ALP I Induktion und Rekursion
|
|
|
- Ingeborg Schulze
- vor 8 Jahren
- Abrufe
Transkript
1 ALP I Induktion und Rekursion WS 2012/2013
2 Vollständige Induktion (Mafi I) Die Vollständige Induktion ist eine mathematische Beweistechnik, die auf die Menge der natürlichen Zahlen spezialisiert ist. Vorgehensweise: 1. Induktionsanfang Text Text Man zeigt die Behauptung für k = 1 bzw. k = 0 2. Induktionsschritt Man nimmt an, die Aussage sei für dass die Aussage für k+1 wahr ist. wahr und zeigt damit, Wenn beide Schritte erfolgreich durchgeführt wurden, ist die Behauptung für alle natürlichen Zahlen gezeigt.
3 Beispiel: Vollständige Induktion Vermutung: Die Summe der ersten n ungeraden Zahlen ist gleich n 2 n i=1 Motivation: 2(i 1) + 1 = n 2 n i=1 2i 1 = n 2 1 = = = =
4 Vollständige Induktion (Mafi I) Beweis per vollständiger Induktion: Induktionsanfang: für n = 1 Induktionsschritt: wir nehmen an, dass für n = k dann für n = k+1: k +1 i=1 1 i=1 2i 1 = 2 i 1 = = 1 = 1 2 k i=1 k i=1 2i 1 = k 2 = k k = k k + 1 = (k + 1) 2 2i (k + 1) 1 daraus folgt, dass die Vermutung für alle n gilt.
5 Baumeigenschaften und Vollständige Induktion Definition: a) Ein einzelner Blatt-Knoten ist ein Baum o b) Falls t 1, t 2,,t m Bäume sind, dann ist ihre Verknüpfung unter einem Knoten o auch ein Baum ( o t 1, t 2,,t m ) o t 1 t 2... t m Ein Baum ist balanciert, falls er ein Blatt oder von der Form ( o t 1, t 2,,t m ) ist, wobei t 1, t 2,,t m balanciert und von derselben Tiefe sind.
6 Behauptung: Induktion über Bäume Ein balancierter m-baum (Baum mit maximal m Kindern pro Knoten) mit m>1 und Tiefe n hat Motivation: Tiefe 0 o Tiefe 1 o o o Tiefe 2 Tiefe n t 1 t 2...t m... t 1 t 2... t m.
7 Induktion über Bäume 1. Induktionsanfang mit Tiefe n = 0 K = Knoten = 2. Induktionsannahme mit Tiefe n = k, K = mk +1 1 m 1 3. Induktionsschritt Tiefe n = k+1 K = mk +1 1 m 1 +m k m = mk (m k +1 ) (m 1) m 1 = mk +2 1 m 1 = m(k +1)+1 1 m 1 = mk +1 1 m 1 + mk +1 = mk m k +2 m k +1 m 1 K = mn+1 1 m 1
