Klausur Programmierung WS 2002/03
|
|
|
- Hertha Frank
- vor 8 Jahren
- Abrufe
Transkript
1 Klausur Programmierung WS 2002/03 Prof. Dr. Gert Smolka, Dipl. Inf. Thorsten Brunklaus 14. Dezember 2002 Leo Schlau 45 Vor- und Nachname Sitz-Nr Matrikelnummer Code Bitte öffnen Sie das Klausurheft erst dann, wenn Sie dazu aufgefordert werden (gleiche Bearbeitungszeit für alle). Sie können die Klausur nur auf dem für Sie vorgesehen Platz mitschreiben. Sie müssen das mit Ihrem Namen und Ihrer Matrikelnummer versehene Klausurheft verwenden. Hilfsmittel sind nicht zugelassen. Am Arbeitsplatz dürfen nur Schreibgeräte, Getränke, Speisen sowie Ausweise mitgeführt werden. Taschen, Jacken und Mäntel müssen an den Wänden des Klausursaals zurückgelassen werden. Verlassen des Saals ohne vorherige Abgabe des Klausurhefts gilt als Täuschungsversuch. Wenn Sie während der Bearbeitung auf die Toilette müssen, geben Sie bitte Ihr Klausurheft bei der Aufsicht ab. Es kann immer nur eine Person auf die Toilette. Alle Lösungen müssen auf den bedruckten rechten Seiten des Klausurhefts notiert werden. Die leeren linken Seiten dienen als Platz für Skizzen und werden nicht korrigiert. Notizpapier ist nicht zugelassen. Sie können mit Bleistift schreiben. Für die Bearbeitung der Klausur stehen 150 Minuten zur Verfügung. Insgesamt sind 150 Punkte erreichbar. Die für jede Aufgabe angebene Punktzahl gibt Ihnen also einen Anhaltspunkt, wieviel Zeit Sie auf die Bearbeitung der Aufgabe verwenden sollten. Zum Bestehen der Klausur genügen 75 Punkte. Bitte legen Sie Ihren Personalausweis oder Reisepass sowie Ihren Studierendenausweis zur Identifikation neben sich. Viel Erfolg! Note
2 Aufgabe 1: Bindungs- und Typanalyse (14 = ) (a) Geben Sie alle Bezeichner an, die in dem folgenden Ausdruck frei vorkommen: (fn x => fn y => h (f x) (g y)) x (b) Seien die folgenden Deklarationen gegeben: fun p x y f g h = h (f x) (g y) val x = p 3 4 (fn x => x-1) (fn x => x+1) (fn x => fn y => x*y) (i) An welchen Wert wird x gebunden? (ii) Geben Sie das Typschema an, das der Interpreter für den Bezeichner p bestimmt. 2
3 Aufgabe 2: Falten von Listen (12 = 2 6) Seien die folgenden Prozeduren gegeben: fun p f s g xs = foldr f s (map g xs) fun q f g xs = map f (map g (rev xs)) Wir bezeichnen zwei Prozeduren als gleichwertig, wenn sie denselben Typ haben und die gleichen Ergebnisse liefern. (a) Geben Sie eine zu p gleichwertige Prozedur p an, die nur foldr verwendet: fun p f s g xs = foldr (b) Geben Sie eine zu q gleichwertige Prozedur q an, die nur foldl verwendet: fun q f g xs = foldl 3
4 Aufgabe 3: Sortieren durch Mischen (22 = ) Sie sollen eine polymorphe Prozedur schreiben, die Listen gemäß einer linearen Ordnung sortiert. Die lineare Ordnung wird dabei durch eine Prozedur p : α α order dargestellt, für die p(x, y) = LESS genau dann gilt, wenn x in einer sortierten Liste vor y stehen muss. (a) Geben Sie eine Prozedur split : a list a list * a list an, die eine Liste in zwei etwa gleich große Listen zerlegt. (b) Geben Sie eine Prozedur merge : ( a * a order) a list a list a list an, die zwei sortierte Liste gemäß einer linearen Ordnung zu einer sortierten Liste verschmilzt. (c) Geben Sie eine Prozedur sort : ( a * a order) a list a list an, die eine Liste gemäß einer linearen Ordnung sortiert. (d) Geben Sie die asymptotische Laufzeit Ihrer Prozedur sort mit an. 4
