Theoretische Grundlagen der Schweißtechnik SS bis 24. September 2010

Größe: px
Ab Seite anzeigen:

Download "Theoretische Grundlagen der Schweißtechnik SS bis 24. September 2010"

Transkript

1 Theoretische Grundlagen der Schweißtechnik SS bis 24. September 2010

2 Zeitlicher Ablauf des Schweißkurs Zeit Montag Dienstag Mittwoch Donnerstag Freitag 20. Sept. 21. Sept. 22. Sept. 23. Sept. 24. Sept. 9:00 12:00 Theoretische Grundlagen Theoretische Grundlagen Praktikum LMW Praktikum HWK Theoretische Grundlagen Gr. 1 Gr. 1 13:00 ~ 16:00 Theoretische Grundlagen Theoretische Grundlagen + Lasersicherh eitsunterweis ung Praktikum LMW Gr. 2 Praktikum HWK Gr.2 LMW: Laserhalle HWK: Handwerkskammer Geeignete Kleidung: - lange Hose - feste Schuhe Theoretische Grundlagen der Schweißtechnik Folie 2

3 Themen der Vorlesung Einleitung Anwendungen Theoretische Grundlagen der Schweißtechnik Folie 3

4 Einleitung Wo wird geschweißt? Wirtschaftliches Umfeld Verbände und Normen Historische Entwicklung des Metallschweißens Einteilung der Fertigungsverfahren nach DIN 8580 Definition des Schweißens und Prozessbegriffe Wirkprinzipien beim Schweißen Theoretische Grundlagen der Schweißtechnik Folie 4

5 Einteilung Schweißeignung von Stählen Schmelzschweißeignung Pressschweißeignung Schweißsicherheit Schweißmöglichkeit Vorbereiten Schweißen Nachbereiten Theoretische Grundlagen der Schweißtechnik Folie 5

6 Schmelzschweißverfahren Gasschmelzschweißen Lichtbogenschweißen Strahlschweißen weitere Pressschweißverfahren Widerstandsschweißen Reibschweißen weitere Theoretische Grundlagen der Schweißtechnik Folie 6

7 Mrd. Einführung Wo wird geschweißt? Wirtschaftliches Umfeld Maschinenbau, Straßen- und Schienenfahrzeugbau Stahlbau, Brückenbau, Hochbau, Wasserbau, Behälter-, Apparate- und Rohrleitungsbau Schiffbau und Off-Shore-Technik 2 1,5 1 0,5 Import Export Jahresproduktion Elektrotechnik und Elektronik sonstige Fertigungsbereiche Jahr 2007: Export von Schweißgeräten im Wert von 2,6 Mrd. ( Mitarbeiter) Theoretische Grundlagen der Schweißtechnik Folie 7

8 Wo wird geschweißt? Wirtschaftliches Umfeld Beschäftigte in der Anwendung der Fügetechnik Herstellung Schweißgeräte Schweißer Beschäftigte der Schweißtechnik Schweißaufsicht Schweißinspektoren Schweißkonstrukteure Forschungspersonal 700 Schweißlehrer 900 ZFP Personal Planungsingenieure 500 Roboter-Bediener Beschäftigte der Fügetechnik Gesamt Die insgesamt Beschäftigten erwirtschaften eine Gesamtwertschöpfung der Fügetechnik (=Wertschöpfung durch Herstellung von Fügetechnik plus Wertschöpfung durch Anwendung der Fügetechnik) von 22,65 Milliarden Euro. Quelle: DVS, Studie Value Added by Manufacture and Application of Joining Technology, 2009 Theoretische Grundlagen der Schweißtechnik Folie 8

9 Verbände und Normen Verbände DVS: GSI: EWF: IIW: Deutscher Verband für Schweißen und verwandte e.v. ( Gesellschaft für Schweißtechnik International mbh ( European Welding Federation ( International Institute of Welding ( Normung In der Bundesrepublik werden die schweißtechnischen Normen im Fachnormenausschuss Schweißtechnik (kurz NAS) erarbeitet. Vom DIN (Deutsches Institut für Normung e.v.) werden die Normen ständig den neuesten internationalen Entwicklungen angepasst. Wichtige Technische Normen sind EN- und ISO-Normen (national) ASTM, GOST, (international) Theoretische Grundlagen der Schweißtechnik Folie 9

10 Entwicklung der Metallschweißprozesse Altertum Industriezeitalter Theoretische Grundlagen der Schweißtechnik Folie 10

11 Grundlagen Systeme Schweißen in Konkurrenz zu anderen Fertigungsprozessen Vorteile des s Nachteile des s Vorteile des Schweißens Gießen Gestaltungsfreiheit Massenfertigung oft billiger Modelle und Werkzeuge erforderlich Gewichtseinsparung bis zu 50% höhere Robustheit Verbundkonstruktionen Spritzguß Platten, Folien (Kunststoff) Leichte Teile Verbundkonstr. möglich farbige Ausführungen Geringere Festigkeit, geringere Steifigkeit, geringere Temperaturbeständigkeit Schweißen möglich Folien versiegeln Schmieden Günstiger Faserverlauf, beste Zähigkeit, unempfindlich gegen Schlag Aufbaumöglichkeit begrenzt, Werkzeuge/Gesenke notwendig Kürzere Lieferzeiten, Werkstoffauswahl größer Nieten Keine Wärmebeeinflussung, keine Eigenspannungen gewisse Nachgiebigkeit Oft dekorativ Gewicht deutlich höher Korrosionsanfällig Günstigerer Kraftfluss Weniger Einzelteile Löten Niedrig Arbeitstemperatur Unterschiedliche Werkstoffe fügbar Geringer Lotverbrauch Mechanisierbar Teilweise geringe Festigkeit Korrosion Risiko durch diverse Elemente Keine Flussmittel erforderlich Gleicher Werkstoff als Zusatz Stumpfstoß Kleben Arbeiten bei Raum-Temperatur Leichte Bauweise Gute Festigkeitswerte Untersch. Werkstoffe fügbar, isolierend Überlappungslänge erheblich große Alterungsgefahr Vorbereitung aufwendig Einsatztemperatur begrenzt Prozesssicherheit größer Stumpfstoß Günstigerer Kraftfluss Theoretische Grundlagen der Schweißtechnik Folie 11

12 Einteilung der Fertigungsverfahren nach DIN 8580 Fertigungstechnik Hauptgruppe 1 Urformen Hauptgruppe 2 Umformen Hauptgruppe 3 Trennen Hauptgruppe 4 Fügen Hauptgruppe 5 Beschichten Hauptgruppe 6 Stoffeigenschaftändern Beispiele für schweißtechnische Gießschmelzschweißen Kaltpressschw. Flammrichten Brennschneiden Plasmaschneiden Verbindungsch. Löten Auftragsschweißen Therm. Spritzen Vorwärmen Flammentspritzen Fügen durch Lichtbogenschweißen Fügen durch Stanznieten/Stanznietkleben Beschichten durch Thermisches Spritzen Theoretische Grundlagen der Schweißtechnik Folie 12

13 Gruppe 1.1 Urformen aus dem gasoder dampfförmigen Zustand Gruppe 2.1 Druckumformen DIN 8583 Blatt 1 bis 6 Gruppe 3.1 Zerteilen DIN 8588 Gruppe 4.1 Zusammensetzen DIN 8593, Teil 1 Gruppe 5.1 Beschichten aus dem gasoder dampfförmigen Zustand Gruppe 6.1 Stoffeigenschaftändern durch Umlagern von Stoffteilchen Gruppe 1.2 Urformen aus dem flüssigen, breiigen oder pastenförmigen Zustand Gruppe 2.2 Zugdruckumformen DIN 8584 Blatt 1 bis 6 Gruppe 3.2 Spanen mit geometrisch bestimmt Schneide DIN 8589 Blatt 1 und 2 Gruppe 4.2 Füllen DIN 8593, Teil 2 Gruppe 5.2 Beschichten aus dem flüssigen, breiigen oder pastenförmigen Zustand Gruppe 6.2 Stoffeigenschaftändern durch Aussondern von Stoffteilchen Gruppe 1.3 Urformen aus dem ionisierten Zustand durch elektrolytisches Abscheiden Gruppe 2.3 Zugumformen DIN 8585 Blatt 1 bis 4 Gruppe 3.3 Spanen mit geometrisch unbestimmt Schneide DIN 8589 Blatt 1 Gruppe 4.3 An- und Einpressen DIN 8593, Teil 3 Gruppe 5.3 Beschichten aus dem ionisierten Zustand durch elektrolytisch oder chemisch Abschichtung Gruppe 6.3 Stoffeigenschaftändern durch Einbringen von Stoffteilchen Gruppe 1.4 Urformen aus dem festen (körnigen oder pulverigen Zustand) Gruppe 2.4 Biegeumformen DIN 8586 Gruppe 3.4 Abtragen DIN 8590 Gruppe 4.4 Fügen durch Urformen DIN 8593, Teil 4 Gruppe 5.4 Beschichten aus dem festen (körnigen oder pulverigen) Zustand Gruppe 2.5 Schubumformen DIN 8587 Gruppe 3.5 Zerlegen Gruppe 4.5 Fügen durch Umformen DIN 8593, Teil 5 Gruppe 3.6 Reinigen Gruppe 4.6 Fügen durch Schweißen DIN 8593, Teil 6 Gruppe 3.7 Evakuieren Gruppe 4.7 Fügen durch Löten DIN 8593, Teil 7 Gruppe 4.8 Kleben DIN 8593, Teil 8 Theoretische Grundlagen der Schweißtechnik Folie 13

14 Systematik der Hauptgruppe 4 Fügen nach DIN 8593 HG 4 Fügen.. Gr. 4.4 Fügen durch Urformen Gr. 4.5 Fügen durch Umformen Gr. 4.6 Fügen durch Schweißen Gr. 4.7 Fügen durch Löten Gr. 4.8 Fügen durch Kleben UG Ausgießen UG Fügen durch Umformen drahtförmiger Körper UG Pressverbindungs- Schweißen DIN ISO UG Verbindungs- Weichlöten UG Kleben im engeren Sinne UG Umgießen,Einbetten Eingalvanisieren UG Fügen durch Umformen nichtdrahtf. Körper UG Schmelzverbindungs- Schweißen DIN ISO UG Verbindungs- Hartlöten. UG Vergießen, Eingießen unter Entstehung eines Formschlusses UG Fügen durch Umformen von Hilfsfügeteilen UG Verbindungshochtemperaturlöten UG Einschmelzen UG Umpressen Aufvulkanisieren HG: Hauptgruppe Gr. : Gruppe UG: Untergruppe Theoretische Grundlagen der Schweißtechnik Folie 14

15 Definition des Schweißens und Prozessbegriffe Schweißen ist Fügen durch Stoffverbinden Schweißhilfsstoffe (Schutzgase, Schweißpulver, Pasten) ermöglichen oder erleichtern. Schweißzone Werkstück A Werkstück B Vereinigen mit/ohne Schweißzusatz Zusatz von Wärme und/oder Kraft. Definition des Begriffes Schweißen nach DIN 1910 Schweißen ist das Vereinigen von Werkstoffen in der Schweißzone unter Anwendung von Wärme und / oder Kraft ohne oder mit Schweißzusatz. Theoretische Grundlagen der Schweißtechnik Folie 15

16 Einteilung der Schweißprozesse (DIN 1910) Einteilung der Schweißprozesse nach Art des Energieeintrags nach der Art des Grundwerkstoffes nach dem Ziel des Schweißens nach dem Ablauf des Schweißens nach der Art der Fertigung z.b. Gas, Strom z.b. Metalle, Kunststoffe z.b. Verbindungsschweißen Auftragsschweißen z.b. Schmelzschweißen Pressschweißen z.b. Handschweißen, Automatenschweißen Formen der Wärmeerzeugung Wärmeenergie chem. Reaktion Elektrizität Reibung Strahlen/Wellen Metallthermische Reaktion Gasflamme Verbrennung Elektrischer Lichtbogen Elektrischer Widerstand Induktion Schallwellen Lichtstrahlen Elektronenstrahlen Ionenstrahlen Atomstrahlen Theoretische Grundlagen der Schweißtechnik Folie 16

17 Wirkprinzipien beim Schweißen Schweißverfahrensgruppe Schmelzschweißverfahren Pressschweißverfahren Energieform: Wärme Druck oder Wärme und Druck Stoffschluss durch:.schmelzfluss der Fügeteile und des Zusatzwerkstoffs.Plastifizierung und örtliches Verformen der Fügeteile F D F D Bereich der Schmelzzone Bereich der Plastifizierung Theoretische Grundlagen der Schweißtechnik Folie 18

18 Pressschweißen Pressschweißen Kaltpressschweißen Reibschweißen Feuerschweißen Gaspressschweißen Widerstandsschweißen Pressstumpfschweißen Abbrennstumpfschweißen Punktschweißen Buckelschweißen Rollennahtschweißen Folienstumpfschw. Lichtbogenpressschweißen Lichtbogenbolzenschweißen Magnetisches Lichtbogenschw. Diffusionsschweißen Theoretische Grundlagen der Schweißtechnik Folie 19

19 Schmelzschweißen Schmelzschweißen Gießschmelzschweißen Gießschweißen Aluminotherm. Schweißen Gasschweißen (Autogen) Widerstandsschmelzschweißen Elektroschlackeschweißen Lichtbogenschweißen Metall-Lichtbogen Unterpulverschweißen Schutgasschweißen Wolfram-Schutzgasschweißen Handschweißen Metallschutzgas Schutzgasengspalt Wolfram-Inertgasschw. Schwerkraftschweißen Inertgas Elektrogas Plasmaschw. Unterschienenschweißen Aktivgas Plasma-Metall Wolfram-Wasserstoffschw. Mit Fülldraht Schweißen Strahlschweißen Lichtstrahlschweißen Laserstrahlschweißen Elektronenstrahlschweißen Theoretische Grundlagen der Schweißtechnik Folie 20

20 Mechanisierungsgrade nach DIN ISO Theoretische Grundlagen der Schweißtechnik Folie 21

21 Einteilung Werkstoff des Bauteils Schweißmöglichkeit Konstruktion Abschätzung über werden in folgende Stufen vorgenommen: Gut geeignet bedingt geeignet - ungeeignet Theoretische Grundlagen der Schweißtechnik Folie 22

22 Einflussgrößen auf die Schweißeignung des Bauteils Schweißeignung (Werkstoffbedingte Schweißeignung) Schweißsicherheit (Konstruktivbedingte Schweißsicherheit) Schweißmöglichkeit (Fertigungsbedingte Schweißmöglichkeit) Chemische Zusammensetzung Metallurgische Zusammensetzung Physikalische Eigenschaften Vorbereitung zum Schweißen Ausführung der Nachbehandlung z.b. Härteneigung Alterungsneigung Sprödbruchneigung Heißrissneigung Schmelzbadverhalten z.b. Seigerungen Einschlüsse Korngröße Gefüge Anisotropie z.b. Ausdehnungsverhalten Wärmeleitfähigkeit Schmelzpunkt Festigkeit/Zähigkeit z.b. Auswahl der Schweißverf., von Zusätzen und Hilfsstoffen Stoßart Fugenform Vorwärmung Maßnahmen bei ungünstigen Witterungsverhältnissen z.b. Wärmeführung Wärmeeinbringung Schweißfolge z.b. Wärmebehandlung Schleifen Beizen Richten Konstruktive Gestaltung Beanspruchungszustand z.b. Kraftfluss im Bauteil Anordnung der Schweißnähte Werkstückdicke Kerbwirkung Steifigkeitsuntersuchungen z.b. Art und Größe der Spannungen Räumlichkeitsgrad der Sp. Beanspruchungsgeschw. Temperatur Korrosion Theoretische Grundlagen der Schweißtechnik Folie 23

23 Einflussgrößen auf die Schweißeignung Chemische Zusammensetzung Schmelzen, Gießen, Walzen, Glühen, Oberflächenbehandeln chemische physikalische Gefüge- Oberflächen- Stähle Nicht-Eisen-Metalle Aufhärten Heißrisse Deckschichten Lunker Korrosionsbeständigkeit Leitfähigkeit für Strom und Wärme Spezifische Wärmekapazität Schmelztemperatur Umwandlungswärme Übergangswiderstand Zugfestigkeit Steckgrenze Dehnung Eigenschaften Gefügeart Korngröße Kornstreckung Kornorientierung Seigerungsverhalten Aufhärten Umwandlung Einschlüsse Glanz Reflexion Rautiefe Beschichtung Verunreinigung Anlegierungsneigung Absorptionsvermögen Verarbeitungseigenschaft: Schweißeignung Schweißprozess Gebrauchseigenschaften der Schweißverbindung Theoretische Grundlagen der Schweißtechnik Folie 24

24 Schweißeignung von Stählen In Abhängigkeit vom Grad der Erwärmung an der Fügestelle, schmelzflüssig oder teigiger Zustand, ist zwischen Schmelzschweißeignung und Pressschweißeignung zu unterscheiden Theoretische Grundlagen der Schweißtechnik Folie 25

25 Schweißeignung von Stählen Zur qualitativen Abschätzung der Schmelzschweißeignung haben sich drei Methoden bewährt: 1. Abschätzung der Schweißeignung von unlegierten Stählen a) gut geeignet wenn C < 0,22% b) bedingt geeignet, wenn 0,22% < C < 0,4% (TVW > 100 C) 2. Abschätzung der Schweißeignung von niedrig legierten Stählen a) gut geeignet bei Kohlenstoffäquivalent C ä < 0,4% beträgt b) Liegen die Werte von C ä > 0,4% so ist entweder vorzuwärmen oder der Wärmeeintrag (Streckenenergie) ist zu erhöhen (Detaillierte Aussagen zur Schweißeignung von niedrig legierten Stählen sind mit Hilfe von Schweiß-ZTU-Diagrammen möglich.) C ä = C + Mn Kohlenstoffäquivalent: 6 + Cr+Mo+V 5 + Ni+Cu+Si 15 % 3. Abschätzung der Schweißeignung von hochlegierten Stählen mit dem Chrom-Nickel-Äquivalent Schäfflerdiagramm Theoretische Grundlagen der Schweißtechnik Folie 26

26 Schweiß-ZTU-Diagramm und seine Anwendungsmöglichkeiten ZTU-Diagramm: - Zeit - Temperatur - Umwandlungsschaubild Theoretische Grundlagen der Schweißtechnik Folie 27

27 Schweiß-ZTU-Diagramm und Beispiele Kontinuierliches ZTU-Schaubild Isothermes ZTU-Schaubild Beides Unlegierter- Stahl mit C=0,45% Theoretische Grundlagen der Schweißtechnik Folie 28

28 Schweißen - Stahl Die schematische Darstellung der temperatur- und zeitabhängigen Umwandlungsbereiche A B (A) Langsame Abkühlen: Perlit (B) Abkühlen auf Perlit (1) Abschrecken auf Martensit (2) Zwischenstufenvergüten (3) Abkühlen auf Bainit (4) Perlitbereich (5) Bainitbereich Theoretische Grundlagen der Schweißtechnik Folie 29

29 Schweißeignung von Stählen - Allgemeine Baustähle Theoretische Grundlagen der Schweißtechnik Folie 30

30 Schweißeignung von Stählen Anwendungsbeispiele für unlegierte Baustähle Theoretische Grundlagen der Schweißtechnik Folie 31

31 Schweißeignung von Stählen Schiffsbaustähle A, D, E: Gütegrade normalfest (entsprechen St37 - St44); etwa 90% der Schiffbaustähle AH,DH,EH: Gütegrade höherfest Gütegrad A: entspricht Güteklasse -2 Gütegrad D: entspricht Güteklasse -3 Gütegrad E: ausreichende Zähigkeitswerte müssen auch noch bei -40 Cgarantiert sein Theoretische Grundlagen der Schweißtechnik Folie 33

32 Schweißeignung von Stählen Anwendungsbeispiele für Feinkornbaustähle Theoretische Grundlagen der Schweißtechnik Folie 35

33 Schweißeignung von Stählen Die Schweißeignung von hochlegierten Stählen kann mit dem Cr-Ni-Äquivalent ausreichend abgeschätzt werden Das Schaeffler-Diagramm ermöglicht die Bestimmung der Grundwerkstoffe, des Schweißzusatzes und der Lage des Schweißgutes. Entscheidend für die Schweißeignung ist die Lage de Schweißgutes. Theoretische Grundlagen der Schweißtechnik Folie 36

34 Schweißeignung von Stählen Schaeffler-Diagramm mit Gefahrenzonen (FeCr tetragonal) Theoretische Grundlagen der Schweißtechnik Folie 37

35 Schweißeignung von Stählen Nichtrostende Stähle (nach DIN 17440) Theoretische Grundlagen der Schweißtechnik Folie 38

36 Schmelzschweißeignung sdreiecke Laserstrahlschweißen Elektronenstrahlschweißen Theoretische Grundlagen der Schweißtechnik Folie 39

37 Pressschweißeignung sdreiecke Punktschweißbarkeit von Stahlkombinationen Punktschweißbarkeit von NE-Metall-Kombinationen Theoretische Grundlagen der Schweißtechnik Folie 40

38 Pressschweißeignung sdreiecke Reibschweißbarkeit von Werkstoffkombinationen Ultraschallschweißbarkeit von Werkstoffkombinationen Theoretische Grundlagen der Schweißtechnik Folie 41

39 Schweißsicherheit Konstruktive Gestaltung Die Schweißsicherheit einer Konstruktion ist gegeben, wenn das zu fügende Bauteil auf Grund seiner konstruktiven Gestaltung unter den vorgesehenen Belastungskollektiv funktionsfähig bleibt. Die Schweißsicherheit wird beeinflusst von der konstruktiven Gestaltung und dem Beanspruchungskollektiv Kraftfluss im Bauteil Stumpfnaht (Normalgüte) Nietlaschenstoß Kraftfluss bei stoffschlüssigen Verbindungen Einfluss des Kraftflusses auf die Schwellfestigkeit (Werkstoff St38) Theoretische Grundlagen der Schweißtechnik Folie 42

40 Schweißsicherheit Konstruktive Gestaltung Die Wirkung von Kerben und Nahtüberhöhung auf die Schwellfestigkeit Schwellfestigkeit von Stumpfnähten in Abhängigkeit von Einbrandkerben a) Stumpfnaht unbearbeitet, Wurzel gegengeschweißt; Nahtübergang ohne Kerbe b) mit größerer Kerbe c) Kerben verlaufend geschliffen Schwellfestigkeit von Stumpfnähten unbearbeitet in Abhängigkeit von der Nahtüberhöhung, t=10mm Theoretische Grundlagen der Schweißtechnik Folie 43

41 Schweißsicherheit Beanspruchungszustand Unter Beanspruchungszustand versteht man das Zusammenwirken aus Belastungsart Beanspruchungsgeschwindigkeit (schwellend, schlagend) Temperatur Medium Schweißsicherheit kann leichter erreicht werden bei: statischer Beanspruchung Betriebstemperatur bei ca. 20 C als Medium trockene Luft vorliegt Schweißsicherheit schwierig zu erreichen bei: dynamischen Belastungen niedrigen Betriebstemperaturen aggressive Medien Belastungsarten mit zugehörigen Spannungs-Zeit-Diagramm Theoretische Grundlagen der Schweißtechnik Folie 44

42 Schweißmöglichkeit Die Schweißmöglichkeit ist vorhanden, wenn die vorgesehenen Schweißungen unter den gewählten Fertigungsarten fachgerecht hergestellt werden können. Die Schweißmöglichkeit wird u.a. von folgenden Faktoren beeinflusst: Vorbereiten zum Schweißen (Auswahl von Stoßart, Schweißverfahren, Fugenform und Schweißzusätzen, Heften und Vorwärmen) Ausführen des Schweißens (Wärmeeinbringung, Wärmeführung, Schweißfolge) Nachbereiten/Nachbehandeln der Schweißverbindung (Wärmebehandlung, Richten, Schleifen, Beizen) Ziele bei der Ausführung von Schweißarbeiten sind: Erzielung einer hohen Nahtwertigkeit Verformungs- und spannungsarme Schweißverbindungen Geringe Bauteilendverformung Aufstellen und Anwenden von Schweißfolgeplänen Das Vorbereiten der Fügestelle ist in erster Linie abhängig von: der Stoßart der Bauteile der Bauteilform den Bauteilabmessungen dem Schweißverfahren Nahtwertigkeit = R m Verbindung R m Werkstoff möglichst 1 Theoretische Grundlagen der Schweißtechnik Folie 45

43 Vorbereiten Stoßarten von Bauteilen nach DIN 1912, Teil 1 Theoretische Grundlagen der Schweißtechnik Folie 46

44 Vorbereiten Typische Fugenformen für das Schmelzschweißen bei unterschiedlicher Blech- bzw. Wanddicke sowie verschiedenen Stoßarten R: Radius b: Spaltbreite c: Steghöhe h: Flankenwinkel t: Blech-/Wanddicke a: Öffnungswinkel b: halber Öffnungswinkel Fugenarten nach DIN 8551 Theoretische Grundlagen der Schweißtechnik Folie 47

45 Vorbereiten Vorwärmtemperaturen für das Lichtbogenhandschweißen Theoretische Grundlagen der Schweißtechnik Folie 48

46 Schweißen Gegenüberstellung der Leistungsdichten bei ausgewählten Schmelzschweißverfahren Temperaturfelder bei unterschiedlichen Leistungsdichten Einfluss der Leistungsdichte auf die Aufschmelzquerschnitte und die Nahtformen beim Schweißen Die Temperaturverteilung ist abhängig von Art der Energieeinbringen (Leistungdichte) aber auch von: -Wärmezufuhr; -Wärmeableitung; -Schweißgeschwindkeit; -Werkstoff; -Bauteilform. Theoretische Grundlagen der Schweißtechnik Folie 49

47 Schweißen Temperaturfelder für verschiedene Werkstoffe bei gleicher Wärmeleistung WEZ: Wärme Einfluss Zone Einfluss der Leistungsdichte unterschiedlicher Schweißverfahren auf die Maximalhärte in der WEZ und auf ihre Breite, dargestellt für umwandlungsfähige Stähle Theoretische Grundlagen der Schweißtechnik Folie 50

48 Schweißen WEZ: Wärme Einfluss Zone Theoretische Grundlagen der Schweißtechnik Folie 51

49 Schweißen Abkühlgeschwindigkeit wird im wesentlichen durch bauteilbedingte Wärmeableitung bestimmt. Wärmeableitung erfolgt entweder 2- (Dünnblech) oder 3-Dimensional (Dickblech, Mehrfachstöße) Theoretische Grundlagen der Schweißtechnik Folie 52

50 Schweißen Grundsätzlich gilt: Der Wärmeeintrag und die Wärmeableitung sind ebenso aufeinander abzustimmen wie Schweißzusatz und Grundwerkstoff. Ziel muss es sein, günstige Gefügezusammensetzungen zu erzielen, die optimale Gebrauchseigenschaften sichern. Der Wärmeeintrag beim Schmelzschweißen kann mit Hilfe der Streckenenergie E bestimmt werden. Die Streckenenergie E berechnet sich für das Lichtbogenschweißen: E= I S x U S x h x 60 v S v S ~ I S d e I S : Schweißstrom in A U S : Schweißspannung in V d e : Elektrodendurchmesser v S : Schweißgeschwindigkeit in cm/min h: relativer thermischer Wirkungsgrad Theoretische Grundlagen der Schweißtechnik Folie 53

51 Schweißen Einfluß der Schweißparameter auf die resultierenden Eigenspannungen: Hohe Streckenenergie Geringer Wärmeeintrag Hohe Abkühlgeschwindigkeit Martensitische Umwandlung Druckeigenspannungen Geringe Streckenenergie Hoher Wärmeeintrag geringe Abkühlgeschw. ferrit./perlit. Umwandlung Zugeigenspannungen Theoretische Grundlagen der Schweißtechnik Folie 54

52 Schweißen Schweißverfahren E-Schweißung 3,25 MAGC- Langlichtbogen MAGC- Kurzlichtbogen Elektroden Ø, mm 4,0 5,0 1,2 1,6 2,0 UP-Schweißen 2,5 3,0 4,0 Steckenenergie, J/cm ,8 1, , Schweißverfahren UP-Schweißen 1,0 Lichbogenhandschweißen Stabelektrode Metall-Aktivgasschweißen mit Argon bzw. CO 2 Metall-Inertgasschweißen mit Argon bzw. Helium Wolfram-Inertgasschweißen mit Argon bzw. Helium Relativer thermischer Wirkungsgrad h 0,8-0,9 0,8-0,9 0,7-0,8 0,6-0,7 Richtwerte für die Streckenenergie Relativer thermischer Wirkungsgrad verschiedener Schweißverfahren Theoretische Grundlagen der Schweißtechnik Folie 55

53 Schweißen Wärmebilanz beim... Lichtbogenhandschweißen Unterpulverschweißen Theoretische Grundlagen der Schweißtechnik Folie 56

54 Schweißen Zeit-Temperaturverlauf für das Schweißen mit Vorwärmen Zeit-Temperaturverlauf für das Schweißen mit konstanter Arbeitstemperatur Die gezielte örtliche und zeitliche Folge von Wärmeeintragungen führt zu komplexen Erwärmungs- und Abkühlvorgängen, die häufig nur empirisch ermittelt werden können Theoretische Grundlagen der Schweißtechnik Folie 57

55 Schweißen PE a) Schweißpositionen nach DIN EN und deren b) Korrekturfaktoren für Schweißzeiten bezogen auf die Wannenposition PA (t h... Brenndauer des Lichtbogens) Theoretische Grundlagen der Schweißtechnik Folie 58

56 Nachbearbeitung Das Nachbearbeiten umfasst: das Säubern der Naht (mechanisch oder chemisch) das Bearbeiten der Naht durch vorzugsweise Schleifen, um Spannungsspitzen im Nahtbereich aufgrund der Kerbwirkung abzubauen das Richten der Bauteile (mechanisch oder thermisch) das Wärmebehandeln in Verbindung mit dem Schweißen Wärmebehandlung in Verbindung mit Schweißen vorher während nachher Normalglühen Spannungsarmglühen Vorwärmen Normalglühen Spannungsarmglühen Flammentspannen Härten Vergüten Aushärten örtliches Vorwärmen Vorwärmen des gesamten Bauteils von besonderer Bedeutung sind... für die Schweißnaht einschließlich der Wärmeeinflusszone das Normalisieren, das heißt das Umwandeln von grobkörnigen in feinkörniges Gefüge, um damit eine zähe Schweißverbindung zu erzielen für das Bauteil der Abbau von Schweißeigenspannungen durch Spannungsarmglühen Theoretische Grundlagen der Schweißtechnik Folie 59

57 Nachbearbeitung Theoretische Grundlagen der Schweißtechnik Folie 60

58 Schmelzschweißen Theoretische Grundlagen der Schweißtechnik Folie 61

59 Gasschmelzschweißen (Autogenschweißen) Am häufigsten verwendet: Acetylen Vorteile: Flammentemperatur und leistung nicht giftig Schutzgaswirkung bei richtig eingestellter Brennerflamme Theoretische Grundlagen der Schweißtechnik Folie 62

60 Gasschmelzschweißen Früher: CaC 2 + 2H 2 O C 2 H 2 + Ca (OH) 2 + Wärme Heute: Acetylen in Aceton gelöst Arbeitsdrücke: Acetylen: ca. 0,5 bar Sauerstoff: ca. 2,5 bar Theoretische Grundlagen der Schweißtechnik Folie 63

61 Gasschmelzschweißen Neutrale Flamme: Mischungsverhältnis Acetylen/Sauerstoff 1:1 1:1, C (auch reduzierend oder oxidierend mögl.) Anzünden: erst Sauerstoff dann Acetylen Löschen: erst Acetylen dann Sauerstoff Theoretische Grundlagen der Schweißtechnik Folie 64

62 Gasschmelzschweißen Nach-Links-Schweißen: Blechdicke <3 mm Nach-Rechts-Schweißen: Blechdicke >3 mm Anwendungsgebiete - Rohrleitungsbau und Installationsbereich - Instandsetzung - Auftragsschweißen - bis ca. 7 mm Blechdicke Vorteile: - Unabhängigkeit vom Strom, überall einsetzbar - gutes Dünnblechschweißen - günstige Anlage geeignete Werkstoffe - unlegierte Stähle - niedriglegierte Stähle - Gusseisen - Nichteisenmetalle Nachteile: - geringe Leistungsdichte - schlechter Energieübergang Theoretische Grundlagen der Schweißtechnik Folie 65

63 Schmelzschweißen Theoretische Grundlagen der Schweißtechnik Folie 66

64 Schweißen mit Lichtbogen Lichtbogenschweißen: Bogenentladung zwischen 2 Elektroden in ionisiertem Gas (Plasma) Plasma Masse und Energietransport Spannungsverteilung in einem Hochstrom-Lichtbogen Starker Spannungsabfall nahe der Elektroden: Anoden- bzw. Kathodenfall Linearer, flacher Abfall im Plasma (Langer Lichtbogen hoher Spannungsabfall) Theoretische Grundlagen der Schweißtechnik Folie 67

65 Schweißen mit Lichtbogen Lichtbogenerzeugung Zünden des Schweißlichtbogens Kurzschluss Hochfrequenz Kurzschluss Berühren Zündpille Zündpulver Hochfrequenzzünden: Hochspannung mit hoher Frequenz ermöglicht Feldemission aus der Elektrode. Erhöhung der Anzahl von Ladungsträgern durch Stoßionisation, bei ausreichender Anzahl von Ladungsträgern entsteht der Lichtbogen. Mechanischer Ablauf des Zündvorgangs a) Elektrode hat Werkstück noch nicht berührt b) Elektrode hat Werkstück berührt, durch die starke Erhitzung der Brücken entsteht Metalldampf, c) Elektrode hat die zu erwartende Lichtbogenlänge erreicht, Kathode emittiert Elektronen (der Metalldampf liefert die Ladungsträger) d) Die emittierten Elektronen werden durch ansteigende Spannung beschleunigt, es bildet sich ein thermisches Plasma Theoretische Grundlagen der Schweißtechnik Folie 68

66 Schweißen mit Lichtbogen Lichtbogentemperatur Hochstromkohlelichtbogen, 200 A Die Lichtbogentemperaturen werden hauptsächlich vom Ionisierungsgrad des Plasmagases bestimmt. Vereinfacht gilt: T LB ~ x u ieff T LB : Lichtbogentemperatur in K u ieff : effektive Ionisationsspannung der im Plasma vorhanden Stoffe gemessene Isotherme interpolierte Isotherme Mittlere Temperaturen für Schweißlichtbögen Metalllichtbogenschweißen mit Stabelektrode WIG-Schweißen Metall-Schutzgasschweißen Plasma-Schweißlichtbogen ca K K K > K Theoretische Grundlagen der Schweißtechnik Folie 69

67 Schweißen mit Lichtbogen - Lichtbogenkennlinie Die Abhängigkeit vom Spannungsabfall über dem Lichtbogen bei konstanter Lichtbogenlänge wird Lichtbogenkennlinie genannt. Ihr Verlauf ist hauptsächlich abhängig von der Lichtbogenlänge, Lichtbogenatmosphäre sowie von der Zusammensetzung von Elektrode und Werkstück. Die Kennlinie verläuft bei geringen Stromstärken steil abfallend. Im Ayrtonschen Bereich ist die Kennlinie instabil. Deswegen wird beim Schweißen stets mit Stromstärken gearbeitet, die im leicht ansteigenden Bereich liegen Lichtbogenkennlinie mit Arbeitspunkt Theoretische Grundlagen der Schweißtechnik Folie 70

68 Schweißen mit Lichtbogen - Lichtbogenkennlinie Die Arbeitswerte der Hauptparameter I S und U S werden im praktischen Schweißprozess durch die Lichtbogenkennlinie der jeweiligen svariante bestimmt. Für diese Arbeitswerte gelten: Lichtbogenhandschweißen mit Stabelektrode U S = ,04 I S für I S < 600 A Metallschutzgasschweißen U S = ,05 I S für I S < 600 A Einfluss der Ionisierungsenergie verschiedener Schutzgase auf den Verlauf der Lichtbogenkennlinie. Ionisierungsenergie einfach He: 24,6 ev, Ar: 15,76 ev Ionisierungsenergie mehrfach He: 54,4 ev, Ar: 27,6 ev Unterpulverschweißen U S = ,04 I S für I S < 600 A U S = 44V für I S > 600 A WIG-Schweißen U S = ,04 I S für I S < 600 A Theoretische Grundlagen der Schweißtechnik Folie 71

69 Schweißen mit Lichtbogen Schweißstromquellen Anforderungen an Stromquellen: Nicht-gefährliche Leerlaufspannung, jedoch gutes Zündverhalten Gleichstrom 113 V, Wechselstrom 80 V (Effektiv) Begrenzter Kurzschlussstrom (keine Beschädigung am Gerät) Spannung nach Zünden sofort auf Arbeitswert stabile Bedingungen Stabile Strom-Spannungskennlinie stufenlose Einstellung der Schweißparameter (U S, I S ) geringe Wartung robuster Aufbau geräuscharm geringer Stromverbrauch im Leerlauf hoher Wirkungsgrad Theoretische Grundlagen der Schweißtechnik Folie 72

70 Schweißen mit Lichtbogen Schweißstromquellen Konstantstrom bzw. fallende Charakteristik Konstantspannungscharakteristik Äußere Regelung oder ΔU-Regelung: Verlängerung des Lichtbogens Spannung steigt Strom bleibt annähernd konstant Elektrodenschweißen, WIG-Schweißen, Handschweißen Innere Regelung oder ΔI-Regelung: Verlängerung des Lichtbogens Strom sinkt Elektrode schmilzt langsamer ab Lichtbogen wird kürzer MIG, MAG, automatisiertes Schweißen Theoretische Grundlagen der Schweißtechnik Folie 73

71 Schweißen mit Lichtbogen Schweißstromquellen Schweißstromquellen Schweißumformer nicht regelbar Gleichstrom Schweißtransformator nicht regelbar Wechselstrom Schweißgleichrichter nicht regelbar Gleichstrom elektronische Stromquelle regelbar Gleich- oder Wechselstrom sekundär getaktete Stromquelle (Shopper) primärgetaktete Stromquelle (Inverter) Elektronisch gesteuerte Schweißstromquellen ermöglichen es, den Schweißstrom I S zeitlich definiert zu variieren, um damit die thermischen Vorgänge im Lichtbogen, insbesondere den Tropfenübergang (bei der abschmelzenden Elektrode) günstig zu beeinflussen. Theoretische Grundlagen der Schweißtechnik Folie 74

72 Schweißen mit Lichtbogen Schweißumformer Motor treibt Generator auf gemeinsamer Welle an Drehstrommotor oder Verbrennungsmotor Schweißaggregat Theoretische Grundlagen der Schweißtechnik Folie 75

73 Schweißen mit Lichtbogen Schweißtransformator Einfache und sehr robuste Ausführung Nur Wechselstrom! U1 : U2 = N1 : N2 U1 : U2 = I2 : I1 Fallende Kennlinien Theoretische Grundlagen der Schweißtechnik Folie 76

74 Schweißen mit Lichtbogen Schweißgleichrichter Transformator vorgeschaltet Gleichrichtung der Spannung durch Dioden Glättung durch Kondensator und Spule möglich Theoretische Grundlagen der Schweißtechnik Folie 77

75 Schweißen mit Lichtbogen elektronische Stromquelle Sekundär getaktet Primär getaktet Theoretische Grundlagen der Schweißtechnik Folie 78

76 Schweißen mit Lichtbogen Typenschild Theoretische Grundlagen der Schweißtechnik Folie 79

77 Schweißen mit Lichtbogen - Schweißstromquellen Theoretische Grundlagen der Schweißtechnik Folie 80

78 Lichtbogenhandschweißen Anwendungsbereiche: Abmesssungen: Stumpfnähte an Blechdicken von 2 bis 100mm und Kehlnähte mit 3 bis 100mm Werkstoffe: Baustähle, niedrig- und hochlegierte Stähle, Stahlguß und Gußeisen Theoretische Grundlagen der Schweißtechnik Folie 81

79 Lichtbogenhandschweißen - Aufbau einer Elektrode Theoretische Grundlagen der Schweißtechnik Folie 82

80 Lichtbogenhandschweißen Umhüllung der Elektrode Umhüllung der Elektrode dient zur: Stabilisierung des Lichtbogens Sicheres Zünden und gute Leitfähigkeit der Lichtbogenstrecke Schutz der übergehende Metalltropfen und des Schmeltzbades vor Luftzutritt Vier Umhüllungstypen Sauerumhüllte Elektroden (A): Hauptbestandteil Erz Rutilumhüllte Elektrode (R): Hauptbestandteil TiO 2 Basischumhüllte Elektrode (B): Hauptbestandteil Flussspat Zelluloseumhüllte Elektrode (C): Hauptbestandteil Zellulose Umhüllungsrohstoff Wirkung auf Schweißeigenschaften Quarz- SiO2 Erhöhte Strombelastbarkeit, Schlackenverdünner Rutil-TiO2 Verb. Schlackenabgang und Nahtzeichnung, gutes Wiederzünden Magnetit-Fe3O4 Verfeinert den Tropenübergang Kalkspat-CaCO3 Setz die Lichtbogensp. herab, Schutzgas- und Schlackenbildner Flussspat-CaF2 Schlackenverdünner bei basischen Elekt. verschlechtert die Ionisation Kali-Feldspat-K 2 O Al 2 O 3 6SiO 2 Leicht ionisierbar, verb. die Lichtbogenstabilität Ferro-Mangan/Ferro Silizium Desoxidationsmittel Zellulose Schutzgasbildner Kaolin-Al2O3 2SiO2 2H2O Gleitmittel K- oder Na-Wasserglas K 2 SiO 3 /Na 2 SiO 3 Bindelmittel Theoretische Grundlagen der Schweißtechnik Folie 83

81 Lichtbogenhandschweißen Verwendungseigenschaften von Stabelektroden Theoretische Grundlagen der Schweißtechnik Folie 84

82 Lichtbogenhandschweißen Elektrodenbezeichnung Basische Elektroden müssen rückgetrocknet werden Theoretische Grundlagen der Schweißtechnik Folie 85

83 Lichtbogenhandschweißen Normung von Stabelektroden Theoretische Grundlagen der Schweißtechnik Folie 86

84 Lichtbogenhandschweißen Kennlinien und Arbeitspunkt AP Theoretische Grundlagen der Schweißtechnik Folie 87

85 Lichtbogenhandschweißen Elektrodenführung senkrecht schleppend stechend Theoretische Grundlagen der Schweißtechnik Folie 88

86 Lichtbogenhandschweißen - Zusammenfassung Theoretische Grundlagen der Schweißtechnik Folie 89

87 Schmelzschweißen Theoretische Grundlagen der Schweißtechnik Folie 90

88 Unterpulverschweißen - sprinzip Vorgänge in der Schweißzone kontinuierlich zugeführter Massivdraht schmilzt unter Aufschüttung mineralischen Pulver ab Lichtbogen brennt in Kaverne unter Pulver sehr gute Schutzwirkung hohe Abschmelzleistung (ca. 15 kg/h) waagrechtes Schweißen Theoretische Grundlagen der Schweißtechnik Folie 91

89 Unterpulverschweißen Elektroden und Schweißpulver Elektroden: Elektrodendurchmesser 1,2 bis 12 mm (Standard: 2,4 bis 4 mm) Kaltgezogen und verkupfert für besseren Stromübergang Auftragsschweißen: bandförmige Elektroden ca. 1 mm dick und 30 bis 60 mm breit Schweißpulver: Ähnliche Zusammensetzungen und Aufgaben wie die Umhüllung bei Stabelektroden Unterscheidung in erschmolzene, agglomerierte und Mischpulver Theoretische Grundlagen der Schweißtechnik Folie 92

90 Unterpulverschweißen Theoretische Grundlagen der Schweißtechnik Folie 93

91 Unterpulverschweißen - Anwendungen ab 2 mm Blechdicke, obere Dickenbegrenzung ist nicht gegeben wirtschaftlicher Einsatz des s verlangt möglichst große Blechdicken und lange Schweißnähte Rohrleitungsbau zur Herstellung von Großrohrleitungen (Längs- Rund-, Spiralschweißnähte) Kessel-, Behälter-, Apparatebau oft der meist eingesetzte Schweißprozess Beim UP-Engspaltschweißen werden an Werkstoffdicken bis 200 mm volumenarme I-Nähte bei Fugenweiten von 15 bis 20 mm einseitig wirtschaftlich geschweißt Stahlhoch- und Brückenbau zum Schweißen von Vollwandstützen und träger Schiffbau Plattieren und Auftragsschweißen im Chemieanlagenbau Theoretische Grundlagen der Schweißtechnik Folie 94

92 Schmelzschweißen Theoretische Grundlagen der Schweißtechnik Folie 95

93 Schutzgasschweißen - Einordnung Theoretische Grundlagen der Schweißtechnik Folie 96

94 Metall-Schutzgas-Schweißen Prinzip Theoretische Grundlagen der Schweißtechnik Folie 97

95 Metall-Schutzgas-Schweißen Prinzip Stromquellen: Konstantspannungscharakteristik (digital) ΔI-Regelung Theoretische Grundlagen der Schweißtechnik Folie 98

96 Metall-Schutzgas-Schweißen Gase Schutz vor atmosphärischen Gasen (O 2, N 2 ) Beeinflussung von MAG-Schweißen von un- und niedriglegierten Stählen: MG aus Ar+18% CO 2 + 8% O 2 oder reines CO 2 MAG-Schweißen von nichtrostenden hochlegierten Stählen: MG aus Ar + 2,5% CO 2 oder Ar + 3% O2 MIG-Schweißen von NE-Metallen: 100% reines Ar oder Gemische aus Ar+30-60% He - Zündeigenschaften - Form und Stabilität des Lichtbogens - Einbrand - Metallurgie Einteilung der Schutzgase zum Schutzgasschweißen erfolgt nach DIN 439 Theoretische Grundlagen der Schweißtechnik Folie 99

97 Metall-Schutzgas-Schweißen Gase Theoretische Grundlagen der Schweißtechnik Folie 100

98 Metall-Schutzgas-Schweißen Tropfenübergang Unterschiedliche Kräfte im Lichtbogen wirken auf den abschmelzenden Zusatzwerkstoff und bestimmen damit den Werkstoffübergang. Theoretische Grundlagen der Schweißtechnik Folie 101

99 Metall-Schutzgas-Schweißen MAG Theoretische Grundlagen der Schweißtechnik Folie 102

100 Metall-Schutzgas-Schweißen Lichtbogenarten Zu jeder vorgegebenen Spannungskennlinie U gehört ein entsprechender Schweißstrom I, der bei diesem Schweißverfahren über die Drahtgeschwindigkeit v eingestellt wird. Die richtige Geräteeinstellung lässt sich am Lichtbogengeräusch erkennen. Nur in einem bestimmten Arbeitsbereich brennt ein stabiler Lichtbogen Theoretische Grundlagen der Schweißtechnik Folie 103

101 Metall-Schutzgas-Schweißen Lichtbogenarten Theoretische Grundlagen der Schweißtechnik Folie 104

102 Metall-Schutzgas-Schweißen Lichtbogenarten Der Kurzlichtbogen: dünne Bleche Zwangslagen- und Wurzelschweißungen niedriger Leistungsbereich geringe Spritzerbildung im Kurzschluss gleichmäßig, feintropfig Der Übergangslichtbogen: mittlere Leistung mittlere Blechdicken Argon-Mischgas bevorzugt fein- bis grobtropfig teils im Kurzschluss, teils kurzschlussfrei Theoretische Grundlagen der Schweißtechnik Folie 105

103 Metall-Schutzgas-Schweißen Lichtbogenarten Langlichtbogen : Sprühlichtbogen : Impulslichtbogen: hohe Leistungen Co2-haltige Gase grobtropfiger Übergang Spritzer Edelgase große Wanddicken hohe Abschmelzleistungen und Schweißgeschwindigkeiten feintropfiger Übergang ohne Kurzschlüsse kaum Spritzer alle Leistungsbereiche MIG und MAG kurzschlussfreier definierter Tropfenübergang geringste Spritzerbildung Theoretische Grundlagen der Schweißtechnik Folie 106

104 Metall-Schutzgas-Schweißen Kurzlichtbogen Beispiele für den Werkstoffübergang Kennzeichen: relativ energiearm (U,I klein). Der Tropfenübergang (50 bis 100 Tropfen/s) erfolgt bei kleinen Lichtbogenleistungen im Kurzschlussbetrieb Anwendung: Schweißen von Wurzellagen, Zwangslagen (Positionen PC, PF, PG, PE), Schweißen von Dünnblechen Theoretische Grundlagen der Schweißtechnik Folie 107

105 Metall-Schutzgas-Schweißen Übergangslichtbogen Beispiele für den Werkstoffübergang Kennzeichen: mittlere Lichtbogenleistung, Zusatzwerkstoff ist dünnflüssiger. Tropfenübergang (100 Tropfen/s) teils im Kurzschluss, teils berührungslos. Anwendung: ab 2 mm Blechdicke, für Kehlnähte oder für Füll- und Decklagen bei Stumpfnähten in den Positionen PB und PA, nur begrenzt für Zwangslage Theoretische Grundlagen der Schweißtechnik Folie 108

106 Metall-Schutzgas-Schweißen Sprühlichtbogen Beispiel für den Werkstoffübergang Kennzeichen: hohe Lichtbogenleistung, kurzschlussfreier, feintropfiger ( Tropfen/s), Werkstoffübergang ohne Spritzer und ohne Kurzschlüsse. Unter reinem CO 2 -Schutzgas oder bei Anteilen von mehr als 20% CO 2 kann der Sprühlichtbogen nicht erreicht werden Anwendung: Besonders für Füll- und Decklagen bei hoher Abschmelzleistung Theoretische Grundlagen der Schweißtechnik Folie 109

107 Metall-Schutzgas-Schweißen Impulslichtbogen Beispiele für den Werkstoffübergang Kennzeichen: Die zusätzlichen Geräteeinstellungen stellen hohe Anforderungen an den Schweißer. Bei programmierbaren Anlagen kann dies durch Einstellprogramme erfolgen Anwendung: an dünnen Blechen lassen sich Spritzer vermeiden und dickere Drahtelektroden verschweißen. Beim MIG-Schweißen von Al-Werkstoffen wird die Schweißbadbewegung gefördert und damit die Porenbildung verringert. Bei Stahl erreicht man eine minimale Aufmischung der Werkstückflanken bei ausreichendem Einbrand (zum Beispiel schwarz-weiß-verbindungen oder beim Auftragsschweißen Theoretische Grundlagen der Schweißtechnik Folie 110

108 Metall-Schutzgas-Schweißen Lichtbogen Einflussparameter Theoretische Grundlagen der Schweißtechnik Folie 111

109 Metall-Schutzgas-Schweißen Regelung Regelung der Lichtbogenlänge bei gleichbleibender Drahtvorschubgeschwindigkeit und nahezu gleichbleibender Spannung durch Änderung der Stromstärke und der Abschmelzleistung durch interne Regelung der Schweißstromquelle. Voraussetzung: -möglichst konstante Drahtvorschubgeschwindigkeit -Zunahme der Abschmelzgeschwindigkeit mit der Stromstärke -möglichst flache Charakteristik der Stromquelle Merke: Innere Regelung gewährleistet Qualität Theoretische Grundlagen der Schweißtechnik Folie 112

110 Metall-Schutzgas-Schweißen Drahtelektroden Theoretische Grundlagen der Schweißtechnik Folie 113

111 Metall-Schutzgas-Schweißen Richtwerte Schweißparameter und Richtwerte für die Abschmelzleistung beim MAG-Schweißen Theoretische Grundlagen der Schweißtechnik Folie 114

112 Metall-Schutzgas-Schweißen Lichtbogen Theoretische Grundlagen der Schweißtechnik Folie 115

113 Schutzgasschweißen - Einordnung Theoretische Grundlagen der Schweißtechnik Folie 116

114 WIG - Schweißen Elektrode: Nicht abschmelzend!! reines Wolfram oder legiert mit hochschmelzenden Oxiden Energieübertragung nur durch Lichtbogen Inerte Schutzgase: Argon, Helium Anwendbar bei allen schmelzschweißbaren Metallen Theoretische Grundlagen der Schweißtechnik Folie 117

115 WIG-Schweißen Polung der Elektrode Theoretische Grundlagen der Schweißtechnik Folie 118

116 WIG-Schweißen Aufbau des Brenners Theoretische Grundlagen der Schweißtechnik Folie 119

117 WIG-Schweißen Anwendungsbereiche Anwendungsbereiche: Das WIG-Schweißen ist ein weit verbreitetes und leistungsfähiges. Es verbindet die Beweglichkeit eines einfachen handlichen Schweißgerätes mit der hohen Leistungsdichte des elektrischen Lichtbogens. Die in weiten Grenzen regelbare Lichtbogenleistung (Lichtbogenspannung x Stromstärke), unabhängig von einem unter Umständen erforderlichen Schweißzusatzwerkstoff, verleiht dem universale Anwendungsmöglichkeiten. Nahezu alle Metalle lassen sich in Dicken von 0,1mm (Stahl) bis zu mehreren cm WIG-Schweißen. Vorteile: kein Einfluss des Schutzgases auf das Schweißgut keine Spritzer und Schlacken fester Kontakt an der Elektrode, kein Gleitkontakt wie beim Metall-Schutzgasschweißen gut beherrschbares Ansetzen gute Spaltüberbrückung in allen Positionen leichtes Finden geeigneter Schweißwerte einfachere Lösung für veränderliche Lichtbogenleistungen beim Schweißen Werkstoffe: NE-Metalle wie Al, Cu, Ni sowie deren Legierungen, hoch legierte Stähle, Sondermetalle wie Ti, Zr, Ta Werkstückdicken: 0,5 bis 5mm Nahtarten: I-, V-, Bördel- und Kehlnähte in allen Positionen, vorzugsweise bei kurzen Nahtlängen Theoretische Grundlagen der Schweißtechnik Folie 120

118 WIG-Schweißen Schutzgase I S : 240A, Werkstoff: Argon-Lichtbogen Varigon-Lichtbogen (Linde Handelsname) Helium-Lichtbogen Argon in einer Menge von 5 bis 10 l/min ist ein brauchbares Schutzgas für alle schweißgeeigneten Metalle. Leicht- und Nichteisenmetalle werden aber besser mit einem Argon/Helium-Gemisch (bis 75% He) geschweißt. Beim WIG-Schweißen wird eine Hochfrequenzzündung angewendet, um den Lichtbogen zu zünden, da die Wolframelektrode nicht durch Berührung verschmutzt werden darf. Theoretische Grundlagen der Schweißtechnik Folie 121

119 WIG-Schweißen Elektroden Elektrodentyp Bestandteil in Gew. % Kurzzeiche n Farbkennzeichnung Bemerkung Rein-Wolfram 0 W grün Wechselstromschweißen Wolfram mit Thoriumoxid (ThO 2 ) 0,35..0,55 0,8..1,20 1,70..2,20 2,80..3,20 WT4 WT10 WT20 WT30 blau gelb rot violett Erleichterte Elektronenemission (besseres Zünden, längere Standzeit, höhere Strombelastung, RADIOAKTIV!!!) 3,80..4,20 WT40 orange Wolfram mit Zirkonoxid (ZrO 2 ) Wolfram mit Ceroxid (CeO 2 ) 0,70..0,90 WZ8 weiß Besser als W-Elektrode aber Zünden ist schlechter 1,80..2,20 WC20 grau Ähnlich wie WT-Elektroden aber umweltfreundlicher Wolfram mit Lanthanoxid (LaO 2 ) 0,8..1,20 1,30..1,70 1,70..2,20 WL10 WL15 WL20 Schwarz Gold Blau Niederstrombereich, Automatisierung (gute Zündeigenschaft) Theoretische Grundlagen der Schweißtechnik Folie 122

120 WIG-Schweißen Elektrodengeometrie Anschleifen von W-Elektrodenwerkstoffe / Elektrodenstandzeit Gleichstrom und negative Elektrodenpolung: - hohe Elektrodenstandzeiten - Stähle, Nickel und Kupfer Gleichstrom und positive Elektrodenpolung - oberflächliche Deckschichten entfernen - geringe Elektrodenstandzeiten - nur für Leichtmetalle bis 2mm (Praktisch nicht eingesetzt) Wechselstrom - günstiges Zusammenspiel einstellbar Theoretische Grundlagen der Schweißtechnik Folie 123

121 WIG-Schweißen Steuerung Theoretische Grundlagen der Schweißtechnik Folie 124

122 WIG-Schweißen Aufnahmen WIG Theoretische Grundlagen der Schweißtechnik Folie 125

123 Schutzgasschweißen - Einordnung Theoretische Grundlagen der Schweißtechnik Folie 126

124 Plasmaschweißen Lichtbogen brennt zwischen Wolframelektrode und wassergekühlter Kupferplasmadüse Das ionisierte Schutzgas (Plasma) wird gebündelt Hohe Leistungsdichte Das Plasma-Verbindungsschweißen wird in drei svarianten eingesetzt: Mikroplasma-Schweißen für dünne und dünnste Blechdicken - ab ca. 0,1mm bei Stromstärken ab ca. 0,3A. Durchdrücktechnik für Blechdicken von 1-3 mm. Stichlochplasma-Schweißen für größere Wanddicken bis ca. 8 mm in einer Lage - darüberhinaus mehrlagig. Beim Plasmaschweißen werden immer zwei Schutzgase benötigt: Plasmagas (Zentrumsgas), vorwiegend Argon teilweise mit Wasserstoff- oder Heliumzusätzen. Schutzgas (Außengas), das Zumisch-Komponenten zu Argon aufweisen kann, z.b.: Wasserstoff für CrNi-Stahl, Nickelwerkstoffe oder Helium für das Schweißen von Aluminium oder Al- Legierungen, Titan und Kupferwerkstoffen. Theoretische Grundlagen der Schweißtechnik Folie 127

125 Plasmaschweißen - Prinzip Theoretische Grundlagen der Schweißtechnik Folie 128

126 Plasmaschweißen - Schaltung von Plasmabrennern Plasmastrahlschweißen (nicht übertragenen Lichtbogen) Plasmalichtbogenschweißen (übertragenen Lichtbogen Vergleich zwischen Plasmaund WIG-Lichtbogen und dem Aufschmelzquerschnitt Theoretische Grundlagen der Schweißtechnik Folie 129

127 Plasmaschweißen Einflussmöglichkeit auf den freien Lichtbogenteil Mehrlochdüse Theoretische Grundlagen der Schweißtechnik Folie 130

128 Plasmaschweißen Prinzip Plasmaschweißanlage Mehrlochdüse Theoretische Grundlagen der Schweißtechnik Folie 131

129 Plasmaschweißen Plasmabrenner Für negative Elektrodenpolung werden Brenner bis über 400A angeboten. Nur wenige Brennertypen sind für die positive Elektrodenpolung verwendbar. Die beim Schweißen von Al häufig eingesetzte Pluspolung erfordert dicke Elektroden und besondere Kühlmaßnahmen zur Erhaltung der thermisch hoch belasteten Elektrode. Theoretische Grundlagen der Schweißtechnik Folie 132

130 Plasmaschweißen Prozessvarianten Plasmastrahlschweißen (WPS) Plasmalichtbogenschweißen (WPL) * Praktikum Plasmastrahl- Plasmalichtbogenschweißen (WPSL) Theoretische Grundlagen der Schweißtechnik Folie 133

131 Gegenüberstellung des Plasma und WIG-s Theoretische Grundlagen der Schweißtechnik Folie 134

132 Plasmaschweißen - Stichlochtechnik Schema des Stichlochschweißens bietet einbrandfreie Schweißungen für größere Blechdicken Vergleich der Schweißgeschwindigkeit Plasmaund WIG- beim Schweißen von CrNi- Stählen Theoretische Grundlagen der Schweißtechnik Folie 135

133 Plasmaschweißen - Mikroplasmaschweißen Schweißstrom von 0,05 bis 50A Werkstücke im Folienbereich sind fügbar (0,01 bis 1mm) Theoretische Grundlagen der Schweißtechnik Folie 136

134 Plasmaschweißen Prinzip Plasmaheißdrahtschweißen Theoretische Grundlagen der Schweißtechnik Folie 137

135 Schmelzschweißen Theoretische Grundlagen der Schweißtechnik Folie 138

136 Gießschmelzschweißen - Aluminothermisches Schweißen Reparaturschweißungen an großen Geschmiedeten oder gegossenen Bauteilen Bauteil muss vorgewärmt werden Thermitschweißen Theoretische Grundlagen der Schweißtechnik Folie 139

137 Elektroschlackeschweißen Theoretische Grundlagen der Schweißtechnik Folie 140

138 Gammastrahlung Röntgenstrahlung sichtbares Licht Mikrowellen Television Radio Einführung Laserstrahlschweißen Eigenschaften von Licht Licht im Spektrum der elektromagnetischen Wellen Kennzeichnung von Licht: Wellenlänge, Frequenz (. f = c) m UV Infrarot Wellenlänge µm Leistung P [W] Leistungsdichte E [W/m²] Strahlungsdauer [s] Wiederholrate [1/s] Impulsenergie [J] Excimer CVL Nd:YAG CO 2 -Laser Theoretische Grundlagen der Schweißtechnik Folie 141

139 Spontane Emission normaler Lichtquellen Laserstrahlschweißen 2 2 E 1 Anregung durch Elektronenstoß 1 spontane Emission Normale Lichtquelle (z.b. Gasentladungslampe): nach Elektronenstoßanregung erfolgt der Übergang in den Grundzustand statistisch (spontan) zu einer nicht vorhersagbaren Zeit in eine nicht festgelegte Richtung. Theoretische Grundlagen der Schweißtechnik Folie 142

140 Laserstrahlschweißen Induzierte Emission E Anregung durch Elektronenstoß Erzwungener Übergang in den Grundzustand durch Lichtwelle Verstärkung G Licht aktives Medium verstärktes Licht Verstärkungsfaktor: G = Ausgangsintensität / Eingangsintensität Anregungsenergie Normaler Verstärker der HF-Technik: Erzwungene (induzierte) Emission führt zur Verstärkung der einfallenden Lichtwelle unter Beibehaltung der Phase und Wellenlänge Theoretische Grundlagen der Schweißtechnik Folie 143

141 Laserstrahlschweißen Grundlegender Aufbau einer Laserstrahlquelle Verlust-Energie Resonator vollreflektierender Spiegel laseraktives Medium teilreflektierender Spiegel Laserstrahl Eigenschaften: Wellenlänge Leistung Strahlqualität Wirkungsgrad Betriebsweise Bauform Herstellungskosten Lebensdauer Anregungs-Energie Theoretische Grundlagen der Schweißtechnik Folie 144

142 Laserstrahlschweißen Laseraktive Medien und Pumpquellen für Materialbearbeitungs-Laser Festkörperlaser Kristalle oder Gläser, die mit optisch aktiven Ionen dotiert sind, Halbleiter optisch, mit Blitzlampen oder Dioden elektrisch Nd:YAG (1064 nm) Nd:YLF (1047 nm) Ti:Saphir ( nm) GaAlAs ( nm) Gaslaser Gas oder Dampf elektrisch, mit angeregter Gasentladung CO 2 -Laser Excimere: ArF (193 nm) KrF (248 nm) XeCl (308 nm) XeF (351 nm) Metalldampf: Kupfer ( nm) Gold (628 nm) Ionen: Ar + -Laser (514 nm) Theoretische Grundlagen der Schweißtechnik Folie 145

143 Laserstrahlschweißen Betriebsarten, Ausgangsleistungen, Wirkungsgrade und Anwendungen Lasermikromaterialbearbeitung Excimerlaser gepulst (30ns) bis 120W 1-10% Oberfl.bearbeitung, Schockhärten, Abtragen Kupferdampf- Laser (CVL) gepulst (10-70ns) 1-200W 1-3% Bohren, Schneiden, Oberflächenstrukturieren Diodengepumpter Nd:YAG/YLF gepulst (ps-ns) bis 100 W 1-3% Bohren, Schneiden, Oberflächenstrukturieren Ti:Saphir gepulst (fs-ns) bis 10 W Bohren, Oberflächenstrukturieren Lasermakromaterialbearbeitung CO 2 -Laser kontinuierlich (cw) 0,5-50 kw 5-10% Schneiden, Schweißen, Oberflächenbehandl. Nd:YAG-Laser cw 0,1-4 kw 1-3% Bohren, Schneiden, Schweißen, Oberfl.beh. gepulst 0,01-0,5 kw 1-3% Bohren, Schneiden, Schweißen, Oberfl.beh. Q-switch 0,01-0,5kW 1-3% Bohren, Schneiden, Schweißen, Oberfl.beh. Diodenlaser cw bis 4 kw 30-40% Schweißen, Oberflächenbehandlung Theoretische Grundlagen der Schweißtechnik Folie 146

144 Strahlparameterprodukt ( f w 0 ) [mm mrad] Einführung Laserstrahlschweißen Einteilung der Laserverfahren nach Laserleistung Drucktechnik Knst. Schw. Schw. Metallfolie Weichlöten Schneiden Sintern Nichtmetalle Hartlöten Transf.härten Erwärmen Beschichten Schweißen Bleche Die Schweißeignung eines Werkstoffes beim Laserschweißen ist abhängig von: -Chemische Zusammensetzung; -Metallurgische Eigenschaften; -Physikalische Eigenschaften 1 Beschriftung -Absorbtionsgrad Bohren Laserleistung [W] Theoretische Grundlagen der Schweißtechnik Folie 147

145 Leistungsdichte in W/cm² Einführung Laserstrahlschweißen Einteilung der Laserverfahren nach Einwirkdauer und Leistungsdichte Schockhärten Bohren Schneiden Tiefschweißen Einwirkzeit bzw. Pulsdauer in s 10 4 Umschmelzen Wärmeleitungsschweißen Umwandlungshärten Laser ist in den überwiegenden Fällen ein thermisches Werkzeug Fokussierbarkeit bestimmt Bearbeitung (Fleckgröße, Art) Mittlere Ausgangsleistung bestimmt Effizienz der Bearbeitung Zeitliche Energieeinbringung bestimmt thermische und mechanische Einflußbereiche Wellenlänge muß an Bearbeitungsaufgabe angepaßt sein Theoretische Grundlagen der Schweißtechnik Folie 148

146 Laserstrahlschweißen Einfluss der Leistungsdichte Theoretische Grundlagen der Schweißtechnik Folie 149

147 Laserstrahlschweißen Laserschweißen Theoretische Grundlagen der Schweißtechnik Folie 150

148 Schweißtiefe als Funktion der Intensität Laserstrahlschweißen Theoretische Grundlagen der Schweißtechnik Folie 151

149 Laserstrahlschweißen Laserschweißen - Vorgänge beim Tiefschweißen Theoretische Grundlagen der Schweißtechnik Folie 152

150 Laserauftragsschweißen Theoretische Grundlagen der Schweißtechnik Folie 153

151 Laserauftragsschweißen Theoretische Grundlagen der Schweißtechnik Folie 154

152 Laserauftragsschweißen Theoretische Grundlagen der Schweißtechnik Folie 155

153 Elektronenstrahlschweißen Physikalische Grundlagen Definition Unter einem Elektronenstrahl versteht man einen Strom von Elektronen, die sich mit annähernd gleicher Geschwindigkeit von einer Strahlquelle aus in eine Richtung bewegen. Strahlerzeugung Ein Wolframband wird im Stromdurchgang unter Vakuum so erhitzt, dass Elektronen austreten können. Durch das Anlegen eines elektrischen Feldes, bei dem der Glühfaden zur Katode wird, werden die Elektronen zur Anode hin beschleunigt. Nach Durchfallen der Spannung U erreicht das Elektron die kinetische Energie: E kin = e U= m v /2 v 2 U = elektrische Spannung, [U] = V v = Geschwindigkeit, [v] = m/s m v = Bewegungsmasse des Elektrons, [m] = kg Beim Auftreffen des Elektrons auf einen festen Körper wird die Bewegungsenergie in andere Energieformen umgesetzt. Theoretische Grundlagen der Schweißtechnik Folie 156

154 Elektronenstrahlschweißen Der auf das Werkstück (Bild a) auftreffende Elektronenstrahl erhitzt es an seiner Oberfläche auf Verdampfungstemperatur. Das spontan verdampfende Material drückt zusammen mit dem Druck des auftreffenden Strahles das den Schweißfleck umgebende flüssige Material zur Seite (Bild b). Es entsteht ein Dampfkanal, der sich bis zur Unterseite des Werkstückes erstreckt (Bild c). Wandert der Elektronenstrahl über die zu schweißende Naht, so öffnet sich vorn dieser Dampfkanal, während hinter ihm das flüssige Material wieder zusammenläuft und die Verschweißung der Stoßkanten (Bild d) bewirkt (Stichlocheffekt). a) b) c) d) BD=50 mm, X20Cr13 Theoretische Grundlagen der Schweißtechnik Folie 157

155 Elektronenstrahlschweißen - Strahlerzeugung Diodensystem Mit Katode und Anode ist der einfachste Aufbau eines Strahlerzeugers erreicht. Der Strahlstrom lässt sich aber nur durch Verändern der Beschleunigungsspannung bzw. der Kathodentemperatur steuern und regeln. Triodensystem In Schweißbearbeitungssystemen werden Triodensysteme mit Anode, Katode und Steuerkatode eingesetzt. Die Steuerelektrode erhält über eine separate Stromversorgung eine noch höhere negative Spannung als die Katode. Theoretische Grundlagen der Schweißtechnik Folie 158

156 Elektronenstrahlschweißen - Elektromagnetische Linse Das elektrische Feld im Triodensystem formt den Strahl zu einem ersten Fokus (Crossover) von dem aus die Elektronen als gleichpolige Ladungsträger sich gegenseitig abstoßend durch die Anode bewegen. Mit Hilfe einer Ringspule nutzt man dazu die Möglichkeit, die Bewegungsrichtung der negativ geladenen Elektronen durch Magnetfelder zu beeinflussen. Der Ring besteht aus einer großen Zahl von Drahtwicklungen. Die Ringwicklung wird von einem Gleichstrom durchflossen; es entsteht dabei ein Magnetfeld, das innen zur Strahlseite den Eisenmantel verläßt und auf den Elektronenstrahl, wie eine Sammellinse auf den Lichtstrahl, fokussierend einwirkt. Mit diesem System ist es möglich Leistungsdichten von etwa 10 7 W/cm 2 zu erzielen. Theoretische Grundlagen der Schweißtechnik Folie 159

157 Elektronenstrahlschweißen - Wirkung der Steuerkathode Die Steuerkatode ist bei ausreichender Spannung in der Lage die Elektronen völlig zur Katode zurückzudrängen, das heißt, den Strahlstrom zu sperren (Bild a). In dem Maße, wie nun die Steuerspannung verringert wird, nimmt die zur Elektronenemission beitragende Fläche zu, und der Strahlstrom wird größer (Bild b und c). Bei weiterem Verringern der Steuerspannung vergrößert sich die Emissionsfläche bis an die Ränder der Katodenstirnfläche, erfaßt auch die Katodenschenkel (Bild d) und es entsteht eine erhebliche Verzerrung des Strahles. Theoretische Grundlagen der Schweißtechnik Folie 160

158 Elektronenstrahlschweißen - Aufbau einer Elektronenstrahlanlage Theoretische Grundlagen der Schweißtechnik Folie 161

159 Elektronenstrahlschweißen - Beschleunigungsspannung und Fokusabstand U F a b c d mm Querschliffe von Schweißnähten mit unterschiedlicher Beschleunigungsspannung und Fokusabständen. Einfluß auf Schmelzzonentiefe s und Nahtbreite b bei konstanter Strahlleistung (5 kw). Theoretische Grundlagen der Schweißtechnik Folie 162

160 Elektronenstrahlschweißen - Einfluss Strahlleistung und Geschwindigkeit Anhaltswerte für erreichbare Schweißnahtdicken in Stahl in Abhängigkeit von der Strahlleistung und der Schweißgeschwindigkeit. Theoretische Grundlagen der Schweißtechnik Folie 163

161 Elektronenstrahlschweißen - Temperaturverteilung Quasistationäres Temperaturfeld beim Elektronenstrahlschweißen von St 42. Blechstärke 8 mm Schweißgeschwindigkeit 6,4 mm/s Gemessener Temperaturverlauf für verschiedene Abstände von der Nahtmitte beim Elektronenstrahlschweißen von St 52. Blechstärke 8 mm Schweißgeschwindigkeit 6,4 mm/s Theoretische Grundlagen der Schweißtechnik Folie 164

162 Elektronenstrahlschweißen - Elektronenstrahlschweißeignung Werkstoff Schweißeignung erprobte Nahttiefe bis mm Stähle R-St 37-2 A 20 St 60-2 B 10 C 15 A 10 C22.8 B 50 C45 B 5 St 52-3 A 20 Ck45 B CrV4 A 2 X 10 Cr 13 A 20 X22 CrNi 17 A 10 X 5 CrNi A 5 X2 CrNiMo B CrNi 8 A 10 StE420 A 20 Kupferwerkstoffe OF-Cu A 25 SE-Cu B 25 SF-Cu B 25 AlBz 5 A 18 SnBz 8 A 5 (Auszug DVS Merkblatt 3204) Theoretische Grundlagen der Schweißtechnik Folie 165

163 Elektronenstrahlschweißen - Anwendungsbeispiel Getriebewelle mit elektronenstrahlgeschweißtem Planetenträger. Unten: Makroschliff der Schweißnaht. Werkstoff Planetenträger RRSt 4 Werkstoff Getriebewelle 20MnCr4 Theoretische Grundlagen der Schweißtechnik Folie 166

164 Elektronenstrahlschweißen - Nonvacuum-Elektronenstrahlschweißen Der Elektronenstrahl wird generell in einem Hochvakuumraum des Generators erzeugt. Damit der beschleunigte und magnetisch fokussierte Elektronenstrahl in die Atmosphäre austreten kann, schließen sich an dieses Hochvakuum sog. Druckstufen an. Diese sind separat abgepumpte kleine Kammern mit feinem Trenndüsen für den Strahldurchgang. Durch Streuung der Elektronen an der Atmosphäre wird der Strahl mit zunehmenden Weg verbreitet. Um möglichst schmale Nähte zu erzielen, wird deshalb meist mit Arbeitsabstände von 6 bis 30 mm gearbeitet. Die Leistungsdichte kann bei 20 kw Strahlleistung noch weitgehend über W/cm 2 liegen. Theoretische Grundlagen der Schweißtechnik Folie 167

165 Pressschweißen Theoretische Grundlagen der Schweißtechnik Folie 168

166 Widerstandsschweißen Prinzip und svarianten a) Punktschweißen b) Doppelpunktschweißen c) Rollennahtschweißen d) Buckelschweißen Theoretische Grundlagen der Schweißtechnik Folie 169

167 Widerstandspunktschweißen Theoretische Grundlagen der Schweißtechnik Folie 170

168 Widerstandspunktschweißen Scherzugfestigkeit als Funktion des Schweißstroms Theoretische Grundlagen der Schweißtechnik Folie 171

169 Widerstandspunktschweißen - Einflussgrößen Theoretische Grundlagen der Schweißtechnik Folie 172

170 Widerstandspunktschweißen Widerstandspunktschweißen Theoretische Grundlagen der Schweißtechnik Folie 173

171 Widerstandsrollnahtschweißen Die Werkstücke werden an den Stoßflächen erwärmt und unter Anwendung von Kraft geschweißt. Strom und Kraft werden von beiden Werkstückseiten (zweiseitig) durch ein Rollenelektrodenpaar oder eine Rollenelektrode und einem Dorn übertragen. Besonderheit des s: Das Rollnahtschweißen ist vom Punktschweißen abgeleitet. Das Rollenpaar berührt ebenso wie die Punktelektroden das Werkstück mit einer kleinen Fläche. Die Rollen drehen sich entsprechend der Weiterbewegung des Werkstückes. Die Elektrodenabnutzung ist gegenüber dem RP-Schweißen wesentlich geringer. Da das Auf- und Abbewegen der Elektroden entfällt, sind höhere Schweißgeschwindigkeiten möglich. Anwendungen: Herstellung von Massenbedarfsgütern wie: Kraftstofftanks, Radiatoren, Konserven, Getränkedosen, Fässern Schalldämpfer, Töpfe, längsnahtgeschweißte Rohre, Behälterfertigung Theoretische Grundlagen der Schweißtechnik Folie 174

172 Widerstandsrollnahtschweißen - Schweißstromart und Stromkontaktprogramme Dauerwechselstrom Stromkontaktprogramme Dichtnaht Unterbrochene Naht Theoretische Grundlagen der Schweißtechnik Folie 175

173 Widerstandsbuckelschweißen Besonderheit des s: Beim Buckelschweißen wird der Strompfad nicht durch die Elektrodengeometrie, sondern durch die Form des Fügeteils bestimmt. Der Schweißstrom und die Erwärmung werden auf die Buckel konzentriert. Bei einem Elektrodenniedergang können mehrere Buckel gleichzeitig verschweißt werden. Die Buckel werden in eines der zu verschweißenden Teile durch einen Ziehoder Pressvorgang eingeprägt. Während des Schweißens werden die Buckel nach der Plastifizierung des Werkstoffes weitgehend zurückverformt. Die Teile haben so nach dem Schweißen ein gutes Aussehen. In der Regel werden mehrere Buckel gleichzeitig geschweißt, so dass sich der Schweißstrom mit der Anzahl der zu schweißenden Buckel multipliziert. Es können mehr als 20 Buckel gleichzeitig verschweißt werden. Gesamtschweißströme größer als 150 ka sind deshalb keine Seltenheit. Einsatzmöglichkeiten Das Buckelschweißen ist für die Fertigung von zahlreichen Massenartikeln das wirtschaftlichste Fertigungsverfahren. Schema Buckschweißen Theoretische Grundlagen der Schweißtechnik Folie 176

174 Widerstandsbuckelschweißen - Anwendungen Gaszählergehäuse (Quelle Dalex) Gehäuse für Hybridschaltung mit umlaufenden Schweißbuckel Theoretische Grundlagen der Schweißtechnik Folie 177

175 Widerstandsbuckelschweißen - svarianten Zweiseitiges Buckelschweißen (RBZ) Einseitiges Buckelschweißen (RBE) Theoretische Grundlagen der Schweißtechnik Folie 178

176 Pressschweißen Theoretische Grundlagen der Schweißtechnik Folie 179

177 Abbrennstumpfschweißen Schema des Abbrennstumpfschweißen Besonderheiten des s Der Abbrennprozess ist gekennzeichnet durch eine große Spritzerbildung und große Längenzugabe vor dem Schweißen. Eine besondere Vorbereitung der Werkstücke ist nicht erforderlich. Die Schweißverbindung enthält bei einer sorgfältig ausgeführten Schweißung keine Verunreinigungen. Die Schweißverbindung weist hohe Festigkeitswerte auch bei dynamischer Beanspruchung auf. Der Stauchgrat wird nach dem Schweißen beseitigt. Er ist relativ leicht entfernbar. Stauchgrad Theoretische Grundlagen der Schweißtechnik Folie 180

178 Abbrennstumpfschweißen Arbeitsschritte Theoretische Grundlagen der Schweißtechnik Folie 181

179 Abbrennstumpfschweißen (RA-Schweißen) Abbrennstumpfschweißen Gestaltungsbeispiele Fügestelle Ketten, Drähte Gelenkkugel Zugstange, Felgen Ventile. Theoretische Grundlagen der Schweißtechnik Folie 182

180 Abbrennstumpfschweißen Abbrennstumpfschweißen Theoretische Grundlagen der Schweißtechnik Folie 183

181 Pressstumpfschweißen sprinzip/ -beschreibung Die zu verbindenden Teile werden in wassergekühlten Kupferbacken eingespannt, zusammengefahren und über Stromdurchfluss an der Kontaktstelle auf Schweißtemperatur gebracht (bei Stahl: C). Anschließend wird der Druck auf Stauchdruck erhöht und der Strom abgeschaltet. Die Erwärmung erfolgt durch den Übergangswiderstand zwischen den beiden zu verbindenden Werkstücken. Besonderheiten des s Die Schweißverbindungen sind gekennzeichnet durch eine Wulst an der Verbindungsstelle. Das Abarbeiten der Schweißwulste ist schwieriger als beim Abbrennstumpfschweißen. Die Schweißnaht kann auch bei einer sorgfaltig ausgeführten Schweißung noch Verunreinigungen enthalten. Die Festigkeit der Schweißverbindung beträgt % der Grundwerkstofffestigkeit bei statischer Beanspruchung, bei dynamischer Beanspruchung ist sie jedoch geringer. Schema des Pressstumpfschweißen Theoretische Grundlagen der Schweißtechnik Folie 184

182 Pressschweißen Theoretische Grundlagen der Schweißtechnik Folie 185

183 Induktionsschweißen Schweißen mit stabförmigen Induktor (RIS) Schweißen mit umschließenden Induktor (RIU) Theoretische Grundlagen der Schweißtechnik Folie 186

184 Induktionsschweißen Theoretische Grundlagen der Schweißtechnik Folie 187

185 Induktionsschweißen Besonderheiten des s Kein Verschleiß des Energieträgers, da berührungsloses Werkzeug. Vorlaufendes Entzundern des Rohres ist nicht notwendig. Entstehung einer schmalen schmelzflüssigen Zone durch die sehr geringen Erwärmungszeiten, dadurch geringe Wärmebeeinflussung des Grundwerkstoffes. Geringe Faserumlenkung an der Schweißfuge, da nur geringe Drücke an den Druckrollen erforderlich sind. Die beim Zusammendrücken des Schlitzrohres entstehende Gratbildung ist sehr klein. Es werden sehr hohe Schweißgeschwindigkeiten erreicht. Die hohe Schweißgeschwindigkeit wirkt einer Oxidation der erhitzten Rohrzonen entgegen. Einsatzmöglichkeiten Hauptanwendungsgebiet ist die Herstellung dünnwandiger, längsnaht geschweißter Rohre aus in Rollsätzen zu Schlitzrohren geformten Stahl- und Aluminiumbändern sowie das Stumpfschweißen von Rohren und Profilen beim Schweißen mit umschließendem Induktor. Abmessungen: Rohrschweißen mit stabförmigen Induktor: Rohrdurchmesser: D = mm, Rohrwanddicke: t = 1, (13) mm Rohrschweißen mit umschließendem Induktor: Rohrdurchmesser: D = mm Rohrwanddicke: t =0, mm Theoretische Grundlagen der Schweißtechnik Folie 188

186 Pressschweißen Theoretische Grundlagen der Schweißtechnik Folie 189

187 Schweißen durch Bewegungsenergie - Grundlagen Kaltpressschweißen US- Schweißen Reibschweißen Statischer oder dynamischer Druck, der auf die zu verbindenden Teile einwirkt (Kaltpressschweißen, Sprengschweißen). Reibung, die durch eine oszillierende translatorische Relativbewegung der zu verbindenden Teile unter Einwirkung eines statischen Drucks entsteht (Ultraschallschweißen). Reibung, die vorwiegend durch eine rotierende oder oszillierende Relativbewegung der zu verbindenden Teile unter Einwirkung eines statischen Drucks entsteht (Reibschweißen). Während das Kaltpressschweißen durch überwiegend statische Merkmale gekennzeichnet ist, sind das Ultraschall- und Reibschweißen aufgrund ihrer Reibgeschwindigkeiten als dynamisches Schweißverfahren einzuordnen. Vergleich ausgewählter Schweißverfahren Theoretische Grundlagen der Schweißtechnik Folie 190

188 Reibschweißen rotatorische translatorische Bewegungsabläufe bzw. Kombinationen a) Rotationsbewegung eines Bauelelmentes, ein Bauelement fest eingespannt b) gegenläufige Rotationsbewegung c) rotierende Zwischenstücke d) oszillierende Reibbewegung e) exzentrische Reibbewegung f) Radialreibschweißen Theoretische Grundlagen der Schweißtechnik Folie 191

189 Reibschweißen Grundaufbau einer Reibschweißmaschine Kraft-Drehzahl-Zeit-Verläufe für verschiedene 1 Motor 2 Kupplung/Bremse beim Reibschweißen mit kontinuierlichem Antrieb, Schwungmasse beim Schwungradreibschweißen 3 Spindelkopf 4 Spanneinrichtung für rotierendes Werkstück 5a Werkstück rotierend; 5b Werkstück feststehend 6 Spanneinrichtung für feststehendes Werkstück 7 Schlitten 8 Hydraulikzylinder zur Erzeugung der Axialkraft a) Reibschweißen mit kontiniurlichem Antrieb b) Reibschweißen mit Schwungradantrieb c) Kombiniertes Reibschweißen Theoretische Grundlagen der Schweißtechnik Folie 192

190 Reibschweißen Anwendungsbeispiele Theoretische Grundlagen der Schweißtechnik Folie 193

191 Reibschweißen Konstruktive Gestaltung der Fügeteile Die konstruktive Gestaltung der reibzuschweißenden Bauteile hat aufgrund der spezifischen Vorgänge an der Fügestelle, der Realisierung eines bestimmten Druck-Zeit-Programms und der damit verbundenen speziellen Konstruktion der Reibschweißmaschine eine große Bedeutung. Mit der Gewährleistung einer reibschweißgerechten Konstruktion werden vorrangig solche die Verbindungsqualität maßgeblich beeinflussenden Faktoren, ausreichend sichere Spannmöglichkeiten ausreichende Steifigkeit an der Fügestelle günstige Reibbedingungen gesichert. Eigenschaften von Reibschweißverbindungen: schmale Wärmeeinflusszone sehr gute Festigkeitseigenschaften aufgrund rekristallisiertem und damit feinkörnigen Gefüge statische Festigkeit entspricht der des Grundwerkstoffs sehr gutes Schwingfestigkeitsverhalten teilweise besser als das des Grundwerkstoffs Theoretische Grundlagen der Schweißtechnik Folie 194

192 Rührreibschweißen Theoretische Grundlagen der Schweißtechnik Folie 195

193 Reibschweißen Reibschweißen Linearreibschweißen Rühr - Reibschweißen Theoretische Grundlagen der Schweißtechnik Folie 196

194 Kaltpressschweißen a) Überlappschweißen b) Stumpfschweißen Mit dem Kaltpressschweißen können gleichartige oder ungleichartige Metalle bei Raumtemperatur gefügt werden. Eine durch hohe Anpresskräfte hervorgerufene plastische Verformung der zu fugenden Teile führt zu deren Annäherung bis in atomare Bereiche, so dass atomare Bindekräfte wirksam werden. Voraussetzung sind eine sorgfaltige Reinigung der Fügeflächen und ein möglichst großer Härteunterschied zwischen Grundmetall und Oxid, damit ein Aufreißen der Oxidschicht ermöglicht wird. Anwendungsbereiche Metall- und Metallkombinationen mit guten Kaltverformungseigenschaften Vorzugsweiser Einsatz in der Elektrotechnik z.b. Bimetallkontakte, Fügen von Cu-Al-Drähten auch sehr kleiner Dmr. Theoretische Grundlagen der Schweißtechnik Folie 197

195 Kaltpressschweißen Kaltpressschweißen Bauteilgestaltung beim Kaltpressschweißen a) unterschiedlich freie Stauchlänge b) Ringnut an der freien Stauchlänge des härteren Werkstoffs Theoretische Grundlagen der Schweißtechnik Folie 198

196 Pressschweißen Theoretische Grundlagen der Schweißtechnik Folie 199

197 Diffusionsschweißen Das Diffusionsschweißen ist ein Schweißen im festen Zustand. Die Verbindung wird mit geringen Anpressdrücken und Verformungen bei Temperaturen oberhalb der Rekristallisationstemperatur durch Diffusion erzeugt. Die Schweißzeit beträgt einige Minuten bis mehrere Stunden. Die Belastbarkeit einer Diffusionsschweißverbindung an metallischen Werkstoffen wird einer durch Platzwechsel von Atomen beider Verbindungspartner über die frühere Bindeebene hinweg entstandenen neuen Struktur zugeschrieben. Die für das Diffusionsschweißen erforderliche Gesamtzeit beinhaltet die Einbauzeit der zu verbindenden Teile, die Zeit für die Erzeugung der für das Schweißen benötigten Atmosphäre, die Aufheizzeit, die Temperaturhaltezeit, die Abkühlzeit und die für den Ausbau der Verbindung erforderliche Zeit. Anwendung: Für das Schweißen gleicher und gleichartiger metallischen Werkstoffen Einsatz für Sonderfälle z.b. Titan, Metall-Keramik- Verbindungen.. Theoretische Grundlagen der Schweißtechnik Folie 200

198 Schweißfehler Theoretische Grundlagen der Schweißtechnik Folie 201

199 Schweißfehler Theoretische Grundlagen der Schweißtechnik Folie 202

200 Schweißfehler Theoretische Grundlagen der Schweißtechnik Folie 203

Allgemeines und Zeitlicher Ablauf des Schweißkurses

Allgemeines und Zeitlicher Ablauf des Schweißkurses Sommersemester 2015 Allgemeines und Zeitlicher Ablauf des Schweißkurses Zeit Montag Dienstag Mittwoch Donnerstag Freitag 07. Sept. 08. Sept. 09. Sept. 10. Sept. 11. Sept. 9:00 12:00 Theoretische Grundlagen

Mehr

Welches Mischverhältnis wird beim Schweissen am Brenner eingestellt? Begründe.

Welches Mischverhältnis wird beim Schweissen am Brenner eingestellt? Begründe. Wie nennt man das Gasschmelzschweissen auch noch? Welches Mischverhältnis wird beim Schweissen am Brenner eingestellt? Begründe. Wie wird Acetylen in der Flasche gespeichert, damit es nicht bei 2bar explodiert?

Mehr

MIG-Aluminiumschweißen. Gasfluss. MIG = Metall-Inertgas-Schweißen

MIG-Aluminiumschweißen. Gasfluss. MIG = Metall-Inertgas-Schweißen MIG-Aluminiumschweißen MIG = Metall-Inertgas-Schweißen Inertgase für das Aluminiumschweißen sind Argon und Helium Gasgemische aus Argon und Helium werden ebenfalls verwendet Vorteile: Hohe Produktivität

Mehr

Inhalt. Grundlagen des Plasmalichtbogen-Schwei. Schweißenen. Verfahrensvarianten Gase zum Plasmalichtbogen-Schwei. Brenner und Brennerausrüstung

Inhalt. Grundlagen des Plasmalichtbogen-Schwei. Schweißenen. Verfahrensvarianten Gase zum Plasmalichtbogen-Schwei. Brenner und Brennerausrüstung Plasmaschweißen en in der Theorie und Praxis Dipl.Wirtsch.Ing.. SFI/EWE Boyan Ivanov 2011 EWM EWM HIGHTEC HIGHTEC WELDING GmbH Plasmaschweißen in der Theorie und Praxis W.Hahmann, B.Ivanov 1 Inhalt Grundlagen

Mehr

Besonderheiten beim Schweißen von Mischverbindungen

Besonderheiten beim Schweißen von Mischverbindungen Besonderheiten beim Schweißen von Mischverbindungen G. Weilnhammer SLV München Niederlassung der GSI mbh Schweißtechnische Lehr- und Versuchsanstalt München - Niederlassung der GSI mbh 1 - unlegiert mit

Mehr

Hinweise für den Anwender

Hinweise für den Anwender Schweißen von korrosions- und hitzebeständigen Stählen Nichtrostende und hitzebeständige Stähle können mit einigen Einschränkungen mit den Schmelz- und Preßschweißverfahren gefügt werden, die für un- und

Mehr

Schutzgas-Schweißen Ausgewählte Übersichtstabellen

Schutzgas-Schweißen Ausgewählte Übersichtstabellen Schutzgas-Schweißen Ausgewählte Übersichtstabellen Schutzgas-Schweißen Ausgewählte Übersichtstabellen Auf einen Blick Diese kurzgefasste usammenstellung von Übersichtstabellen dient der Orientierung beim

Mehr

Schweißtechnische Verarbeitung der Gusseisenwerkstoffe

Schweißtechnische Verarbeitung der Gusseisenwerkstoffe Günter F. Metting, Duisburg Schweißtechnische Verarbeitung der Gusseisenwerkstoffe Gusseisenwerkstoffe gelten bis heute bei vielen Ingenieuren als nicht schweißgeeignet. Der Grund hierfür ist in der unzureichenden

Mehr

Schweißen von WELDOX und HARDOX

Schweißen von WELDOX und HARDOX Schweißen Schweißen von WELDOX und HARDOX Konstruktionsstahl WELDOX und Verschleißstahl HARDOX zeichnen sich durch hohe Beanspruchbarkeit und hervorragende Schweißbarkeit aus. Diese Werkstoffe lassen

Mehr

Notizen Notes 16.03.2005

Notizen Notes 16.03.2005 Notizen Notes -1- Prinzip MIG / MAG - Schweißen Schutzgasdüse Stromdüse Elektrode/Draht Schutzgasglocke Lichtbogen Aufgeschmolzene Zone Grundwerkstoff Grundwerkstoff wird mit Zusatzwerkstoff verschmolzen

Mehr

http://www.reiz-online.de/ Reiz GmbH; EWM GmbH

http://www.reiz-online.de/ Reiz GmbH; EWM GmbH http://www.reiz-online.de/ Reiz GmbH; EWM GmbH Seminarinhalt: Theorie: Die verschiedenen Werkstoffe und Ihr Verhalten beim Schweißen WIG-und MIG/MAG Schweißen Neue Verfahrensvarianten und deren Vorteile

Mehr

A. Weiß. Schweißanweisung DIN EN ISO 15609. Anforderungen und Qualifizierung von Schweißverfahren für metallische Werkstoffe. weiss@slv-muenchen.

A. Weiß. Schweißanweisung DIN EN ISO 15609. Anforderungen und Qualifizierung von Schweißverfahren für metallische Werkstoffe. weiss@slv-muenchen. GSI Gesellschaft für Schweißtechnik International mbh Niederlassung SLV München DIN EN ISO 15609 Anforderungen und Qualifizierung von Schweißverfahren für metallische Werkstoffe Schweißanweisung A. Weiß

Mehr

30% SCHNELLER SCHWEISSEN

30% SCHNELLER SCHWEISSEN WM.0375.00 10.2006 Änderungen vorbehalten 30% SCHNELLER SCHWEISSEN Großes Einsparpotential durch schnelleres Schweißen und weniger Material- und Lohnkosten Ausgezeichnete Schweißnahtqualität durch optimale

Mehr

MIG/MAG Schweisskurs

MIG/MAG Schweisskurs MIG/MAG Schweisskurs MIG = Metall-Innert Gas MAG = Metall-Aktiv-Gas 2 3 Drahtfördersystem Tragbar Fahrbar Fahrbar Dezentraler Drahtvorschub Planeten Push-Pull 5-20m 4 Schweissstromquellen Arten Schweissgleichrichter

Mehr

AWS ( American Welding Society ) unterscheidet Aluminium-Grundmaterialien in verschiedenen Gruppen entsprechend den verwendeten Legierungen

AWS ( American Welding Society ) unterscheidet Aluminium-Grundmaterialien in verschiedenen Gruppen entsprechend den verwendeten Legierungen Aluminium - Das weltweit drittgängigste chemische Element - Das gebräuchlichste metallische Material - 8% des Gewichts von Kristall - Gebräuchlichstes Rohmaterial ist Bauxit ( Aluminium Hydroxid ), dessen

Mehr

GEC. Plasma-MSG-Schweißen GERSTER ENGINEERING CONSULTING

GEC. Plasma-MSG-Schweißen GERSTER ENGINEERING CONSULTING Plasma-MSG-Schweißen Neben dem Plasma-Schweißen, das vorwiegend im Dünnblechbereich eingesetzt wird kommt immer mehr das Plasma-MSG-Verfahren zur Anwendung. Durch dieses Hybridverfahren können größere

Mehr

Tageslehrgang - Grundstufe in Anlehnung an DVS -IIW 1111 Erstausbildung Lehrgangsdauer 80 Stunden

Tageslehrgang - Grundstufe in Anlehnung an DVS -IIW 1111 Erstausbildung Lehrgangsdauer 80 Stunden GASSCHWEISSEN G Das Gasschweißen wird hauptsächlich zum Schweißen von Blechen und Rohren aus unlegierten Stählen eingesetzt. Die verschweißenden Blechdicken bzw. Rohrwanddicken sind meist kleiner als 5

Mehr

Spezielle Charakteristiken von Aluminium

Spezielle Charakteristiken von Aluminium Aluminium Das weltweit drittgängigste chemische Element Das gebräuchlichste metallische Material 8% des Gewichts von Kristall Gebräuchlichstes Rohmaterial ist Bauxit ( Aluminium Hydroxid ), dessen Konzentration

Mehr

ALUNOX ist Ihr Programm: Aluminium.

ALUNOX ist Ihr Programm: Aluminium. ALUNOX ist Ihr Programm: Das ALUNOX Programm zu Schweißzusätze Aluminium AX-EAlSi5 AX-EAlSi12 Massivdrähte/ WIG-Stäbe AX-1040 AX-1450 AX-4043 AX-4047 AX-5087 AX-5183 AX-5356 AX-5754 AX-4043 Spritzdraht

Mehr

DATEN UND TECHNIK. Wolfram Industrie TUNGSTEN TECHNOLOGY Germany

DATEN UND TECHNIK. Wolfram Industrie TUNGSTEN TECHNOLOGY Germany DATEN UND TECHNIK Wolfram Industrie TUNGSTEN TECHNOLOGY Germany INHALT Physikalische Eigenschaften von Wolfram Seite 4 Physikalische Eigenschaften von Molybdän Seite 4 Chemische Eigenschaften von Wolfram

Mehr

Schweißen von Stahl und Aluminium. Grundlagen, Herausforderungen, Lösungen

Schweißen von Stahl und Aluminium. Grundlagen, Herausforderungen, Lösungen Schweißen von Stahl und Aluminium Grundlagen, Herausforderungen, Lösungen Scansonic MI GmbH Applikationszentrum Rudolf-Baschant-Str. 2 13086 Berlin Germany Agenda Grundlagen zum Schweißen Definition Vergleich

Mehr

Anforderung und Qualifizierung von Schweißverfahren für metallische Werkstoffe. Mit Sch(w)eißanweisung wäre das nicht passiert!! Oder???