8 Vollständige Induktion Weitere Beispiele an der Tafel!
9 Vollständige Induktion factorial 0 = 1 factorial n = n * factorial (n-1) endrecfactorial n = fact_helper 1 n where fact_helper a 0 = a fact_helper a n = fact_helper (a*n) (n-1)? factorial = endrecfactorial
10 Zu beweisen ist: factorial = endrecfactorial Für unseren Beweis müssen wir folgende Eigenschaft der fact_helper-funktion per Induktion über n zeigen. fact_helper c n = c * factorial n e.1 Induktionsanfang: für n = 0 fact_helper c 0 = c = c * 1 = c * factorial 0 fact_helper.1 factorial.1 Induktionsannahme: fact_helper c k = c * factorial k Induktionsschritt: für n = k+1 fact_helper c (k+1) = fact_helper (c*(k+1)) k = c* (k+1) * factorial k = c * factorial (k+1)
11 fact_helper c n = c * factorial n e.1 factorial 0 = 1 factorial n = n * factorial (n-1). factorial.1. factorial.2 endrecfactorial n = fact_helper 1 n where fact_helper a 0 = a endrecfactorial.1 fact_helper a n = fact_helper (a*n) (n-1) fact_helper.1.. fact_helper.2 1. Induktionsanfang n = 0? factorial 0 = endrecfactorial 0 factorial 0 = 1 factorial.1 = factorial_helper 1 0 factorial_helper.1 = endrecfactorial 0 endrecfactorial.1
12 fact_helper c n = c * factorial n e.1 factorial 0 = 1 factorial n = n * factorial (n-1). factorial.1. factorial.2 endrecfactorial n = fact_helper 1 n where fact_helper a 0 = a endrecfactorial.1 fact_helper a n = fact_helper (a*n) (n-1) fact_helper.1.. fact_helper.2 Induktions-Annahme factorial k = endrecfactorial k 2. Induktionsschritt factorial (k+1) für n = k+1 = (k+1) * factorial k factorial.2 = fact_helper (1*(k+1)) k e.1 = fact_helper 1 (k+1) fact_helper.2 = endrecfactorial (k+1) endrecfactorial.1 factorial = endrecfactorial
13 Berechnung der Fibonacci-Zahlen 1. Lösung fib 0 = 0 fib.0 fib 1 = 1 fib.1 fib n = fib (n-2) + fib (n-1) fib.2 2. Lösung Endrekursive Funktion fib' n = quickfib 0 1 n where quickfib.1 quickfib a b 0 = a quickfib a b n = quickfib b (a+b) (n-1) quickfib.2
14 Zu beweisen ist: Vollständige Induktion? fib = fib' fib' n = quickfib 0 1 n fib.1 where quickfib.1 quickfib a b 0 = a quickfib a b n = quickfib b (a+b) (n-1) quickfib.2 Für unseren Beweis müssen wir folgende Eigenschaft der quickfib- Funktion per Induktion über n zeigen. quickfib (fib i) (fib (i+1)) n = fib (i+n) ze.1 Induktionsanfang: für n = 0 quickfib (fib i) (fib (i+1)) 0 = fib i quickfib.1 = fib (i+0)
15 Induktions-Annahme: n = k quickfib (fib i) (fib (i+1)) k = fib (i+k) Induktionsschritt: quickfib (fib i) (fib (i+1)) (k+1) = fib (i+(k+1)) quickfib (fib i) (fib (i+1)) (k+1)? quickfib.2 fib.2 = quickfib fib (i+1) (fib (i) + fib (i+1)) k = quickfib fib (i+1) (fib ((i+1)+1) k = fib ((i+1) + k) Induktions-Annahme = fib (i + (k+1)) quickfib (fib i) (fib (i+1)) n = fib (i+n) ze.1
16 Sind fib und fib' äquivalent? Behauptung:? fib = fib' fib' n = quickfib 0 1 n fib.1 where quickfib.1 quickfib a b 0 = a quickfib a b n = quickfib b (a+b) (n-1) quickfib.2 1. Induktionsanfang: n = 0 fib 0 = 0 fib.0 2. Induktionsanfang: n = 1 fib 1 = 1 fib' 0 = quickfib fib.1 quickfib.2 fib' 1 = quickfib fib'.1 = 0 quickfib.1 = quickfib = 1 quickfib.1
17 Induktionsannahme: ze.1 quickfib (fib i) (fib (i+1)) n = fib (i+n) fib k = fib' k 3. Induktionsschritt:? fib (k+1) = fib' (k+1) fib' (k+1) = quickfib 0 1 (k+1) fib'.1 = quickfib (fib 0) (fib 1) (k+1) fib.0 und fib.1 = fib (0+(k+1)) aus ze.1 = fib (k+1) fib n = fib' n
18 Strukturelle Induktion Die Strukturelle Induktion ist eine allgemeinere Form der Vollständigen Induktion. Mit diesem mathematischen Beweisverfahren lassen sich Aussagen über die Elemente von rekursiv aufgebauten Datenmengen wie zum Beispiel Listen, Bäumen oder Graphen beweisen. Die Datenmengen, die damit behandelt werden, müssen aus einer endlichen Anzahl von Konstruktionsschritten aus Grundelementen entstehen.
19 Induktion über Listen Vorgehensweise: 1. Induktionsanfang Man zeigt eine bestimmte Eigenschaft P für die leere Liste [] 2. Induktionsschritt Man zeigt die Eigenschaft P(x:xs) unter der Annahme, dass P(xs) gilt.
20 Beispiel: Induktion über Listen Nehmen wir an, wir möchten zeigen, dass die Verkettung über Listen assoziativ ist. Definition von (++): (++) :: [a] -> [a] -> [a] (++) [] ys = ys (++) (x:xs) ys = x : (++) xs ys
21 Behauptung: Induktion über Listen Für alle Listen xs, zs und ys über den Datentyp a gilt die Assoziativität-Eigenschaft: (++) ((++) xs ys) zs = (++) xs ((++) ys zs) oder (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
22 Definition von (++): Induktion über Listen (++) :: [a] -> [a] -> [a] (++) [] ys = ys (++).1 (++) (x:xs) ys = x : (++) xs ys (++).2 Behauptung: (++) ((++) xs ys) zs = (++) xs ((++) ys zs) Beweis: (Induktion über xs) Induktionsanfang: xs = [] (++) ((++) [] ys) zs = (++) ys zs (++).1 = (++) [] ((++) ys zs) (++).1
23 Induktionsschritt: Induktion über Listen (++) :: [a] -> [a] -> [a] (++) [] ys = ys (++).1 (++) (x:xs) ys = x : (++) xs ys (++).2? (++) (x:xs) ((++) ys zs) = (++) ((++) (x:xs) ys) zs (++) (x:xs) ((++) ys zs) = x : (++) xs ((++) ys zs) (++).2 = x : (++) ((++) xs ys) zs i.a. = (++) (x:((++) xs ys)) zs (++).2 = (++) ((++) (x:xs) ys) zs (++).2
24 Vollständige Induktion Weitere Beispiele an der Tafel!
25 Beispiele endrekursiver Funktionen Klassisches Beispiel einer nicht endrekursiven Definition ist: Die Standarddefinition der reverse-funktion rev :: [a] -> [a] rev [] = [] rev (x:xs) = rev xs ++ [x] (++) :: [a] -> [a] -> [a] (++) [] ys = ys (++) (x:xs) ys = x:(xs ++ ys) Eine effizientere Version von rev: quickrev xs = rev_helper xs [] where rev_helper [] ys = ys rev_helper (x:xs) ys = rev_helper xs (x:ys)
26 Sind rev und quickrev äquivalent? Zu beweisen ist: Für alle endlichen Listen xs :: [a] gilt: rev = quickrev
27 Beispiel: Strukturelle Induktion über Bäume data Tree a = Nil Leaf a Node (Tree a) (Tree a) Vorgehensweise: 1. Induktionsanfang 1.1 Wir zeigen eine bestimmte Eigenschaft P für den leeren Baum Nil 1.2 Wir zeigen die Eigenschaft P für ein Blatt (Leaf a) 2. Induktionsschritt Wir zeigen die Eigenschaft P für ( Node l r ) unter der Annahme, dass P für den Teilbaum l und für den Teilbaum r gilt.
28 Das allgemeine Induktionsschema data T a 1 a 2... a m = C 1 t 11 t 1n1 C 2 t 21 t 2n2... Vorgehensweise: C k t k1 t knk 1. Induktionsanfang 1.1 Wir zeigen eine bestimmte Eigenschaft P für alle Basis-Daten (alle C i ohne Rekursion) 2. Induktionsschritt Wir zeigen die Eigenschaft P für jede rekursive Definition (C i t i1 t ini ) unter der Annahme, dass P für t i1 t ini gilt.
Funktionale Programmierung ALP I. Die Natur rekursiver Funktionen SS Prof. Dr. Margarita Esponda. Prof. Dr.
ALP I Die Natur rekursiver Funktionen SS 2011 Die Natur rekursiver Funktionen Rekursive Funktionen haben oft folgende allgemeine Form: f :: a -> a f 0 = c f (n+1) = h (f n ) Diese Art der Definitionen
Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr.
ALP I Funktionen höherer Ordnung Teil 2 SS 2013 Funktionen höherer Ordnung Nehmen wir an, wir möchten alle Zahlen innerhalb einer Liste miteinander addieren addall:: (Num a) => [a -> a addall [ = 0 addall
Programmieren in Haskell. Stefan Janssen. Strukturelle Rekursion. Universität Bielefeld AG Praktische Informatik. 10.
Universität Bielefeld AG Praktische Informatik 10. Dezember 2014 Wiederholung: Schema: f :: [σ] -> τ f [] = e 1 f (a : as) = e 2 where s = f as wobei e 1 und e 2 Ausdrücke vom Typ τ sind und e 2 die Variablen
Theorie der Informatik
Theorie der Informatik 2. Beweistechniken Malte Helmert Gabriele Röger Universität Basel 18. Februar 2015 Beweis Beweis Ein Beweis leitet die Korrektheit einer mathematischen Aussage aus einer Menge von
Programmieren in Haskell
Programmieren in Haskell Programmiermethodik Programmieren in Haskell 1 Was wir heute machen Spezifikation Strukturelle Rekursion Strukturelle Induktion Programmieren in Haskell 2 Spezifikation sort [8,
Strukturelle Rekursion und Induktion
Kapitel 2 Strukturelle Rekursion und Induktion Rekursion ist eine konstruktive Technik für die Beschreibung unendlicher Mengen (und damit insbesondere für die Beschreibung unendliche Funktionen). Induktion
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Fachwissenschaftliche Grundlagen
Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 8. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 8. Vorlesung 1 / 25 Themen
Induktion und Rekursion
Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel
Programmierung 1 - Repetitorium
WS 2002/2003 Programmierung 1 - Repetitorium Andreas Augustin und Marc Wagner Homepage: http://info1.marcwagner.info Donnerstag, den 10.04.03 Kapitel 7 Korrektheit 7.1 Abstrakte Prozeduren Abstrakte Prozedur
Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen
Was bisher geschah Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Syntax: Signatur Semantik: Axiome (FOL-Formeln, meist
Zusammenfassung: Beweisverfahren
LGÖ Ks VMa 11 Schuljahr 216/217 Zusammenfassung: Beweisverfahren Inhaltsverzeichnis Teilbarkeitslehre... 1 Mathematische Sätze... 1 Bedingungen für innere Extremstellen... 3 Beweisverfahren... 3 Für Experten...
Vollständige Induktion
30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n
Vollständige Induktion
30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche
Vorlesung. Vollständige Induktion 1
WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen
3. Vortrag: Arithmetische Relationen und Gödelisierung
3. Vortrag: Arithmetische Relationen und Gödelisierung 1. Arithmetische und arithmetische Mengen und Relationen 2. Verkettung von Zahlen 3. Gödelisierung Arithmetische und arithmetische Mengen und Relationen
4. Kreis- und Wegeprobleme
4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung
Vollständige Induktion
Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass
Programmieren in Haskell Programmiermethodik
Programmieren in Haskell Programmiermethodik Peter Steffen Universität Bielefeld Technische Fakultät 12.01.2011 1 Programmieren in Haskell Bisherige Themen Was soll wiederholt werden? Bedienung von hugs
Induktion und Rekursion
Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für
Tutoraufgabe 1 (Suchen in Graphen):
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn
( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen
Einführung in die Informatik 2
Einführung in die Informatik Strukturelle Induktion Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 0 [email protected] Sprechstunde: Freitag, 1:30-14:00 Uhr, o.n.v.
Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg
Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften
Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):
Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel
aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch!
Bemerkungen: 1 Die Bedeutung von (und damit ) ist klar. wird oft, vor allem in Beweisen, auch als geschrieben (im Englischen: iff, if and only if). 2 Für zwei boolesche Aussagen A und B ist A B falsch
Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal
3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition
Lösung: InfA - Übungsblatt 07
Lösung: InfA - Übungsblatt 07 Michele Ritschel & Marcel Schilling 23. Dezember 2008 Verwendete Abkürzungen: Beweis, vollständige Induktion, IA: Induktionsanfang/Induktionsanker, IS: Induktionsschritt/Induktionssprung,
Informatik-Seminar Thema 6: Bäume
Informatik-Seminar 2003 - Thema 6: Bäume Robin Brandt 14. November 2003 1 Robin Brandt Informatik-Seminar 2003 - Thema 6: Bäume Übersicht Definition Eigenschaften Operationen Idee Beispiel Datendefinition
Elementare Beweistechniken
Elementare Beweistechniken Beispiel: Satzform (Pythagoras) Voraussetzung: Gegeben sei ein beliebiges rechtwinkeliges Dreieck, die Länge der Hypothenuse sei c und die Längen der anderen Seiten seien a und
Grundlagen der Mathematik
Universität Hamburg Winter 016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 6 Grundlagen der Mathematik Präsenzaufgaben (P9) Die Ordnung der natürlichen Zahlen I Wir hatten in der Vorlesung
4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.
Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel
Kapitel 1. Grundlegendes
Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0
Abschnitt 18: Effizientes Suchen in Mengen
Abschnitt 18: Effizientes Suchen in Mengen 18. Effizientes Suchen in Mengen 18.1 Vollständig ausgeglichene binäre Suchbäume 18.2 AVL-Bäume 18.3 Operationen auf AVL-Bäumen 18.4 Zusammenfassung 18 Effizientes
Beweistechniken. Vorkurs Informatik - SoSe April 2014
Vorkurs Informatik SoSe14 07. April 2014 Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Motivation Wozu Beweise in der Informatik? Quelle: http://www.nileguide.com Wozu Beweise in der
Vorkurs Beweisführung
Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7
Beispiel 27 (Beweis durch Widerspruch) Satz 28 3 ist irrational, d. h. Beweis: Widerspruchsannahme: 3 Q.
Beispiel 27 (Beweis durch Widerspruch) Wir nehmen an, dass die zu zeigende Aussage falsch ist und führen diese Annahme zu einem Widerspruch. Satz 28 3 ist irrational, d. h. 3 / Q. Beweis: Widerspruchsannahme:
Lösungen zur Klausur zur Vorlesung. Mathematik für Informatiker I. (Dr. Frank Hoffmann) Wintersemester 2011/ Februar 2012
Lösungen zur Klausur zur Vorlesung Mathematik für Informatiker I (Dr. Frank Hoffmann) Wintersemester 2011/2012 22. Februar 2012 Aufgabe 1 Logisches und Grundsätzliches /4+4+2 (a) Testen Sie mit dem Resolutionskalkül,
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil
Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen
D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen 1. Auf Z definieren wir eine Relation durch x, y Z : (x y : x y ist gerade) a) Zeigen Sie, dass
Agenda. 1 Einleitung. 2 Binäre Bäume. 3 Binäre Suchbäume. 4 Rose Trees. 5 Zusammenfassung & Ausblick. Haskell Bäume. Einleitung.
Vortrag: Bäume in Haskell Bäume in Haskell Vortrag Christoph Forster Thomas Kresalek Fachhochschule Wedel University of Applied Sciences 27. November 2009 Christoph Forster, Thomas Kresalek 1/53 Vortrag
Induktive Beweise und rekursive Definitionen
Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Algorithmen und Datenstrukturen"
Lehrstuhl für Medieninformatik Universität Siegen Fakultät IV 9 Rekursion Version: WS 14/15 Fachgruppe Medieninformatik 9.1 9 Rekursion... Motivation: Rekursive Formulierung von Algorithmen führt in vielen
Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken
Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation
Vollständige Induktion
Vollständige Induktion F. Lemmermeyer. Januar 04 Aussagen, die für alle natürlichen Zahlen gelten, kann man oft mit vollständiger Induktion beweisen. Das Vorgehen ist dabei folgendes:. Man zeigt, dass
Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1
Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Aufgabe 1.1 ( Punkte) Schreiben Sie die Definitionen von Injektivität und Surjektivität einer Funktion als prädikatenlogische Formeln auf. Lösung
1 Das Prinzip der vollständigen Induktion
1 1 Das Prinzip der vollständigen Induktion 1.1 Etwas Logik Wir nennen eine Formel oder einen Satz der Alltagssprache eine Aussage, wenn sie wahr oder falsch sein kann. Die Formeln 2 = 3, 2 4, 5 5 sind
Mathematische Grundlagen der Computerlinguistik
Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum
Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen
Rev. 1152 1 [23] Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen Christoph Lüth & Dennis Walter Universität Bremen Wintersemester 2010/11
Funktionale Programmierung. ALP I Lambda-Kalkül. Teil IVb WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda
ALP I Lambda-Kalkül Teil IVb WS 2012/2013 λ-kalkül-parser Hilfsfunktionen: Die break-funktion ist eine Funktion höherer Ordnung, die eine Liste beim ersten Vorkommen einer Bedingung in zwei Listen spaltet.
Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion
Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten
Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)
WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14
: das Bild von ) unter der Funktion ist gegeben durch
% 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!
Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den
Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht
Induktive Beweise und rekursive Definitionen
Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1
Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 8 -
Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 8 - Dozent: Prof. Dr. G. Rote Tutoren: J. Fleischer, T. Haimberger, N. Lehmann, C. Pockrandt, A. Steen 03.01.2012 Ziele
9 Algebraische Datentypen
9 Algebraische Datentypen Dieses Kapitel erweitert Haskells Typsystem, das neben Basistypen (Integer, Float, Char, Bool,... ) und Typkonstruktoren ([ ] und ( )) auch algebraische Datentypen kennt. Ganz
Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016
Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe16 Ronja Düffel 21. März 2016 Logik und Beweise Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe.
Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =.
2. Der Blum-Floyd-Pratt-Rivest-Tarjan Selektions-Algorithmus Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n
Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2015
Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe15 Ronja Düffel 23. März 2015 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise
Balancierte Bäume. Minimale Knotenanzahl von AVL-Bäumen. AVL-Bäume. Definition für "balanciert":
Balancierte Bäume Aufwand, ein Element zu finden, entspricht der Tiefe des gefundenen Knotens im worst case = Tiefe des Baumes liegt zwischen log N und N Definition für "balanciert": es gibt verschiedene
Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.
Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht
Elementare Beweismethoden
Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe
Freie Bäume und Wälder
(Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese
Handout zu Beweistechniken
Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1
Elemente der Mathematik - Winter 2016/2017
4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 7 Aufgabe 29 (8 Punkte). Für eine Menge M ist die Potenzmenge von M definiert als P(M) := {X X M},
Aufgabe 24 Die Wahrheitswerte von A A B und B sind immer gleich:
Lösungen zu den Aufgaben von Anfang August Aufgabe 24 Die Wahrheitswerte von A A B und B sind immer gleich: Der Wahrheitswert von A A ist immer wahr, da immer entweder A oder A den Wahrheitswert wahr hat.
Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele.
lausthal Informatik II Bäume. Zachmann lausthal University, ermany [email protected] Beispiele Stammbaum. Zachmann Informatik 2 - SS 06 Bäume 2 Stammbaum Parse tree, Rekursionsbaum Unix file hierarchy
Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.
