Auszug Levels SQL92 Unterteilung in 3 Levels Entry Level (i.w. SQL89) wird von nahezu allen DBS Herstellern unterstützt Intermediate Level Full Level SQL DML 2-2 SQL92 behebt
Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH
Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich
