|
|
|
- Adolph Heinrich
- vor 9 Jahren
- Abrufe
Transkript
1 2. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz April 2007 Aufgabe 1 Betrachten Sie das ER-Diagramm in Abbildung 1. Abbildung 1: ER-Diagramm zu Aufgabe 1 1. Beschreiben Sie möglichst genau in eigenen Worten die Miniwelt, die dieses Modell darstellt! Es gibt Kunden, die jeweils Namen und Adressen haben. Jeder Kunde hat mindestens eine Bestellung getätigt. 1
2 Bestellungen haben ein Datum und einen Skontosatz. Zu jeder Bestellung gehören mindestens drei Artikel mit jeweils einer Anzahl. Jede Bestellung wird von genau einem Kunden getätigt. Sonderrabatte haben einen Namen und einen Prozentsatz. Sonderrabatte können auf bestimmten Posten einer Bestellung gelten. Warengruppen haben einen Namen. Jeder Artikel gehört zu genau einer Warengruppe, zu jeder Warengruppe gehören mindestens 50 Artikel. Artikel haben einen Namen und einen Einzelpreis. Für jeden Artikel gilt genau ein Mehrwertsteuersatz. Jeder Mehrwertsteuersatz hat einen Namen und eine Prozentzahl und gilt für beliebig viele Artikel. 2. Übertragen Sie das Modell in ein relationales Schema. Führen Sie ggf. geeignete Schlüsselattribute ein. Kennzeichnen Sie in jeder Relation den Primärschlüssel. Korrektur: in der ausgegebenen Version des Übungsblattes waren die Funktionalitäten an der Beziehung enthalten vertauscht. Kunden(nr, name, adresse) Bestellungen(nr, kundennr, skonto, datum) Sonderrabatt(name, prozent) Artikel(nr, name, einzelpreis, warengruppe, mwstsatzname) Mehrwertsteuersatz(name, prozent) BestellungArtikel(bestnr, artikelnr, anzahl, rabattname) Bemerkung: Ob hier rabattname zum Schlüssel gehören muß oder nicht hängt davon ab, ob man mehrere Rabatte auf einen Artikel zuläßt. Die hier gezeigte Variante geht davon aus, daß auf einem Artikel nur kein oder ein Rabatt gelten kann. 3. Geben Sie beispielhaft Tupel an, die die folgende Situation beschreiben: Kunde Schmitz bestellt am mit 2% Skonto folgende Produkte: 2 Packungen Kreide zu je 3 Euro, 5 Packungen Papier zu je 5 Euro; auf das Papier gibt es einen Mairabatt von 10%. Kunden(1, Schmitz, Kassel ) Sonderrabatt( Mairabatt, 10) Artikel(1, Kreide, 3, Schreibwaren, normal ) Artikel(2, Papier, 5, Schreibwaren, normal ) Mehrwertsteuersatz( normal, 19) Mehrwertsteuersatz( ermäßigt, 7) Bestellung(1, 1, 2, ) 2
3 BestellungArtikel(1, 1, 2, -) BestellungArtikel(1, 2, 5, Mairabatt ) Aufgabe 2 Zeigen Sie, daß die (min,max)- und die vereinfachte Notation (1:N usw.) für Funktionalitäten unvergleichbar sind, d. h. daß es jeweils Konsistenzbedingungen gibt, die mit der einen, aber nicht mit der anderen Notation ausgedrückt werden können! Tip: Mehrstellige Relationen! Das Beispiel in Abbildung 2, ist in (min,max)-notation nicht auszudrücken: man kann nicht angeben, daß von einem Professor an einen Student höchstens eine Thema vergeben werden kann. Andererseits kann man in (min,max)-notation eben genaue Minima und Maxima angeben, etwa: eine Schulklasse besteht aus 20 bis 30 Schülern. Das ist in der vereinfachten Notation nicht möglich. Aufgabe 3 Betrachten die das ER-Diagramm in Abbildung 2. Abbildung 2: ER-Diagramm zu Aufgabe 3 1. Überführen Sie den konzeptuellen Entworf der Beziehung betreuen in ein relationales Schema. Nehmen Sie an, daß der Titel ein Seminarthema identifiziert. betreuen(matrikelnr, profnr, thema, note) 2. Diskutieren Sie, welche Primärschlüssel für diese Relation möglich sind. Wegen der 1:1:N-Funktionalitäten an der Beziehung sind entweder (matrikelnr, profnr) oder (matrikelnr, thema) als Schlüssel möglich. Welcher gewählt werden soll, hängt von der Sichtweise ab geht es um eine Prüfungsdatenbank, würde man eher (Student, Thema) wählen, da solche Informationen z. B. auf Zeugnissen erschienen. 3
4 Aufgabe 4 Es gebe die Entitytypen Person (mit einem Namen und einem Geburtsdatum als Attribut), Mitarbeiter (zusätzlich mit einer Gehaltsklasse) und Professor (zusätzlich zum Mitarbeiter noch ein Fachgebietsname). Dabei sollen jeweils is-a-beziehungen gelten, d. h. Mitarbeiter ist eine Generalisierung von Professor, und Person ist eine Generalisierung von Mitarbeiter. Dazu sind folgende relationale Schemata denkbar (Name sei hierbei als Schlüssel ausreichend): Modell 1 Modell 2 Person1(name, datum) Mitarbeiter1(name, datum, gehalt) Professor1(name, datum, gehalt, fachgebiet) Person2(name, datum) Mitarbeiter2(name, gehalt) Professor2(name, fachgebiet) 1. Fügen Sie in beiden Varianten jeweils einen Professor, einen Mitarbeiter und eine Person ein, die keines von beiden ist. Person1( Meier, ) Mitarbeiter1( Müller, , BAT IIa ) Professor1( Schmidt, , C4, Inverse Kinematik ) Person2( Meier, ) Person2( Müller, ) Mitarbeiter2( Müller, BAT IIa ) Person2( Schmidt, ) Mitarbeiter2( Schmidt, C4 ) Professor2( Schmidt, Inverse Kinematik ) 2. Geben Sie Vor- und Nachteile beider Varianten an! Bei Variante 1 ist der Vorteil, daß jeweils alle Information über eine Entity in einem Tupel einer Relation vorhanden ist. Daher müssen bei der Anfrage nach einer Entity nicht mehrere Relationen benutzt werden. Nachteil ist, daß beispielsweise zur Auflistung aller Personen eine Vereinigung über alle Relationen berechnet werden muß. Variante 2 hat diesen Nachteil nicht. Dafür müssen allerdings, um eine Entität vollständig zu beschreiben, die entsprechenden Tupel aus allen Relationen gelesen werden. 4
5 Aufgabe 5 Betrachten Sie das folgende (schlechte) Schema für eine Datenbank eines Lehrstuhls: lehrstuhl(mitarbeiternr, mitarbeitername, mitarbeitergehalt, studentnr, studentname, diplthema, diplnote) Geben Sie Beispiele für Einfüge-, Lösch- und Updateanomalien in diesem Schema an! Einfügung Ein Mitarbeiter kann nicht ohne Studenten eingefügt werden. Update Ändert ein Mitarbeiter (z. B. durch Heirat) seinen Namen, müssen auch alle betreuten Arbeiten geändert werden. Löschen Beim Löschen eines Mitarbeiters verschwinden alle betreuten Diplomarbeiten 5
Übungsblatt DB:IV. Abzugeben sind, bis , Lösungen zu den Aufgaben 1d, 1e, 3, 7, 9, 12. Aufgabe 1 : Datenintegrität
Datenbanken WS 2012/13 8. November 2012 Übungsblatt DB:IV Abzugeben sind, bis 19.11.2012, Lösungen zu den Aufgaben 1d, 1e, 3, 7, 9, 12. Aufgabe 1 : Datenintegrität (a) Welche Arten von Integritätsbedingungen
Aufgabe 1 Indexstrukturen
8. Übung zur Vorlesung Datenbanken im Sommersemester 2006 mit Musterlösungen Prof. Dr. Gerd Stumme, Dr. Andreas Hotho, Dipl.-Inform. Christoph Schmitz 25. Juni 2006 Aufgabe 1 Indexstrukturen Zeichnen Sie
Universität Augsburg, Institut für Informatik WS 2009/2010 Prof. Dr. W. Kießling 06. Nov Dr. A. Huhn, F. Wenzel, M. Endres Lösungsblatt 2
Universität Augsburg, Institut für Informatik WS 2009/2010 Prof. Dr. W. Kießling 06. Nov. 2009 Dr. A. Huhn, F. Wenzel, M. Endres Lösungsblatt 2 Aufgabe 1: ER-Modellierung 1. Siehe Unterstreichungen in
mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 14. Mai 2007 σ KID= 11a (Schüler) π S Name (σ KID= 11a (Schüler))
3. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 14. Mai 2007 Hinweis: Wir schlagen vor, die Aufgaben in der Reihenfolge
mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 18. Juni 2007
7. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 18. Juni 2007 Aufgabe 1 Geben Sie jeweils die höchste Normalform (in
Übung zur Vorlesung Einführung in die Informatik für Hörer anderer Fachrichtungen (WZW) IN8003, SS 2011 Prof. Dr. J. Schlichter
Übung zur Vorlesung Einführung in die Informatik für Hörer anderer Fachrichtungen (WZW) IN8003, SS 2011 Prof. Dr. J. Schlichter Dr. Georg Groh, Dipl.Inform. Dipl.Geogr. Jan Herrmann, Florian Schulze BSc.,
Theorie zur Übung 8 Datenbanken
Theorie zur Übung 8 Datenbanken Relationale Datenbanksysteme Ein relationales Datenbanksystem (RDBS) liegt vor, wenn dem DBS ein relationales Datenmodell zugrunde liegt. RDBS speichern Daten in Tabellenform:
Abstraktionsebenen des Datenbankentwurfs
Datenbankentwurf Abstraktionsebenen des Datenbankentwurfs 1. Konzeptuelle Ebene 2. Implementationsebene 3. Physische Ebene 1 Objektbeschreibung Uni-Angestellte - Anzahl: 1000 - Attribute PersonalNummer
Introduction to Data and Knowledge Engineering Übung 1: Entity Relationship Model
Introduction to Data and Knowledge Engineering Übung 1: Entity Relationship Model FB Informatik Datenbanken und Verteilte Systeme Arthur Herzog 1 Entity Relationship Model FB Informatik Datenbanken und
Datenbankentwurf. Abstraktionsebenen des Datenbankentwurfs. 1. Konzeptuelle Ebene. 2. Implementationsebene (Logische Ebene) 3.
Datenbankentwurf Abstraktionsebenen des Datenbankentwurfs 1. Konzeptuelle Ebene 2. Implementationsebene (Logische Ebene) 3. Physische Ebene 1 Objektbeschreibung Uni-Angestellte - Anzahl: 1000 - Attribute
5. Relationale Entwurfstheorie
5 Relationale Entwurfstheorie Motivation Konzeptuelles Modell (ERM) kann in ein relationales Schema mit möglichst wenigen Relationen übersetzt werden (vgl Kapitel 4) Welche Eigenschaften hat ein gutes
Datenbankentwurf. Abstraktionsebenen des Datenbankentwurfs: 3. Konzeptuelle Ebene. 5. Implementationsebene. 7. Physische Ebene.
Datenbankentwurf Abstraktionsebenen des Datenbankentwurfs: 3. Konzeptuelle Ebene 5. Implementationsebene 7. Physische Ebene Kapitel 2 1 Datenbankentwurf Abstraktionsebenen des Datenbankentwurfs 5. Konzeptuelle
3. Relationales Modell & Algebra
3. Relationales Modell & Algebra Inhalt 3.1 Relationales Modell Wie können wir Daten mathematisch formal darstellen? 3.2 Übersetzung eines konzeptuellen Modells Wie können wir ein konzeptuelles Modell
Datenintegrität. Kapitel 5 1
Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische
1 Informationsmodellierung mit dem Entity-Relationship-Modell
Informationsmodellierung mit dem Entity-Relationship-Modell McAcid's benötigt ein neues Burgastisches Kassensystem, bei dem eine relationale Datenbank verwendet werden soll. [5 P.] Erfassen Sie die im
Datenmodelle und Datenbanken 1 Internet-Datenbanken
Datenmodelle und Datenbanken 1 Internet-Datenbanken Prof. N. Fuhr Institut für Informatik und Interaktive Systeme Arbeitsgruppe Informationssysteme 17. August 2004 Hinweise zur Bearbeitung Die Zeit läuft
Datenintegrität. Kapitel 5 1
Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische
Konzeptuelle Modellierung
Kapitel 2 Konzeptuelle Modellierung 2.1 Das Entity-Relationship-Modell Die grundlegenden Modellierungsstrukturen dieses Modells sind die Entities (Gegenstände) und die Relationships (Beziehungen) zwischen
Kapitel 3: Datenbanksysteme
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2018 Kapitel 3: Datenbanksysteme Vorlesung:
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt r. 2 Übung zur Vorlesung Grundlagen: Datenbanken im WS5/6 Harald Lang, Linnea Passing ([email protected])
Kapitel 1: Einführung 1.1 Datenbanken?
Kapitel 1: Einführung 1.1 Datenbanken? 1. Einführung 1.1. Datenbanken Grundlagen der Datenbanksysteme, WS 2012/13 29. Oktober 2012 Seite 1 1. Einführung 1.1. Datenbanken Willkommen! Studierenden-Datenbank
Datenbanken Unit 2: Das ER-Modell
Datenbanken Unit 2: Das ER-Modell 28. II. 2017 Outline 1 Organisatorisches 2 SQL 3 Das Entity-Relationship Modell Grundbegriffe Termin erster Zwischentest UE-Tests (Thema: SQL) erster Zwischentests am
Datenbankentwurf. Objektbeschreibung. Prozeßbeschreibungen. Beziehungsbeschreibung: prüfen. Abstraktionsebenen des Datenbankentwurfs
Datenbankentwurf Abstraktionsebenen des Datenbankentwurfs. Konzeptuelle Ebene 2. Implementationsebene (Logische Ebene) 3. Physische Ebene Uni-Angestellte - Anzahl: 000 - Attribute Personalummer Typ: char
Das relationale Datenmodell
Das relationale Datenmodell Konzepte Attribute, Relationenschemata, Datenbank-Schemata Konsistenzbedingungen Beispiel-Datenbank Seite 1 Einführung Zweck datenmäßige Darstellung von Objekten und Beziehungen
Übung 8. Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017)
Übung 8 Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017) Dennis Fischer [email protected] http://home.in.tum.de/fischerd/ Technische Universität München Fakultät für Informatik
Vorlesungen. Studenten. hören. Grundzüge. Fichte Glaube und Wissen Jonas
Das relationale eato aedatenmodell Studenten hören Vorlesungen MatrNr Name MatrNr VorlNr VorlNr Titel 26120 Fichte 25403 5022 5001 Grundzüge 25403... Jonas... 26120... 5001... 5022... Glaube und Wissen...
Die Bestellungen eines Schreibwarengeschäftes sollen auf eine aktuelle Form mit Hilfe einer zeitgemäßen Datenbank umgestellt werden.
Die Bestellungen eines Schreibwarengeschäftes sollen auf eine aktuelle Form mit Hilfe einer zeitgemäßen Datenbank umgestellt werden. Die nachfolgende Tabellenform, eine sogenannte Nullform muss in eine
Grundlagen des relationalen l Modells
Grundlagen des relationalen l Modells Seien D 1, D 2,..., D n Domänen (~Wertebereiche) Relation: R D 1 x... x D n Bsp.: Telefonbuch string x string x integer Tupel: t R Bsp.: t = ( Mickey Mouse, Main Street,
Prüfung Informatik für Ökonomen II. 14. Januar Teil 1: Datenbanktechnik Musterlösungen
Name Vorname Matrikelnummer DB Prüfung Informatik für Ökonomen II 14. Januar 2009 Teil 1: Datenbanktechnik Musterlösungen Bitte freilassen! 1.1 1.2 1.3 Summe Aufgabe 1.1 Gegenstand-Beziehungs-Modell (Total:
Datenbanken 1. Kapitel 2: Datenbankentwurf. Ansprechpartner hat Name Adresse. Geschaeftspartner <pi> Characters (30) Characters (50) ist.
Datenbanken 1 Kapitel 2: Datenbankentwurf Ansprechpartner hat Name Adresse Geschaeftspartner Characters (30) Characters (50) ist Haendler Rabatt Integer Spediteur Verfuegbar Characters (20) Kunde
Kapitel 3: Entity-Relationship-Modell
Kapitel 3: Entity-Relationship-Modell Objekte und Beziehungen Objekte bilden die elementare Grundlage unserer Betrachtung. Objekte werden durch Tupel in Relationen repräsentiert und können durch Schlüsselwerte
Rückblick: Entity-Relationship-Modell
Rückblick: Entity-Relationship-Modell Entity-Relationship-Modell für konzeptuellen Entwurf Entitytypen (entity types) (z.b. Studenten) Beziehungstypen (relationships) (z.b. hören) Attribute beschreiben
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.
TU ünchen, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof Alfons Kemper, PhD Blatt r 02 Übung zur Vorlesung Grundlagen: Datenbanken im WS6/7 Harald Lang, Linnea Passing (gdb@intumde) http://www-dbintumde/teaching/ws67/grundlagen/
Wirtschaftsinformatik 7a: Datenbanken. Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte
Wirtschaftsinformatik 7a: Datenbanken Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte Drei Gäste bezahlen nach einem gemeinsamen Abendessen eine Rechnung von 30 Euro, so dass jeder 10 Euro gibt.
Datenbankentwurf. Kapitel 3. Datenbankentwurf 76 / 508
Kapitel 3 Datenbankentwurf 76 / 508 Phasen des Datenbankentwurfs Phasen des Datenbankentwurfs Anforderungsanalyse Spezifikation Konzeptueller Entwurf Konzeptuelles Schema Logischer Entwurf Logisches Schema
2. Relationale Datenbanken
2. Relationale Datenbanken Inhalt 2.1 Entity-Relationship-Modell 2.2 Relationales Modell 2.3 Relationale Entwurfstheorie 2.4 Relationale Algebra 2.5 Structured Query Language (SQL) 2 2.1 Entity-Relationship-Modell
E-R-Modell zu Relationenschema
Raum: LF 230 Nächste Sitzung: 27./30. Oktober 2003 Aktuelle Informationen unter: http://www.is.informatik.uni-duisburg.de/teaching/lectures/dbp_ws03/index.html E-R-Modell zu Relationenschema Als zweiter
PD Dr.-Ing. F. Lobeck. Seite 6
Seite 6 Datenbanken Datenbank: Eine geordnete Menge von Daten. Speicherung erfolgt unabhängig von speziellen Anwenderprogrammen. Ebenso sollte die Hardwareunabhängigkeit gesichert werden. Zu einem Datenbankmanagementsystem
Datenmodelle und Datenbanken 2
Datenmodelle und Datenbanken 2 Prof. N. Fuhr Institut für Informatik und Interaktive Systeme Arbeitsgruppe Informationssysteme 24. Februar 2005 Hinweise zur Bearbeitung Die Zeit läuft erst, wenn Sie alle
Datenbankentwurf. VO Datenmodellierung. Katrin Seyr. Institut für Informationssysteme Technische Universität Wien.
Datenbankentwurf Datenbankentwurf VO Datenmodellierung Katrin Seyr Institut für Informationssysteme Technische Universität Wien Katrin Seyr Seite 1 Datenbankentwurf 1. Überblick Überblick Wiederholung:
Einführung in Datenbanken
Einführung in Datenbanken Dipl.-Inf. Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik [email protected] Raum 2.202 Tel. 03943 / 659 338 1 Inhalt 1. Grundlegende Begriffe der Datenbanktechnologie
Wirtschaftsinformatik 7a: Datenbanken. Dozent: R. Witte
Wirtschaftsinformatik 7a: Datenbanken Dozent: R. Witte Drei Gäste bezahlen nach einem gemeinsamen Abendessen eine Rechnung von 30 Euro, so dass jeder 10 Euro gibt. Der Wirt gibt dem Kellner den Auftrag
Übungen Teil 1: ER-Modelle. Dozent: Stefan Maihack Dipl. Ing. (FH)
Übungen Teil 1: ER-Modelle Dozent: Stefan Maihack Dipl. Ing. (FH) Die (min, max) - Notation Bei der Verwendung der Funktionalität ist für einen Entity-Typen nur die maximale Anzahl der Beziehungen mit
Logischer Entwurf. Stufen der Entwicklung einer Datenbank. Inhalt. Übersicht. 1. Datenbank - Entwurf ( ER - Diagramm)
10. Logischer Entwurf 10-1 10. Logischer Entwurf 10-2 Stufen der Entwicklung einer Datenbank 1. Datenbank - Entwurf ( ER - Diagramm) Logischer Entwurf 2. Umsetzen des ER - Diagramms ins relationale Modell
Einführung, Entity-Relationship Modell 9. DATENBANKSYSTEME: DAS ENTITY RELATIONSHIP MODELL
Einführung, Entity-Relationship Modell 9. DATENBANKSYSTEME: DAS ENTITY RELATIONSHIP MODELL 304 Literatur, Quellen Literatur: Kemper, Eickler: Datenbanksysteme: Eine Einführung. Oldenbourg Verlag, 9. Auflage,
Kapitel DB:III (Fortsetzung)
Kapitel DB:III (Fortsetzung) III. Konzeptueller Datenbankentwurf Einführung in das Entity-Relationship-Modell ER-Konzepte und ihre Semantik Charakterisierung von Beziehungstypen Existenzabhängige Entity-Typen
Kapitel 1: Einführung 1.1 Datenbanken?
1. Einführung 1.1. Datenbanken? Seite 1 Kapitel 1: Einführung 1.1 Datenbanken? 1. Einführung 1.1. Datenbanken? Seite 2 Willkommen! Studierenden-Datenbank Hans Eifrig hat die Matrikelnummer 1223. Seine
Datenbankanwendungen werden oft über einen sehr langen Zeitraum (z.b. Jahrzehnte) eingesetzt
2. Datenbankentwurf Motivation Datenbankanwendungen werden oft über einen sehr langen Zeitraum (z.b. Jahrzehnte) eingesetzt Fehler sind umso teurer zu beheben, je weiter die Entwicklung bzw. der Einsatz
Kapitel DB:IV (Fortsetzung)
Kapitel DB:IV (Fortsetzung) IV. Logischer Datenbankentwurf mit dem relationalen Modell Das relationale Modell Integritätsbedingungen Umsetzung ER-Schema in relationales Schema DB:IV-46 Relational Design
Rückblick: Datenbankentwurf
Rückblick: Datenbankentwurf Entity-Relationship-Modell für konzeptuellen Entwurf Entitytypen (entity types) (z.b. Studenten) Beziehungstypen (relationships) (z.b. hören) Attribute beschreiben Gegenstände
Datenbanken 1. Sommersemester Übung 2
Datenbanken 1 Sommersemester 2017 Übung 2 Übersicht Aufgabe 1: Mengen vs. Multimengen (Grundlagen) Aufgabe 2: ER-Diag. und rel. Schema (binäre Beziehung) Aufgabe 3: ER-Diag. und rel. Schema (ternär Beziehung)
Eigenschaften von Datenbanken, insbesondere
Eigenschaften von Datenbanken In diesem Abschnitt beschreiben wir wünschenswerte Eigenschaften von Datenbanken, insbesondere Relationenschemata: Normalformen, die auf mathematischen Modellen beruhen und
Relationales Datenmodell Relationale Algebra
Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Relationale Algebra Dr. Gerd Gröner Wintersemester 2013/14 Lernziele Grundbegriffe des Relationalen Modells Abbildung
Übung 3. Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017)
Übung 3 Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017) Dennis Fischer [email protected] http://home.in.tum.de/~fischerd/ Technische Universität München Fakultät für Informatik
5.2 Entity-Relationship-Modell
5.2 Entity-Relationship-Modell Mod-5.8 Entity-Relationship-Modell, ER-Modell (P. Chen 1976): Kalkül zur Modellierung von Aufgabenbereichen mit ihren Objekten, Eigenschaften und Beziehungen. Weitergehende
Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit.
Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit. PRÜFUNG AUS DATENMODELLIERUNG (184.685) GRUPPE A MUSTERLÖSUNG 05.05.2015 Matrikelnr.
1. Einführung Seite 1. Kapitel 1: Einführung
1. Einführung Seite 1 Kapitel 1: Einführung 1. Einführung Seite 2 Willkommen! Studierenden-Datenbank Hans Eifrig hat die Matrikelnummer 1223. Seine Adresse ist Seeweg 20. Er ist im zweiten Semester. Lisa
Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit.
Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit. PRÜFUNG AUS DATENMODELLIERUNG (184.685) GRUPPE A 05.05.2015 Matrikelnr. Familienname
Rückblick: Relationales Modell
Rückblick: Relationales Modell Relationales Modell als vorherrschendes Datenmodell Relationen (Tabellen) besitzen Attribute (Spalten) mit Wertebereichen und beinhalten Tupel (Zeilen) Umsetzung eines konzeptuellen
Kapitel 2: Konzeptuelle Modellierung
Kapitel 2: Konzeptuelle Modellierung 1 Das Entity-Relationship-Modell voraussetzen Vorgänger achfolger Matrr Vorlr ame Studenten hören Vorlesungen SWS Sem Titel ote prüfen lesen Persr ame Fachgebiet Assistenten
Kapitel 3: Datenbanksysteme
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur : Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2009 Kapitel 3: Datenbanksysteme : PDDr. Peer
Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.
Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,
3. Relationales Modell & Algebra
3. Relationales Modell & Algebra Inhalt 3.1 Relationales Modell Wie können wir Daten mathematisch formal darstellen? 3.2 Übersetzung eines konzeptuellen Modells Wie können wir ein konzeptuelles Modell
Datenintegrität. Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung
Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung Statische vs. dynamische Integritätsbedingungen Statische Integritätsbedingungen Bedingungen
Datenintegrität. Referentielle Integrität. Referentielle Integrität in SQL. Bisherige Integritätsbedingungen
Datenintegrität eferentielle Integrität Integitätsbedingungen chlüssel Fremdschlüssel verweisen auf Tupel einer elation z.b. gelesenvon in Vorlesungen verweist auf Tupel in Professoren Beziehungskardinalitäten
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 07 Übung zur Vorlesung Grundlagen: Datenbanken im WS15/16 Harald Lang, Linnea Passing ([email protected])
Entwurf von Relationalen Datenbanken (1) (mit dem Entity-Relationship-Modell)
In der Regel werden Diskursbereiche durch mehrere Relationen (Tabellen) abgebildet. Ziele: Entwurf von Relationalen Datenbanken (1) (mit dem Entity-Relationship-Modell) Vermeiden von Redundanz in Relationen
Datenmodellierung. Ausschnitt der Realen Miniwelt. Manuelle/intellektuelle Modellierung. Konzeptuelles Schema (E/R- oder UML-Schema)
Datenmodellierung DBS kann vieles, aber nicht alles! Benutzer muss spezifizieren Anforderungen einer Anwendung Art von zu speichernden Daten Zwei wichtige Konzepte beim Entwurf: Datenmodell: Konstrukte
Datenbanken Unit 3: Das relationale Modell
Datenbanken Unit 3: Das relationale Modell 7. III. 2017 Outline 1 SQL 2 Das ER Modell Zusammenfassung 3 Das Relationale Modell Termin zweiter Zwischentest UE-Tests (Thema: SQL) zweiter Zwischentest findet
Kapitel DB:III (Fortsetzung)
Kapitel DB:III (Fortsetzung) III. Konzeptueller Datenbankentwurf Einführung in das Entity-Relationship-Modell ER-Konzepte und ihre Semantik Charakterisierung von Beziehungstypen Existenzabhängige Entity-Typen
Normalisierung Szenario [nach Zehnder; Informationssysteme und Datenbanken. Teubner, 1989]
Informatik Normalisierung / ERM 1 Normalisierung Szenario [nach Zehnder; Informationssysteme und Datenbanken. Teubner, 1989] Die Firma EDV-Soft beschäftigt die Personen Müller, Meyer, Schultze, Schmidt.
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof Dr Thomas eumann Blatt r 3 Übung zur Vorlesung Grundlagen: Datenbanken im W4/5 Harald Lang (haraldlang@intumde) http://www-dbintumde/teaching/ws45/grundlagen/
Kapitel DB:IV (Fortsetzung)
Kapitel DB:IV (Fortsetzung) IV. Logischer Datenbankentwurf mit dem relationalen Modell Das relationale Modell Integritätsbedingungen Umsetzung ER-Schema in relationales Schema DB:IV-45 Relational Design
Datenbanken Unit 3: Das relationale Modell
Datenbanken Unit 3: Das relationale Modell 8. III. 2016 Outline 1 Das ER Modell Zusammenfassung 2 Das Relationale Modell 3 SQL Organisatorisches Wissensüberprüfung: heute zwei Aufgaben statt nur einer
Rückblick: Relationale Normalisierung
Rückblick: Relationale Normalisierung Gute Relationenschema vermeiden Redundanz und führen nicht zu Anomalien beim Einfügen, Löschen oder Ändern Relationale Normalformen (1NF, 2NF, 3NF, BCNF, 4NF) charakterisieren