5 Seien die folgenden Deklara- Aufgabe 4: Arithmetische Ausdrücke (40 = ) tionen gegeben: type var = int datatype exp = C of int V of var A of exp * exp M of exp * exp exception Var Die Werte des Typs exp stellen arithmetische Ausdrücke über Z dar, die mit Konstanten, Variablen, Addition und Multiplikation gebildet sind. (a) Schreiben Sie eine Prozedur eval : exp int (* Var *) die den Wert eines Ausdrucks liefert, falls er keine Variable enthält. Wenn der Ausdruck eine Variable enthält, soll die Ausnahme Var geworfen werden. (b) Schreiben Sie eine Prozedur var : exp bool die testet, ob ein Ausdruck Variablen enthält. Falls der Ausdruck Variablen enthält, soll true, sonst false geliefert werden. Realisieren Sie var mithilfe der obigen Prozeduren eval, indem Sie die Ausnahme Var fangen. 5
6 (c) Schreiben Sie eine Prozedur vars : exp var list die zu einem Ausdruck eine Liste liefert, die alle Variablen enthält, die in dem Ausdruck vorkommen. (d) Unter einer Umgebung wollen wir eine Prozedur verstehen, die zu jeder Variable eine ganze Zahl liefert: type env = var int Geben Sie eine Prozedur adjoin : env var int env an, die zu einer Umgebung env, einer Variablen x und einer Zahl z eine Umgebung liefert, die x den Wert z und allen anderen Variablen denselben Wert wie env gibt. 6
7 (e) Schreiben Sie eine Prozedur eval : env exp int die den Wert eines Ausdrucks in einer Umgebung liefert. (f) Schreiben Sie eine Prozedur subexp : exp int list exp (* Subscript *) die zu einem Ausdruck und einer Adresse den entsprechenden Teilausdruck liefert. Die Adressierung soll wie bei Bäumen erfolgen. Beispielsweise soll subexp (A(V 1, M(C 1, C 2))) [2,2] = C 2 gelten. Wenn die Adresse keinen Teilausdruck bezeichnet, soll die Ausnahme Subscript geworfen werden. 7
8 Aufgabe 5: Grenze von Bäumen mit Akkumulatorargument (12 = 2 6) Die Prozedur fun frontier (T(x,[])) = [x] frontier (T(_,ts)) = foldr (fn (t,xs) => frontier xs) nil ts val frontier : a tree -> a list liefert zu einem Baum eine Liste, die die Marken der Blätter des Baums enthält. Sie sollen eine effizientere Version dieser Prozedur angeben, die mithilfe eines Akkumulatorarguments die Konkatenation frontier xs einspart. (a) Schreiben Sie eine Prozedur frontier : a tree -> a list -> a list sodass für alle Bäume t und alle Listen ys gilt: frontier t ys = (frontier ys Verwenden Sie dabei nur eine Faltungsprozedur und eine Abstraktion. fun frontier (T(x,[])) ys = frontier (T(_,ts)) ys = (b) Schreiben Sie eine Prozedur frontier : a tree -> a list -> a list sodass für alle Bäume t und alle Listen ys gilt: frontier t ys = (rev (frontier ys Verwenden Sie dabei nur eine Faltungsprozedur und eine Abstraktion. fun frontier (T(x,[])) ys = frontier (T(_,ts)) ys = 8
9 Aufgabe 6: Iteration und Induktion (24 = ) Sei X eine Menge. Die Prozedur count : L(X) X N count(nil, y) = 0 count(x ::xr, y) = count(xr, y) + (if x = y then 1 else 0) liefert zu einer Liste xs und einem Wert y die Anzahl der Auftreten von y in xs. (a) Geben Sie die definierenden Gleichungen für eine iterative Prozedur count : L(X) X Z Z an, für die gilt: xs L(X) y X a Z: count (xs, y, a) = count(xs, y) + a count (nil, y, a) = count (x ::xr, y, a) = (b) Beweisen Sie, dass Ihre Prozedur count die verlangte Eigenschaft hat. Verwenden Sie dazu strukturelle Induktion über xs L(X) und unterscheiden Sie drei Fälle. 9
10 (c) Geben Sie für Ihren Beweis die folgenden Dinge an: Grundmenge: Aussagemenge: Induktionsrelation: Induktionsannahme für zs L(X): (d) Geben Sie in Standard ML eine nicht rekursive Prozedur count : a list -> a -> int an, die zu einer Liste xs und zu einem Wert x die Anzahl der Auftreten von x in xs liefert. Verwenden Sie dabei foldl. 10
11 Aufgabe 7: Laufzeiten (26 = ( )) Seien die folgenden Prozeduren gegeben: f : N N, f (n) = if n = 0 then 0 else f (n 1) + n g : N N, g(n) = if n = 0 then 0 else ( f (n) ; 2n + g(n 1)) h : N N, h(n) = if n = 0 then 1 else h(n 1) + h(n 1) (a) Geben Sie f (n) für alle n N ohne Rekursion an. f (n) = (b) Geben Sie die exakte Laufzeit der rekursiven Prozedur f an. Verwenden Sie dabei keine Rekursion. φ f (n) = (c) Geben Sie die asymptotische Laufzeit der rekursiven Prozedur f mit an. (d) Geben Sie g(n) für alle n N ohne Rekursion an. g(n) = (e) Geben Sie die exakte Laufzeit der rekursiven Prozedur g an. Verwenden Sie dabei keine Rekursion. φ g (n) = (f) Geben Sie die asymptotische Laufzeit der rekursiven Prozedur g mit an. (g) Geben Sie h(n) für alle n N ohne Rekursion an. h(n) = (h) Geben Sie die exakte Laufzeit der rekursiven Prozedur h an. Verwenden Sie dabei keine Rekursion. φ h (n) = (i) Geben Sie die asymptotische Laufzeit der rekursiven Prozedur h mit an. 11
1. Probeklausur zur Programmierung I
DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6.2 Informatik Tutoren der Vorlesung 1. Probeklausur zur Programmierung I Name: Matrikelnummer: Bitte öffnen Sie das Klausurheft erst dann, wenn Sie dazu aufgefordert
1. Probeklausur (Lösung) zu Programmierung 1 (WS 07/08)
Fachschaft Informatikstudiengänge Fachrichtung 6.2 Informatik Das Team der Bremser 1. Probeklausur (Lösung) zu Programmierung 1 (WS 07/08) http://fsinfo.cs.uni-sb.de Name Matrikelnummer Bitte öffnen Sie
1. Probeklausur zu Programmierung 1 (WS 07/08)
Fachschaft Informatikstudiengänge Fachrichtung 6.2 Informatik Das Team der Bremser 1. Probeklausur zu Programmierung 1 (WS 07/08) http://fsinfo.cs.uni-sb.de Name Matrikelnummer Bitte öffnen Sie das Klausurheft
1. Probeklausur Programmierung 1 (WS 2010/2011)
1. Probeklausur Programmierung 1 (WS 2010/2011) Team der Tutoren 11. Dezember 2010 Name Sitzplatz Matrikelnummer Bitte öffnen Sie das Klausurheft erst dann, wenn Sie dazu aufgefordert werden. Sie können
1. Probeklausur zur Vorlesung Programmierung 1 im Wintersemester 2011/2012
1. Probeklausur zur Vorlesung Programmierung 1 im Wintersemester 2011/2012 Das Team der Tutoren 03. Dezember 2011 Name Matrikelnummer Bitte öffnen Sie das Klausurheft erst dann, wenn Sie dazu aufgefordert
Programmierung 1 Probeklausur zur Vorklausur
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 05.12.2015 Programmierung 1 Probeklausur zur Vorklausur Matrikelnummer: Bitte öffnen Sie das Klausurheft
Musterlösung zur 1. Probeklausur Programmierung 1 Wintersemester 2012/13
Musterlösung zur 1. Probeklausur Programmierung 1 Wintersemester 2012/13 Das Team der Tutoren 08. Dezember 2012 Dieter Schlau Name 2442424 Matrikelnummer Musterlösung Bitte öffnen Sie das Klausurheft erst
2. Probeklausur zur Vorlesung Programmierung 1 im Wintersemester 2011/2012
2. Probeklausur zur Vorlesung Programmierung 1 im Wintersemester 2011/2012 Das eam der utoren 04. Februar 2012 Name Matrikelnummer Bitte öffnen Sie das Klausurheft erst dann, wenn Sie dazu aufgefordert
Strukturelle Rekursion und Induktion
Kapitel 2 Strukturelle Rekursion und Induktion Rekursion ist eine konstruktive Technik für die Beschreibung unendlicher Mengen (und damit insbesondere für die Beschreibung unendliche Funktionen). Induktion
Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 4 (Kapitel 4)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 4 (Kapitel 4) Hinweis: Dieses Übungsblatt enthält
Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 15 (Linearer Speicher, Listen, Bäume)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 15 (Linearer Speicher, Listen,
Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 4 (Sortieren und Konstruktoren)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 4 (Sortieren und Konstruktoren)
Programmierung 1 - Repetitorium
WS 2002/2003 Programmierung 1 - Repetitorium Andreas Augustin und Marc Wagner Homepage: http://info1.marcwagner.info Donnerstag, den 10.04.03 Kapitel 7 Korrektheit 7.1 Abstrakte Prozeduren Abstrakte Prozedur
Verarbeitung unendlicher Datenstrukturen Jetzt können wir z.b. die unendliche Liste aller geraden Zahlen oder aller Quadratzahlen berechnen:
Verarbeitung unendlicher Datenstrukturen Jetzt können wir z.b. die unendliche Liste aller geraden Zahlen oder aller Quadratzahlen berechnen: take 1 0 ( f i l t e r ( fn x => x mod 2=0) nat ) ; val it =
Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 7 (Kapitel 7)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 7 (Kapitel 7) Hinweis: Dieses Übungsblatt enthält
Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 5 (Kapitel 6)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 5 (Kapitel 6) Hinweis: Dieses Zusatzübungsblatt
Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 17 (Best of)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 17 (Best of) Hinweis: Dieses
Lösungen zum Übungsblatt 3: Softwareentwicklung I (WS 2006/07)
Prof. Dr. A. Poetzsch-Heffter Dipl.-Inform. J.O. Blech Dipl.-Inform. M.J. Gawkowski Dipl.-Inform. N. Rauch Technische Universität Kaiserslautern Fachbereich Informatik AG Softwaretechnik Lösungen zum Übungsblatt
Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 11 (Parser II)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 11 (Parser II) Hinweis: Dieses
Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zur Übungsklausur -
Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zur Übungsklausur - Punkte: A1: 30, A2: 20, A3: 20, A4: 20, A5: 10, A6: 20 Punkte: /120 12.02.2012 Hinweis: Geben Sie bei allen
Allgemeine Hinweise: TECHNISCHE UNIVERSITÄT MÜNCHEN. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 2008/09 Einführung in die Informatik 2 Klausur Prof. Dr. Helmut Seidl, T. M. Gawlitza, S. Pott,
Programmierung 1 (Wintersemester 2015/16) Lösungsblatt: Aufgaben für die Übungsgruppen: 5 (Kapitel 5)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wtersemester 2015/16) Lösungsblatt: Aufgaben für die Übungsgruppen: 5 (Kapitel 5) Hweis:
Einführung in die Informatik 2
Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Lars Noschinski, Dr. Jasmin Blanchette, Dmitriy Traytel Wintersemester 2012/13 Lösungsblatt Endklausur 9. Februar 2013
Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 13 (Queues, Binary Search)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 13 (Queues, Binary Search)
Inhaltsverzeichnis. 1 Polynomordungen [9 Punkte] 2. 2 System F [9 Punkte] 3. 3 Strukturelle Induktion und Folds [9 Punkte] 4
Inhaltsverzeichnis Polynomordungen [9 Punkte] 2 2 System F [9 Punkte] 3 3 Strukturelle Induktion und Folds [9 Punkte] 4 4 Korekursion und Koinduktion [9 Punkte] 5 5 Automatenminimierung [5 Punkte] 6 Seite:
Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 7 (Kapitel 7)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 7 (Kapitel 7) Hinweis: Dieses Übungsblatt enthält
Die Definition eines Typen kann rekursiv sein, d.h. Typ-Konstruktoren dürfen Elemente des zu definierenden Typ erhalten.
4.5.5 Rekursive Typen Die Definition eines Typen kann rekursiv sein, d.h. Typ-Konstruktoren dürfen Elemente des zu definierenden Typ erhalten. datatype IntList = Nil Cons o f ( i n t IntList ) ; Damit
Aufgabe 1 Basiswissen zur Vorlesung (8 Punkte)
Matrikelnummer: 1 Aufgabe 1 Basiswissen zur Vorlesung (8 Punkte) Kreuzen Sie an, ob die folgenden Aussagen richtig oder falsch sind. Bewertung: keine Antwort: 0 Punkte richtige Antwort: +0.5 Punkte falsche
ALP I Induktion und Rekursion
ALP I Induktion und Rekursion WS 2012/2013 Vollständige Induktion (Mafi I) Die Vollständige Induktion ist eine mathematische Beweistechnik, die auf die Menge der natürlichen Zahlen spezialisiert ist. Vorgehensweise:
Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 1 (Kapitel 1)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 1 (Kapitel 1) Hinweis: Dieses Übungsblatt enthält
Programmierung 1 (Wintersemester 2012/13) Erklärung 5 (Prä- und Postordnung)
Fachrichtung 6. Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 01/13) Erklärung (Prä- und Postordnung) Hinweis: Dieses Blatt enthält eine
Programmierung 1 (Wintersemester 2015/16) Lösungsblatt: Aufgaben für die Übungsgruppen: 8 (Kapitel 9)
Fachrichtung 6. Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung Programmierung (Wintersemester 5/6) Lösungsblatt: Aufgaben für die Übungsgruppen: 8 (Kapitel 9) Hinweis: Dieses
Ströme als unendliche Listen in Haskell
Ströme als unendliche Listen in Haskell Strom := Folge oder Liste von Daten, unbegrenzt viele Daten-Elemente. Ströme sind in Haskell als als (potentiell) unendliche Listen darstellbar und programmierbar
Einführung in die funktionale Programmierung
Einführung in die funktionale Programmierung Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 26. Oktober 2006 Haskell - Einführung Syntax Typen Auswertung Programmierung
Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):
Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel
Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11) Hinweis: Dieses Übungsblatt enthält
Programmierung Eine Einführung in die Informatik mit Standard ML Musterlösungen für ausgewählte Aufgaben. 1 Schnellkurs. Gert Smolka.
Programmierung Eine Einführung in die Informatik mit Standard ML Musterlösungen für ausgewählte Aufgaben Gert Smolka Vorbemerkungen a) Ich danke den Assistenten der Vorlesungen in Saarbrücken für ihre
Programmieren in Haskell Programmiermethodik
Programmieren in Haskell Programmiermethodik Peter Steffen Universität Bielefeld Technische Fakultät 12.01.2011 1 Programmieren in Haskell Bisherige Themen Was soll wiederholt werden? Bedienung von hugs
Konzepte von Programmiersprachen
Konzepte von Programmiersprachen Kapitel 3: Ausdrücke Phillip Heidegger Universität Freiburg, Deutschland SS 2009 Phillip Heidegger (Univ. Freiburg) Konzepte von Programmiersprachen KvP 1 / 17 Inhalt Let
Probeklausur Software-Entwicklung I
Prof. Dr. A. Poetzsch-Heter Dipl.-Inform. J. O. Blech Dipl.-Inform. M. J. Gawkowski Dipl.-Inform. N. Rauch Technische Universität Kaiserslautern Fachbereich Informatik AG Softwaretechnik Probeklausur Software-Entwicklung
ProInformatik: Funktionale Programmierung. Punkte
ProInformatik: Funktionale Programmierung 27.7-22.8.2008, M. Knobelsdorf Probeklausur Ihre persönliche Klausurnummer: Vorname, Nachname: Aufgabe 1 2 3 4 5 6 7 8 Punkte 12 4 4 4 4 2 4 6 40 Erz. Punkte Zum
WS 2011/2012. Robert Giegerich Dezember 2013
WS 2011/2012 Robert 1 AG Praktische Informatik 11. Dezember 2013 1 [email protected] Vorschau Themen heute: Funktionen höherer Ordnung (Fortsetzung) künstliche Striktheit mehr zu fold für
Haskell, Typen, und Typberechnung. Grundlagen der Programmierung 3 A. Einige andere Programmiersprachen. Typisierung in Haskell
Haskell, Typen, und Typberechnung Grundlagen der Programmierung 3 A Typen, Typberechnung und Typcheck Prof. Dr. Manfred Schmidt-Schauß Ziele: Haskells Typisierung Typisierungs-Regeln Typ-Berechnung Milners
Probeklausur Grundlagen der Programmierung
Prof. Ralf Hinze S. Schweizer, M.Sc. P. Zeller, M.Sc. Technische Universität Kaiserslautern Fachbereich Informatik AG Programmiersprachen Probeklausur Grundlagen der Programmierung Dienstag, 08.01.2019
Lösungshinweise/-vorschläge zur Altklausur Abschlussklausur 06/07
Lösungshinweise/-vorschläge zur Altklausur Abschlussklausur 06/07 Dies sind die Lösungsvorschläge zu einer Altklausur, deren Aufgabenstellung an die Inhalte der Vorlesung Grundlagen der Programmierung
Haskell, Typen, und Typberechnung. Grundlagen der Programmierung 3 A. Überladung und Konversion in Haskell. Typisierung in Haskell
Haskell, Typen, und Typberechnung Grundlagen der Programmierung 3 A Typen, Typberechnung und Typcheck Prof. Dr Manfred Schmidt-Schauß Ziele: Haskells Typisierung Typisierungs-Regeln Typ-Berechnung Sommersemester
Inhalt Kapitel 2: Rekursion
Inhalt Kapitel 2: Rekursion 1 Beispiele und Definition 2 Partialität und Terminierung 3 Formen der Rekursion Endständige Rekursion 4 Einbettung 29 Beispiele und Definition Rekursion 30 Man kann eine Funktion
Grundlagen der Programmierung 3 A
Grundlagen der Programmierung 3 A Typen, Typberechnung und Typcheck Prof. Dr. Manfred Schmidt-Schauß Sommersemester 2017 Haskell, Typen, und Typberechnung Ziele: Haskells Typisierung Typisierungs-Regeln
Kapitel 6: Typprüfung
Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Informatik I Wintersemester 2006 Vorlesung: Prof. Dr. Christian Böhm
Funktionale Programmierung ALP I. Funktionen höherer Ordnung SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda
ALP I SS 2011 Funktionstypen Funktionen haben einen Datentyp, der folgende allgemeine Form hat: functionname :: T 1 -> T 2, wobei T 1, T 2 wiederum beliebige Datentypen sind Beispiel: T 1 T 2 Der Datentyp
Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr.
ALP I Funktionen höherer Ordnung Teil 2 SS 2013 Funktionen höherer Ordnung Nehmen wir an, wir möchten alle Zahlen innerhalb einer Liste miteinander addieren addall:: (Num a) => [a -> a addall [ = 0 addall
Lösung Probeklausur Informatik I
Lösung Probeklausur Informatik I 1 Lösung Aufgabe 1 (5 Punkte) Algorithmen und Programme Was ist der Unterschied zwischen einem Algorithmus und einem Programm? Ein Algorithmus ist eine Vorschrift zur Durchführung
Die Korrektheit von Mergesort
Die Korrektheit von Mergesort Christoph Lüth 11. November 2002 Definition von Mergesort Die Funktion Mergesort ist wie folgt definiert: msort :: [Int]-> [Int] msort xs length xs
Prof. Dr. Margarita Esponda
Analyse von Algorithmen Die O-Notation WS 2012/2013 Prof. Dr. Margarita Esponda Freie Universität Berlin 1 Korrekte und effiziente Lösung von Problemen Problem Wesentlicher Teil der Lösung eines Problems.
Funktionale Programmierung. ALP I Lambda-Kalkül. Teil III SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda
ALP I Lambda-Kalkül Teil III SS 2011 Parser Hilfsfunktionen: Die break-funktion ist eine Funktion Höherer Ordnung, die eine Liste beim ersten Vorkommen einer Bedingung in zwei Listen spaltet. break ::
Programmieren in Haskell
Programmieren in Haskell Programmiermethodik Programmieren in Haskell 1 Was wir heute machen Spezifikation Strukturelle Rekursion Strukturelle Induktion Programmieren in Haskell 2 Spezifikation sort [8,
mathematik und informatik
Prof. Dr. Martin Erwig Kurs 01852 Fortgeschrittene Konzepte funktionaler Programmierung LESEPROBE mathematik und informatik Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere
Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 11 (Kapitel 12)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 11 (Kapitel 12) Hinweis: Dieses Übungsblatt enthält
Tutoraufgabe 1 (Auswertungsstrategie):
Prof. aa Dr. M. Müller C. Aschermann, J. Hensel, J. Protze, P. Reble Allgemeine ˆ Die Hausaufgaben sollen in Gruppen von je 3 Studierenden aus der gleichen Kleingruppenübung (Tutorium) bearbeitet werden.
Programmierung 1 (Wintersemester 2015/16) Lösungsblatt: Aufgaben für die Übungsgruppen: 12 (Kapitel 13)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2015/16) Lösungsblatt: Aufgaben für die Übungsgruppen: 12 (Kapitel 13)
INFORMATIK FÜR BIOLOGEN
Technische Universität Dresden 15012015 Institut für Theoretische Informatik Professur für Automatentheorie INFORMATIK FÜR BIOLOGEN Musterklausur WS 2014/15 Studiengang Biologie und Molekulare Biotechnologie
Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 9 (Dynamische und Statische Semantik)
Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 9 (Dynamische und Statische
Musterlösung zur 2. Probeklausur Directors Cut TM Programmierung 1 Wintersemester 2012/13
Musterlösung zur 2. Probeklausur Directors Cut TM Programmierung 1 Wintersemester 2012/13 Das Team der Tutoren 02. Februar 2013 Dieter Schlau Name 2442424 Matrikelnummer Musterlösung Bitte öffnen Sie das
Informatik A WS 2007/08. Nachklausur
Informatik A WS 2007/08 Nachklausur 18.04.2008 Name:.............................. Matrikelnummer:.................. Tutor:.................. Bitte Zutreffendes ankreuzen: Hauptfach Bioinformatik Hauptfach
Programmierung und Modellierung
Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:
Datenstrukturen und Algorithmen (SS 2013) Prof. Dr. Leif Kobbelt Thomas Ströder, Fabian Emmes, Sven Middelberg, Michael Kremer
Präsenzübung Datenstrukturen und Algorithmen (SS 2013) Prof. Dr. Leif Kobbelt Thomas Ströder, Fabian Emmes, Sven Middelberg, Michael Kremer Dienstag, 28. Mai 2013 Nachname: Vorname: Matrikelnummer: Studiengang:
Paradigmen der Programmierung
SS 11 Prüfungsklausur 25.07.2011 Aufgabe 5 (6+9 = 15 Punkte) a) Bestimmen Sie jeweils den Typ der folgenden Haskell-Ausdrücke: ( 1, 2 :"3", 4 < 5) :: (Char, String, Bool) [(last, tail), (head, take 5)]
Kapitel 6. Programme mit Schleifen. Wir betrachten jetzt eine einfache imperative Programmiersprache IMP. IMP verfügt
Kapitel 6 Programme mit Schleifen Wir betrachten jetzt eine einfache imperative Programmiersprache IMP. IMP verfügt über zuweisbare Variablen, Konditionale und Schleifen, hat aber keine Prozeduren. IMP
Beispiele: Funktionsabstraktion (3) Funktionsdeklaration. Funktionsdeklaration (2) Funktionsdeklaration (3) 3. Abstraktion über Funktionsbezeichner:
Beispiele: Funktionsabstraktion (3) Funktionsdeklaration 3. Abstraktion über Funktionsbezeichner: Ausdruck: f (f x) Abstraktion: \ f x -> f (f x) Mit Bezeichnervereinbarung: twice = \ f x -> f (f x) erg
Wintersemester 2010/2011 Hinweise zur Bearbeitung der Klausur zum Kurs 1613 Einführung in die imperative Programmierung
Name: Matrikelnr.: Wintersemester 2010/2011 Hinweise zur Bearbeitung der Klausur zum Kurs 1613 Einführung in die imperative Programmierung Wir begrüßen Sie zur Klausur Einführung in die imperative Programmierung.
TECHNISCHE UNIVERSITÄT MÜNCHEN. Abgabe: (vor der Vorlesung)
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 2008/09 Einführung in die Informatik 2 Übungsblatt 6 Prof. Dr. Helmut Seidl, T. M. Gawlitza,
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK WS 11/12 Einführung in die Informatik II Übungsblatt 2 Univ.-Prof. Dr. Andrey Rybalchenko, M.Sc. Ruslán Ledesma Garza 8.11.2011 Dieses Blatt behandelt
Kapitel 5. Fixpunktoperatoren
Kapitel 5 Fixpunktoperatoren Rekursion ist eine wichtige Definitionstechnik. Im Rahmen dieser Vorlesung haben wir bereits eine Vielzahl von rekursiven Definitionen gesehen. Dabei wurden überwiegend strukturelle
Nachklausur zur Vorlesung
Lehrstuhl für Theoretische Informatik Prof. Dr. Markus Lohrey Grundlagen der Theoretischen Informatik Nachklausur Nachklausur zur Vorlesung Grundlagen der Theoretischen Informatik WS 2016/17 / 27. Februar