6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente
Analysis I: Übungsblatt 1 Lösungen
Analysis I: Übungsblatt 1 Lösungen Verständnisfragen 1. Was ist Mathematik? Mathematik ist eine Wissenschaft, die selbstgeschaffene, abstrakte Strukturen auf ihre Eigenschaften und Muster hin untersucht.
mathe plus Aussagenlogik Seite 1
mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet
Surjektive, injektive und bijektive Funktionen.
Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens
Logik/Beweistechniken
Mathematikvorkurs bei Marcos Soriano Logik/Beweistechniken erstellt von: Daniel Edler -II- Inhaltsverzeichnis 1 Logik/Beweistechniken 1 1.1 Allgemeine Vorgehensweise......................... 1 2 Konjunktion/Disjunktion
Übung: Algorithmen und Datenstrukturen SS 2007
Übung: Algorithmen und Datenstrukturen SS 07 Prof. Lengauer Sven Apel, Michael Claÿen, Christoph Zengler, Christof König Blatt 8 Votierung in der Woche vom 25.06.0729.06.07 Aufgabe 22 AVL-Bäume (a) Geben
1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen
1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist
1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen
. Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!
INFORMATIK FÜR BIOLOGEN
Technische Universität Dresden 15012015 Institut für Theoretische Informatik Professur für Automatentheorie INFORMATIK FÜR BIOLOGEN Musterklausur WS 2014/15 Studiengang Biologie und Molekulare Biotechnologie
Rekursion und Induktion
Rekursion und Induktion Rekursion und Induktion Quick Start Informatik Theoretischer Teil WS2011/12 11. Oktober 2011 Rekursion und Induktion > Rekursion > Was ist Rekursion? Definition der Rekursion fu
Beweistechniken. Beweistechniken. Vorsemesterkurs Informatik Theoretischer Teil Wintersemester 2013/ Oktober Vorsemesterkurs WS 2013/1
Beweistechniken Beweistechniken Vorsemesterkurs Informatik Theoretischer Teil Wintersemester 2013/14 7. Oktober 2013 Beweistechniken > Motivation Wozu Beweise in der Informatik?... um Aussagen wie 1 Das
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Große Übung #2 Phillip Keldenich, Arne Schmidt 10.11.2016 Organisatorisches Fragen? Checkliste: Anmeldung kleine Übungen Anmeldung Mailingliste Dies ersetzt nicht die Prüfungsanmeldung!
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (II) 11.06.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie
3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen
3 Die natürlichen Zahlen Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen Die natürlichen Zahlen Æ = {1, 2, 3,...}. sind die natürlichen
Lineare Algebra I. Probeklausur - Lösungshinweise
Institut für Mathematik Wintersemester 2012/13 Universität Würzburg 19. Dezember 2012 Prof. Dr. Jörn Steuding Dr. Anna von Heusinger Frederike Rüppel Lineare Algebra I Probeklausur - Lösungshinweise Aufgabe
Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008
Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9
2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form.
für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Vollständige Induktion): Finden Sie eine geschlossene Form für die
Fachwissenschaftliche Grundlagen
Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen
Übung Grundbegriffe der Informatik
Übung Grundbegriffe der Informatik 15. und letzte Übung Karlsruher Institut für Technologie Matthias Janke, Gebäude 50.34, Raum 249 email: matthias.janke ät kit.edu Matthias Schulz, Gebäude 50.34, Raum
Lösungen 4.Übungsblatt
Karlsruher Institut für Technology (KIT) WS 2011/2012 Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.techn. Rainer Mandel Lösungen 4.Übungsblatt Aufgabe 13 (K) Bestimmen Sie sämtliche Häufungswerte
Angewandte Mathematik und Programmierung
Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2013/14 Inhalt Übungserklärung* Beweis durch Vollständige Induktion 2