Anforderung und Qualifizierung von Schweißverfahren für metallische Werkstoffe. Mit Sch(w)eißanweisung wäre das nicht passiert!! Oder??? Mit Sch(w)eißanweisung wäre das nicht passiert!! Oder??? Links Handbücher http://oerlikonacademy.com/deutsch/sonder/db/kennblatt.html http://www.oerlikon-online.de/handbuch/index.html http://www.boehlerwelding.com/german/files/weldingguide_ger.pdf

Mehr

Schweisstechnische Ausbildungen > Kursprogramm 2014/15

Schweisstechnische Ausbildungen > Kursprogramm 2014/15 Schweisstechnische Ausbildungen > Kursprogramm 2014/15 Anerkannte Ausbildungsstätte des > Inhaltsverzeichnis Seite Die verschiedenen Schweissverfahren 3 Information zur Schweisserausbildung 4 Wolframschutzgasschweissen

Mehr

Bild 1. Erwärmung einer Stahlplatte aus Feinkornstahl S690 mit einem Erdgas-Druckluft-Brenner bei einem Erdgasdruck von 0,1 bar

Bild 1. Erwärmung einer Stahlplatte aus Feinkornstahl S690 mit einem Erdgas-Druckluft-Brenner bei einem Erdgasdruck von 0,1 bar Das Vorwärmen vor dem Schweißen gewinnt durch den vermehrten Einsatz hochfester Stähle, gerade im Offshorebereich, immer mehr an Bedeutung. Die Verwendung hochwertiger Stähle macht modernste Produktionsverfahren

Mehr

Aluminium AC-WIG Schweißen

Aluminium AC-WIG Schweißen Aluminium AC-WIG Schweißen Prozessprinzip: T = Tungsten I = Inert G = Gas ( Allgemeine Bezeichnung) W = Wolfram I = Inert G = Gas ( Deutschland) G = Gas T = Tungsten A = Arc W = Welding ( USA ) AC = Wechselstrom,

Mehr

EWM-SCHWEISSLEXIKON EWM HIGHTEC WELDING

EWM-SCHWEISSLEXIKON EWM HIGHTEC WELDING EWM-SCHWEISSLEXIKON E-HAND WIG MIG/MAG PLASMA EINFACH MEHR WENN'S UMS SCHWEISSEN GEHT: WIR HABEN FÜR JEDE AUFGABE DIE RICHTIGE LÖSUNG! Einfach mehr Technologie! Wir sind europaweit einer der führenden

Mehr

Wifi Allround -Schweiß-Kurs für Anfänger MIG/MAG u. WIG Schweißen

Wifi Allround -Schweiß-Kurs für Anfänger MIG/MAG u. WIG Schweißen Wifi Allround -Schweiß-Kurs für Anfänger MIG/MAG u. WIG Schweißen Seite 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Thema Inhaltsverzeichnis Grundlagen MIG / MAG Arbeitssicherheit Unfallschutz MIG/MAG

Mehr

30% SCHNELLER SCHWEISSEN

30% SCHNELLER SCHWEISSEN WM.0375.00 10.2006 Änderungen vorbehalten 30% SCHNELLER SCHWEISSEN!!! Großes Einsparpotential durch schnelleres Schweißen und weniger Material- und Lohnkosten Ausgezeichnete Schweißnahtqualität durch optimale

Mehr

Glossar. Abstandsregelung. Bart CNC. Contour Cut. Contour Cut Speed CUTBUS A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Glossar. Abstandsregelung. Bart CNC. Contour Cut. Contour Cut Speed CUTBUS A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Glossar A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Abstandsregelung Abstandsregelungen nehmen einen großen Einfluss auf die Qualität von Plasmaschnitten. Sie sorgen für den richtigen und konstant

Mehr

Handbuch der Schweißtechnik

Handbuch der Schweißtechnik J. Ruge Handbuch der Schweißtechnik Dritte, neubearbeitete und erweiterte Auflage Band I: Werkstoffe Mit 136 Abbildungen und 146 Tabellen Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo HongKong

Mehr

MIG-Schweißen von Aluminiumwerkstoffen leicht gemacht

MIG-Schweißen von Aluminiumwerkstoffen leicht gemacht MIG-Schweißen von Aluminiumwerkstoffen leicht gemacht Norbert Knopp / Heinz Lorenz, Mündersbach und Robert Killing, Solingen Einleitung Höher, weiter, schneller, das ist heute nicht nur die Maxime im Hochleistungssport,

Mehr

Hinweise zum Schweißen von Titan und Titanlegierungen

Hinweise zum Schweißen von Titan und Titanlegierungen Hinweise zum Schweißen von Titan und Titanlegierungen Aufgrund der hohen Affinität von Titan zu den atmosphärischen Gasen Sauerstoff, Stickstoff und Wasserstoff scheiden sämtliche Schweißverfahren aus,

Mehr

Sichtprüfung von Schweißverbindungen und deren fachgerechte Bewertung

Sichtprüfung von Schweißverbindungen und deren fachgerechte Bewertung 2. Fachseminar Optische Prüf- und Messverfahren - Vortrag 09 Sichtprüfung von Schweißverbindungen und deren fachgerechte Bewertung Jens MEISSNER SLV Duisburg, Niederlassung der GSI mbh, Bismarckstraße

Mehr

Für jede Anwendung der geeignete Schweisszusatz

Für jede Anwendung der geeignete Schweisszusatz Für jede Anwendung der geeignete Schweisszusatz 1. Stabelektroden 1. Stabelektroden 2. Drahtelektroden für das Schutzgasschweissen 3. WIG/TIG-Schweisstäbe 4. Fülldrahtelektroden 1.1 Stabelektroden für

Mehr

Einfluss von CO 2 und H 2 beim Schweißen CrNi-Stähle. Wasserstoffhaltige Schutzgase zum auch für Duplex!?

Einfluss von CO 2 und H 2 beim Schweißen CrNi-Stähle. Wasserstoffhaltige Schutzgase zum auch für Duplex!? Einfluss von CO 2 und H 2 beim Schweißen CrNi-Stähle Wasserstoffhaltige Schutzgase zum auch für Duplex!? 2. Ilmenauer schweißtechnischen Symposium, 13.10. 2015 l Cerkez Kaya ALTEC NCE Inhalte Hochlegierter

Mehr

GMB 11.11.02. >5g/cm 3 <5g/cm 3. Gusseisen mit Lamellengraphit Gusseisen mit Kugelgraphit (Sphäroguss) (Magensiumbeisatz)

GMB 11.11.02. >5g/cm 3 <5g/cm 3. Gusseisen mit Lamellengraphit Gusseisen mit Kugelgraphit (Sphäroguss) (Magensiumbeisatz) GMB 11.11.02 1. Wie werden Metallische Werkstoffe eingeteilt? METALLE EISENWERKSTOFFE NICHTEISENWERKSTOFFE STÄHLE EISENGUSS- WERKSTOFFE SCHWERMETALLE LEICHTMETALLE >5g/cm 3

Mehr

Schweißen im bauaufsichtlichen Bereich

Schweißen im bauaufsichtlichen Bereich Ahrens. Zwätz Schweißen im bauaufsichtlichen Bereich Erläuterungen mit Berechnungsbeispielen 3., überarbeitete und erweiterte Auflage Inhaltsverzeichnis Vorwort zur 3. Auflage 1 1.1 1.2 1.3 1.4 1.5 2 2.1

Mehr

Entwicklung neuer und Optimierung vorhandener MSG-Fülldrähte für das Schweißen hochfester Feinkornstähle

Entwicklung neuer und Optimierung vorhandener MSG-Fülldrähte für das Schweißen hochfester Feinkornstähle Abschlußbericht zum Projekt S 516: Entwicklung neuer und Optimierung vorhandener MSG-Fülldrähte für das Schweißen hochfester Feinkornstähle Laufzeit: vom 01.11.2001 bis 31.12.2002 Gefördert durch: Stiftung

Mehr

Reinaluminium DIN 1712 Aluminiumknetlegierungen DIN 1725

Reinaluminium DIN 1712 Aluminiumknetlegierungen DIN 1725 Aluminium-Lieferprogramm Reinaluminium DIN 1712 Aluminiumknetlegierungen DIN 1725 Kurzzeichen Werkstoffnummern Zusammensetzung in Gew.-% Hinweise aud Eigenschaften und Verwendung Al 99,5 3.0255 Al 99,5

Mehr

18 Schweißen an duktilen Gussrohren

18 Schweißen an duktilen Gussrohren E-Book Guss-Rohrsysteme 18. Kapitel: Schweißen an duktilen Gussrohren 18/1 18 Schweißen an duktilen Gussrohren 18.1 Allgemeines 18.2 Schweißverfahren 18.3 Anwendungsbereiche E-Book Guss-Rohrsysteme 18.

Mehr

Schweißen von Aluminiumwerkstoffen

Schweißen von Aluminiumwerkstoffen Schweißen von Aluminiumwerkstoffen Roland Latteier Wissenswerte Vergleich mit Stahl Vortragsgliederung Betriebliche Anforderungen Werkstoffbezeichnungen R. Latteier 2 Vortragsgliederung Erfahrung bei der

Mehr

Verschleissfeste Bleche XAR Verarbeitungsempfehlungen

Verschleissfeste Bleche XAR Verarbeitungsempfehlungen Verschleissfeste Bleche XAR Verarbeitungsempfehlungen Verschleissfest, hart und widerstandsfähig Verschleiss kostet Geld, manchmal viel Geld. In vielen Konstruktionen tritt eine schleifende oder stossende

Mehr

Plasmaschneiden. Diese Betriebsanweisung gilt für alle Bereiche der Fachhochschule in denen o.g. Tätigkeiten ausgeführt werden. Begriffsbestimmungen

Plasmaschneiden. Diese Betriebsanweisung gilt für alle Bereiche der Fachhochschule in denen o.g. Tätigkeiten ausgeführt werden. Begriffsbestimmungen Tätigkeitsbezogene Betriebsanweisung nach der Unfallverhütungsvorschrift BGV-D 1, 26 Abs. 1 und 30 Abs. 4 und der GUV-Regel GUV-R 500, Kapitel 2.26, Abschnitt 3.1 Plasmaschneiden Diese Betriebsanweisung

Mehr

Merkblatt 823 Schweißen von Edelstahl Rostfrei

Merkblatt 823 Schweißen von Edelstahl Rostfrei Merkblatt 823 Schweißen von Edelstahl Rostfrei Informationsstelle Edelstahl Rostfrei Die Informationsstelle Edelstahl Rostfrei Die Informationsstelle Edelstahl Rostfrei (ISER) ist eine Gemeinschaftsorganisation

Mehr

Praxisseminar September 2011

Praxisseminar September 2011 Praxisseminar September 2011 Agenda 22.September 2011, Reiz GmbH 8:30 Uhr Begrüßung durch Ralf Schiller 8:40 Uhr Rundgang durch die Firma Reiz 8:50 Uhr Beginn Theorie, Vortrag WIG Verfahrensvarianten 9:45

Mehr

Schweißtechnische Lehr- und Versuchsanstalt Halle GmbH

Schweißtechnische Lehr- und Versuchsanstalt Halle GmbH Schweißtechnische Lehr- und Versuchsanstalt Halle GmbH Beeinflussung des metallurgischen Verhaltens strahlgeschweißter ter Verbindungen an Stählen durch prozessspezifische Einflussgröß ößen Jugend Forscht

Mehr

U N T E R W E I S U N G S P L A N. für einen Lehrgang der überbetrieblichen beruflichen Bildung zur Anpassung an die technische Entwicklung im

U N T E R W E I S U N G S P L A N. für einen Lehrgang der überbetrieblichen beruflichen Bildung zur Anpassung an die technische Entwicklung im Kennziffer:FUE1/04 U N T E R W E I S U N G S P L A N für einen Lehrgang der überbetrieblichen beruflichen Bildung zur Anpassung an die technische Entwicklung im METALLBAUERHANDWERK (1216000) LANDMASCHINENMECHANIKER-HANDWERK

Mehr

Fachveranstaltung der Firma Reiz Schweisstechnik am 28. und 29.02.2008

Fachveranstaltung der Firma Reiz Schweisstechnik am 28. und 29.02.2008 http://www.reiz-online.de/ Fachveranstaltung der Firma Reiz Schweisstechnik am 28. und 29.02.2008 Manuelles Plasmaschneiden von unlegiertem Stahl, Aluminium und Edelstahl Schnittoptimierung und häufige

Mehr

Festkörperlaser. Benedikt Konermann Kevin Thiele. Festkörperlaser Benedikt Konermann, Kevin Thiele

Festkörperlaser. Benedikt Konermann Kevin Thiele. Festkörperlaser Benedikt Konermann, Kevin Thiele Festkörperlaser Benedikt Konermann Festkörperlaser Gliederung Was heißt Laser? Was versteht man unter? t Was bedeutet stimulierte Emission? Entstehung des Laserlichtes Pumplichtquellen Welche gibt es?

Mehr

Intermetallische Systeme, ( Legierungen ) Metalle

Intermetallische Systeme, ( Legierungen ) Metalle Eigenschaften Metalle plastisch verformbar meist hohe Dichte ( Ausnahme: Leichtmetalle ) gute elektrische Leitfähigkeit gute Wärmeleitung optisch nicht transparent metallischer Glanz Intermetallische Systeme,

Mehr

Qualitätssicherung bei der Verarbeitung von CrNi

Qualitätssicherung bei der Verarbeitung von CrNi Qualitätssicherung bei der Verarbeitung von CrNi Referent: Friedrich Felber Steel for you GmbH 8010 Graz, Neutorgasse 51/I E-Mail: office@steelforyou.at Tel: +43 664 1623430 Fax: +43 316 231123 7828 Internet:

Mehr

Fügetechnik - Schweißtechnik

Fügetechnik - Schweißtechnik Fügetechnik - Schweißtechnik Lehrunterlage 7., überarb. u. erw. Aufl. Fügetechnik - Schweißtechnik schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Thematische Gliederung: Schweißtechnik

Mehr

HOCHLEISTUNGS-LASERSTRAHL-MSG-HYBRIDSCHWEIßEN VON FEINKORNBAUSTÄHLEN IM BEREICH DICKBLECHANWENDUNGEN

HOCHLEISTUNGS-LASERSTRAHL-MSG-HYBRIDSCHWEIßEN VON FEINKORNBAUSTÄHLEN IM BEREICH DICKBLECHANWENDUNGEN HOCHLEISTUNGS-LASERSTRAHL-MSG-HYBRIDSCHWEIßEN VON FEINKORNBAUSTÄHLEN IM BEREICH DICKBLECHANWENDUNGEN Dipl.-Ing. Rabi Lahdo Forum Produktion Nordwest, Pappenburg 17.06.2014 AGENDA Motivation Laser-MSG-Hybridschweißen

Mehr

Schweißen von Edelstahl Rostfrei Informationsstelle Edelstahl Rostfrei

Schweißen von Edelstahl Rostfrei Informationsstelle Edelstahl Rostfrei Merkblatt 823 Schweißen von Edelstahl Rostfrei Informationsstelle Edelstahl Rostfrei Die Informationsstelle Edelstahl Rostfrei Die Informationsstelle Edelstahl Rostfrei (ISER) ist eine Gemeinschaftsorganisation

Mehr

Inhaltsverzeichnis. 1 Einführung... 1 K.-D. Kühn

Inhaltsverzeichnis. 1 Einführung... 1 K.-D. Kühn Inhaltsverzeichnis 1 Einführung................................. 1 K.-D. Kühn 2 Urformen.................................. 7 A. H. Fritz et al. 2.1 Urformen durch Gießen...................... 7 2.1.1 Grundbegriffe

Mehr

Roboter und Schweissanlage als Einheit Eine Entwicklung von Leipold, YASKAWA Motoman und SKS Welding Systems

Roboter und Schweissanlage als Einheit Eine Entwicklung von Leipold, YASKAWA Motoman und SKS Welding Systems Made for Robots. E= UxI v Roboter und Schweissanlage als Einheit Eine Entwicklung von Leipold, YASKAWA Motoman und SKS Welding Systems Synchroweld, der innovative Regelmechanismus für eine konstante Streckenenergie,

Mehr

Schweissen verbindet Schweiss-, Schneid- und Schutzgase

Schweissen verbindet Schweiss-, Schneid- und Schutzgase Schweissen verbindet Schweiss-, Schneid- und Schutzgase Inhaltsverzeichnis Eigenschaften von Schutzgaskomponenten 4 Schutzgase zum MAG-Schweissen 6 Lichtbogenarten 9 Schutzgase zum MAG-Hochleistungsschweissen

Mehr

Schweißen von Kupfer und Kupferlegierungen

Schweißen von Kupfer und Kupferlegierungen Schweißen von Kupfer und Kupferlegierungen Informationsdruck i.12 Herausgeber: Deutsches Kupferinstitut Auskunfts- und Beratungsstelle für die Verwendung von Kupfer und Kupferlegierungen Am Bonneshof 5

Mehr

Es empfiehlt sich folgende Vorgehensweise bei einer Reparatur: 1. Schadenbild aufnehmen. Bruch / Riss Fehlendes Material etc.

Es empfiehlt sich folgende Vorgehensweise bei einer Reparatur: 1. Schadenbild aufnehmen. Bruch / Riss Fehlendes Material etc. Reparaturverfahren Reparaturschweissen Es empfiehlt sich folgende Vorgehensweise bei einer Reparatur: 1. Schadenbild aufnehmen Bruch / Riss Fehlendes Material etc. Schadenbild Das Reparaturverfahren (Schleifen,

Mehr

Plasmaschweißen von Aluminiumwerkstoffen- Gleich- oder Wechselstrom?

Plasmaschweißen von Aluminiumwerkstoffen- Gleich- oder Wechselstrom? Plasmaschweißen von Aluminiumwerkstoffen- Gleich- oder Wechselstrom? D. Dzelnitzki, Mündersbach Zusammenfassung Der Werkstoff Aluminium ist, nach Stahl, das am meisten verwendete Metall. Er verfügt über

Mehr

LICHTBOGENSCHWEISSEN VON KUPFER UND KUPFERLEGIERUNGEN

LICHTBOGENSCHWEISSEN VON KUPFER UND KUPFERLEGIERUNGEN LICHTBOGENSCHWEISSEN VON KUPFER UND KUPFERLEGIERUNGEN Robert Lahnsteiner MIG WELD GmbH Deutschland Landau/Isar LEGIERUNGSTYPEN AUS SCHWEISSTECHNISCHER SICHT Reinkupfer (+) Kupfer mit geringen Legierungsbestandteilen

Mehr

Veröffentlichungen von Normen und Norm-Entwürfen

Veröffentlichungen von Normen und Norm-Entwürfen Veröffentlichungen von Normen und Norm-Entwürfen (Zeitraum 2006-04 bis 2007-03) Ausgabe April 2006 Aus den Bereichen: Gasschweißgeräte, Lichtbogenschweißeinrichtungen, Widerstandsschweißen E DIN 32509:2006-04,

Mehr

Weiterverarbeitung von Glas. S. Kroggel, H. Rädisch, M. Bornstädt

Weiterverarbeitung von Glas. S. Kroggel, H. Rädisch, M. Bornstädt Weiterverarbeitung von Glas mit reflektierenden Metallen Beschichten im Bereich des Wärme- und Sonnenschutzes verwendet Beschichtungsmaterialien hauptsächlich Gold, Silber und Kupfer zur Entspiegelung

Mehr

EWM hilft und spart Ihnen Zeit und Geld!

EWM hilft und spart Ihnen Zeit und Geld! Das EWM EN 1090 WPQR-Paket EWM hilft und spart Ihnen Zeit und Geld! Zertifizierung nach EN 1090 leicht gemacht! Stahlschweißen Für EWM MIG/MAG-Inverter-Stromquellen alpha Q, Phoenix, Taurus Synergic, Picomig

Mehr

PERFORMANCE LINE. Schutzgasschweißen mit besserem Wirkungsgrad.

PERFORMANCE LINE. Schutzgasschweißen mit besserem Wirkungsgrad. PERFORMANCE LINE. Schutzgasschweißen mit besserem Wirkungsgrad. 2 Helium und Wasserstoff Helium und Wasserstoff zwei der wichtigsten Energieträger im Universum. Als Schutzgaskomponenten verbessern sie

Mehr

bildungskatalog Praktische ausbildung Qualifizierung und Prüfung

bildungskatalog Praktische ausbildung Qualifizierung und Prüfung raxis xis praxis s praxis praxis praxis praxis praxis axis praxis praxis praxis s praxis praxis praxis praxis praxis praxis praxis praxis praxis axis praxis praxis praxis praxis praxis is praxis praxis

Mehr

Möglichkeiten mit Mikroplasmaschweissen

Möglichkeiten mit Mikroplasmaschweissen Möglichkeiten mit Mikroplasmaschweissen Autor und Referent: Dragan Lalovic OERLIKON-SCHWEISSTECHNIK AG 1 ANWENDUNGEN DES MIKROPLASMASCHWEISSENS (Materialstärke der geschweissten Teile kleiner als 1 mm)

Mehr

Wenn es ums Löten geht...

Wenn es ums Löten geht... Wenn es ums Löten geht... Von Ögussa Löttechnik Christian Apeltauer Literatur : Hart- und Weichlöten Ing. Ernst Pichler Degussa Technik die verbindet 1. Kupfer und Kupferlegierungen Kupfer gehört zu jenen

Mehr

ADF 725S Schweißschutzhelm mit automatischer Verdunkelung

ADF 725S Schweißschutzhelm mit automatischer Verdunkelung ADF 725S Schweißschutzhelm mit automatischer Verdunkelung D 83355 Erlstätt Kaltenbacher Weg 12 ACHTUNG: Verwenden Sie dieses Produkt erst, wenn sie die gesamte Anleitung gelesen und verstanden haben! Der

Mehr

Grundlagen MIG-MAG Schweißen

Grundlagen MIG-MAG Schweißen Seite 1 Grundlagen MIG-MAG Schweißen Lehrmaterial für die praktische Ausbildung Seite 2 Einteilung der Schutzgasschweißverfahren Schweißen von Metallen Seite 3 Arbeitsschutzkleidung Beim Schweißen können

Mehr

WIG-Orbital-Schweißen von Aluminium-werkstoffen mit dem

WIG-Orbital-Schweißen von Aluminium-werkstoffen mit dem Polysoude Praxis-Berichte WIG-Orbital-Schweißen von Aluminium-werkstoffen mit dem Gleichstromverfahren bei negativ gepolter Elektrode (DC EN) T. UNDI POLYSOUDE S.A. - BP 41606 - F - 44316 NANTES cedex

Mehr

Schweißen mit Stabelektroden

Schweißen mit Stabelektroden Seite 1 Schweißen mit Stabelektroden Lehrmaterial für die praktische Ausbildung Seite 2 Einteilung der Schweißverfahren Schweißen von Metallen Schmelz-Verbindungsschweißen Lichtbogenschmelzschweißen Metalllichtbogenschweißen

Mehr

Schweißtechnische Verarbeitung neuer Kraftwerkstähle

Schweißtechnische Verarbeitung neuer Kraftwerkstähle Schweißtechnische Verarbeitung neuer Kraftwerkstähle Dr. H. Heuser ClusterForum Schweißtechnik im Kraftwerksbau SLV München, 20. Oktober 2009 We are the World of Welding Solutions. Inhalt Entwicklungsstand,

Mehr

DVS Lehrgänge Messer Cutting Systems Academy. Anerkannte DVS Bildungseinrichtung

DVS Lehrgänge Messer Cutting Systems Academy. Anerkannte DVS Bildungseinrichtung DVS Lehrgänge Messer Cutting Systems Academy Fit for DVS Anerkannte DVS Bildungseinrichtung 2 DVS Lehrgänge 2013 Vorwort DVS Lehrgänge der DVS Kursstätte Messer Cutting Systems Academy In Zeiten zunehmenden

Mehr

2. Schweißzusätze für die Aluminiumschweißung. Schweißzusätze für das Titan-Schweißen.

2. Schweißzusätze für die Aluminiumschweißung. Schweißzusätze für das Titan-Schweißen. 1. Schweißzusätze zum Schweißen nichtrostender Stähle. Schweißzusätze zum Schweißen hitze-, zunderbeständiger und hochkorrosionsfester Stähle. Schweißzusätze zum Schweißen von Austenit-Ferrit-Verbindungen.

Mehr

32. Lektion. Laser. 40. Röntgenstrahlen und Laser

32. Lektion. Laser. 40. Röntgenstrahlen und Laser 32. Lektion Laser 40. Röntgenstrahlen und Laser Lernziel: Kohärentes und monochromatisches Licht kann durch stimulierte Emission erzeugt werden Begriffe Begriffe: Kohärente und inkohärente Strahlung Thermische

Mehr

9.2799 (intern) (Richtanalyse) ( % ) 0,2 1,0 1,5 2,4 1,6. Angelassener Martensit / Vergütungsgefüge. Vergütet auf 320 bis 350 HB30 (harte Variante)

9.2799 (intern) (Richtanalyse) ( % ) 0,2 1,0 1,5 2,4 1,6. Angelassener Martensit / Vergütungsgefüge. Vergütet auf 320 bis 350 HB30 (harte Variante) Hones LDC 9.2799 (intern) DIN- 20 NiCrMoW 10 Element C Si Cr Ni W (Richtanalyse) ( % ) 0,2 1,0 1,5 2,4 1,6 Angelassener Martensit / Vergütungsgefüge Vergütet auf 320 bis 350 HB30 (harte Variante) Das Material

Mehr

Das Lasal TM -Konzept

Das Lasal TM -Konzept Das Lasal TM -Konzept Gase und Know-how rund um Laseranwendungen www.airliquide.de LASAL TM -Gase für das Herz des Lasers Ob für CO 2 -Laser, Excimerlaser oder spezielle Anlagen Air Liquide bietet für

Mehr

WIFI. Wir bringen Sie auf Kurs.

WIFI. Wir bringen Sie auf Kurs. WIFI. Wir bringen Sie auf Kurs. KURSÜBERSICHT JULI 2014 - JUNI 2015 Schweißen Auszug aus dem Kursbuch 2014/15 ÜBERSICHT SCHWEISSAUSBILDUNG Fortbildung Zertifikatsprüfung Sonderformen Grundausbildung BETONSTAHL

Mehr

Medizinische Werkzeuge und Implantate gelaserte Präzision

Medizinische Werkzeuge und Implantate gelaserte Präzision Medizinische Werkzeuge und Implantate gelaserte Präzision Eine kurze Einführung in die fertigungstechnischen Möglichkeiten der Lasertechnik Jan Hoffmann Berlin, 24. Januar 2008 Inhalt Grundlagen der Lasertechnik

Mehr

Technologie der Werkstoffe

Technologie der Werkstoffe Jürgen Rüge (t) Helmut Wohlfahrt 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Technologie der Werkstoffe Herstellung

Mehr

Numerische Bestimmung von Schweißeigenspannungen

Numerische Bestimmung von Schweißeigenspannungen Numerische Bestimmung von Schweißeigenspannungen Gewidmet Herrn Prof. Helmut Wohlfahrt zur Vollendung seines 75. Lebensjahres Dr.-Ing. Tobias Loose 11. März 2011 1 Dr.-Ing. Tobias Loose geboren am 18.08.1971

Mehr

Markieren, Gravieren und Beschriften mit Gravograph YAG Laser Technik

Markieren, Gravieren und Beschriften mit Gravograph YAG Laser Technik Markieren, Gravieren und Beschriften mit Gravograph YAG Laser Technik Dauerhaft Markieren, Gravieren und Beschriften sind Aufgaben, die in sämtlichen Bereichen der Produktion heute zu finden sind. Selbst

Mehr

I n f o r m a t i o n e n

I n f o r m a t i o n e n GSI Gesellschaft für Schweißtechnik International mbh www.gsi-slv.de I n f o r m a t i o n e n zur Erlangung der Herstellerqualifikation nach DIN V 4113-3:2003-11 0 Allgemeines Die Herstellerqualifikation

Mehr

Bericht 5137/2005. AiF-Nr. 13.597 N. DVS-Nr. 05.030

Bericht 5137/2005. AiF-Nr. 13.597 N. DVS-Nr. 05.030 Bericht 5137/2005 AiF-Nr. 13.597 N DVS-Nr. 05.030 Optimierung der Verbindungsqualität und Ermittlung von verbesserten Prüfkriterien artfremder Schwarz-Weiß-Bolzenschweißverbindungen Der Bericht darf nur

Mehr

www.alu-loeten.de 18 zuzügl. Versand. TMP-Universallot 37 TMP Löttests sind immer unerlässlich. Alle Angaben ohne Gewähr.

www.alu-loeten.de 18 zuzügl. Versand. TMP-Universallot 37 TMP Löttests sind immer unerlässlich. Alle Angaben ohne Gewähr. 18 zuzügl. Versand. Alle Angaben ohne Gewähr. Löttests sind immer unerlässlich. Frankfurter Str. 131/ 6550 Bad Camberg Tel. 06434-9135 oder Fax: 06434-37154 TMP-Universallot 37 Aluminium Weichlot mit Flussmittel

Mehr

Bachelorprüfung. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch.

Bachelorprüfung. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch. Thienel Bachelorprüfung Prüfungsfach: Geologie, Werkstoffe und Bauchemie Prüfungsteil:

Mehr

Dubbel. Taschenbuch für den Maschinenbau. von Karl-Heinrich Grote, Jörg Feldhusen. 22., neu bearb. u. erw. Aufl.

Dubbel. Taschenbuch für den Maschinenbau. von Karl-Heinrich Grote, Jörg Feldhusen. 22., neu bearb. u. erw. Aufl. Dubbel Taschenbuch für den Maschinenbau von Karl-Heinrich Grote, Jörg Feldhusen 22., neu bearb. u. erw. Aufl. Dubbel Grote / Feldhusen schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG

Mehr

3. Stabelektroden zum Schweißen hochwarmfester Stähle

3. Stabelektroden zum Schweißen hochwarmfester Stähle 3. Stabelektroden zum Schweißen hochwarmfester Stähle Artikel-Bezeichnung 4936 B 4948 B E 308 15 82 B E NiCrFe 3 82 R 140 625 B E NiCrMo 3 Stabelektroden zum Schweißen warm- und hochwarmfester Stähle Warmfeste

Mehr

BILDUNGSKATALOG 2015 / 2016

BILDUNGSKATALOG 2015 / 2016 BILDUNGSKATALOG PRAKTISCHE AUSBILDUNG Qualifizierung und Prüfung 2015/2016 2 BILDUNGSKATALOG 2015 / 2016 VORWORT Bildungskatalog Praxis 2015 / 2016 Für die meisten geschweißten Erzeugnisse aus den verschiedensten

Mehr

VIOSIL SQ FUSED SILICA (SYNTHETISCHES QUARZGLAS)

VIOSIL SQ FUSED SILICA (SYNTHETISCHES QUARZGLAS) VIOSIL SQ FUSED SILICA (SYNTHETISCHES QUARZGLAS) Beschreibung VIOSIL SQ wird von ShinEtsu in Japan hergestellt. Es ist ein sehr klares (transparentes) und reines synthetisches Quarzglas. Es besitzt, da

Mehr

Typische Eigenschaften von Metallen

Typische Eigenschaften von Metallen Typische Eigenschaften von Metallen hohe elektrische Leitfähigkeit (nimmt mit steigender Temperatur ab) hohe Wärmeleitfähigkeit leichte Verformbarkeit metallischer Glanz Elektronengas-Modell eines Metalls

Mehr

zial Spezial Spezial Spezial Spe

zial Spezial Spezial Spezial Spe Service in Bestform OTTO-HAHN-STRASSE 1 63303 DREIEICH-SPRENDLINGEN TELEFON 06103 9947-0 TELEFAX 06103 9947-50 INTERNET www.walzstahl-gmbh.de E-MAIL info@walzstahl-gmbh.de UST-IDENT-No. DE 113593886 zial

Mehr

Lernsituation Förderbandrahmen

Lernsituation Förderbandrahmen LEARN. CREATE. SUCCEED. SolidWorks Lehrunterlagen Lernsituation Förderbandrahmen Einteilung in Lernfelder nach den aktuellen Rahmenlehrplänen Statische Analyse von Einzelteilen und Baugruppen. Grundlagen

Mehr

Die Wärmebehandlung metallischer Werkstoffe. WS 2014 Dr. Dieter Müller. Wir nehmen Perfektion persönlich.

Die Wärmebehandlung metallischer Werkstoffe. WS 2014 Dr. Dieter Müller. Wir nehmen Perfektion persönlich. Die Wärmebehandlung metallischer Werkstoffe WS 2014 Dr. Dieter Müller Wir nehmen Perfektion persönlich. Folie 1 Die Wärmebehandlung metallischer Werkstoffe 01.12.2014 Inhalt Block 6 4 Die Wärmebehandlung

Mehr

Schweißzusatzwerkstoffe. Schweißzusatzwerkstoffe. Seiten. Stabelektroden - für Gußeisen. - un u. niedriglegiert. - hochlegiert.

Schweißzusatzwerkstoffe. Schweißzusatzwerkstoffe. Seiten. Stabelektroden - für Gußeisen. - un u. niedriglegiert. - hochlegiert. Seiten Stabelektroden - für Gußeisen - un u. niedriglegiert - hochlegiert 6 7 8 19 20 34 - Nickelbasis - Verschleißauftragung WIG/MSG - un u. niedriglegiert - hochlegiert - Nickelbasis - Verschleißauftragung

Mehr

Klausur Vertiefungsfach 2: Master

Klausur Vertiefungsfach 2: Master I E H K Institut für Eisenhüttenkunde Rheinisch-Westfälische Technische Hochschule Aachen Klausur Vertiefungsfach 2: Master Stahlmetallurgie Univ.-Prof. Dr.-Ing. D. Senk 10.09.2012 Nachname, Vorname: Matrikel-Nr.:

Mehr

IIIIIIIII. Schweißen im bauaufsichtlichen Bereich. Erläuterungen mit Berechnungsbeispielen. 2., überarbeitete und erweiterte Auflage.

IIIIIIIII. Schweißen im bauaufsichtlichen Bereich. Erläuterungen mit Berechnungsbeispielen. 2., überarbeitete und erweiterte Auflage. Ahrens Zwätz Schweißen im bauaufsichtlichen Bereich Erläuterungen mit Berechnungsbeispielen 2., überarbeitete und erweiterte Auflage HLuHB Darmstadt IIIIIIIII 14798927 Inhalt Vorwort zur 2. Auflage 1 Zusammenhang

Mehr

Schweißtechnische Fortschritte beim MIG/MAG-Schweißen durch den Einsatz moderner Mehrprozeß-Schweißstromquellen

Schweißtechnische Fortschritte beim MIG/MAG-Schweißen durch den Einsatz moderner Mehrprozeß-Schweißstromquellen Schweißtechnische Fortschritte beim MIG/MAG-Schweißen durch den Einsatz moderner Mehrprozeß-Schweißstromquellen Dipl.-Ing. D. Dzelnitzki, Mündersbach 1 Einleitung Entwicklung moderner Schweißstromquellen

Mehr

Wir brennen fürs Schneiden

Wir brennen fürs Schneiden Wir brennen fürs Schneiden stahl. metall. services Faszination Plasmaschneiden Das Plasmaschneidsystem besteht aus Inverter, Brennerkopf, Massekabel, Stromzuleitung und Druckluftzuleitung. Ein Plasmaschneider

Mehr