Vollständige Induktion
|
|
|
- Adam Möller
- vor 8 Jahren
- Abrufe
Transkript
1 Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass P(1) gilt. Wir zeigen: n N : P(n) P(n + 1) Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
2 Induktionsbeweis Ein Beweis mit vollständiger Induktion verläuft dementsprechend nach folgendem Schema: Induktionsanfang Zeige, dass P(1) gilt. Induktionsschritt Zeige: n N : P(n) P(n + 1) Die Aussage P(n) heißt dabei Induktionsvoraussetzung oder Induktionsannahme. Die Aussage P(n + 1) ist die Induktionsbehauptung. Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
3 Warum funktioniert vollständige Induktion? Wir haben: P(1) n N : P(n) P(n + 1) Angewendet auf den Induktionsanfang P(1) und den Induktionsschritt für n = 1 erhalten wir mithilfe des Modus Ponens: (P(1) (P(1) P(2))) P(2) Jetzt verwenden wir P(2) und den Induktionsschritt für n = 2: (P(2) (P(2) P(3))) P(3) Dies können wir immer weiter fortsetzen. Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
4 Summationssymbol Zur Notation der Summe von mehreren Summanden x 1, x 2,..., x n verwenden wir das Summationssymbol : x 1 + x x n = n i=1 x i Der Summationsindex kann dabei auch zwischen u, o N 0 laufen: x u + x u x o = u heißt untere und o obere Index- oder Summationsgrenze. Für den Fall u > o legen wir fest: o x i = 0 i=u Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288 o i=u x i
5 Beispiel 4.5 Wir wollen zeigen, dass für alle n N gilt: n = n i = i=1 n(n + 1). 2 Für ein n N ist diese Gleichung entweder wahr oder falsch. Also stellt diese Gleichung ein Prädikat P(n) dar. Wir wollen zeigen, dass die Gleichung (und damit das Prädikat P(n)) für alle n N wahr ist. Induktionsanfang: n = 1 n i = i=1 1 i = 1 = i=1 1(1 + 1) 2 = n(n + 1) 2 Also gilt die Gleichung für n = 1, d. h. P(1) ist wahr. Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
6 Fortsetzung Beispiel. Beweismethoden (ii) Induktionsschritt: n n + 1 Gemäß Induktionsvoraussetzung (I.V.) dürfen wir P(n) als wahr annehmen, d. h. die Gleichung gilt für n. Wir müssen nun zeigen, dass sie dann auch für n + 1 gilt, also dass auch P(n + 1) wahr ist. n+1 i = (n + 1) + i=1 n i i=1 I.V. n(n + 1) = (n + 1) + 2 n(n + 1) + 2(n + 1) = 2 (n + 1)(n + 2) = 2 Damit haben wir nun bewiesen, dass P(n) für alle n N gilt. Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
7 Verschiebung des Induktionsanfangs Was tun, wenn ein Prädikat nicht ab n = 1 sondern erst ab n = k wahr ist? Wir definieren ein neues Prädikat Q mit Q(n) : P(n + k 1) Somit gilt: n N k : P(n) n N : Q(n) Praktisch genügt es, einfach den Induktionsanfang auf k zu legen. Dies geht natürlich auch in die andere Richtung. Um n N 0 : R(n) zu zeigen, legen wir den Induktionsanfang auf n = 0. Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
8 Beispiel 4.6 (i) Für alle n N 0 gilt: n i 2 = i=1 n(n + 1)(2n + 1) 6 (ii) Für alle n N gilt: n (2i 1) = n 2 i=1 (iii) Für alle n N 0 und alle x R \ {1} gilt: n i=0 x i = x n+1 1 x 1 Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
9 Fortsetzung Beispiel. (iv) Für alle n N gilt: 7 n 1 ist ein Vielfaches von 6 (v) Für alle natürlichen Zahlen n 4 gilt: n! > 2 n Beweise an der Tafel. Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
10 Fibonacci-Zahlen Definition 4.7 Die Fibonacci-Zahlen F n sind für n N 0 wie folgt definiert: F 0 = 0 F 1 = 1 F n = F n 1 + F n 2 für n 2 Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
11 Leonardo da Pisa Auch Fibonacci genannt ( ), war Rechenmeister in Pisa und gilt als einer der bedeutendsten Mathematiker des Mittelalters. Die Fibonacci-Zahlen gehen auf eine Übungsaufgabe von Fibonacci zur Vermehrung von Kaninchen zurück. Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
12 Formel von Moivre-Binet Satz 4.8 Für alle n N 0 gilt: Beweis. F n = 1 5 (( 1 + ) n ( 5 2 Mittels vollständiger Induktion, Übungsaufgabe. 1 ) n ) 5 2 Der Beweis für die Korrektheit einer expliziten Formel ist i.d.r. viel einfacher als die Herleitung solch einer expliziten Formel. Im nächsten Semester lernen Sie einen ersten Ansatz zur Herleitung solch expliziter Formeln kennen. Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
13 Strukturelle Induktion Wir können vollständige Induktion auch anwenden, um zu zeigen, dass eine Eigenschaft P(x) für alle Elemente einer rekursiv definierten Menge M gilt. Der Induktionsanfang entspricht dabei dem Nachweis, dass P(x) für alle explizit angegebenen Elemente von M gilt und der Induktionsschritt entspricht dem Nachweis, dass P(y) gilt, wenn sich y aus den Elementen x 1,..., x k M erzeugen lässt. Dabei dürfen wir P(x 1 )... P(x k ) als Induktionsvoraussetzung annehmen. Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
14 Beispiel 4.9 Wir betrachten die Menge M, die definiert ist durch: (i) 7 M (ii) Gilt x, y M, dann gilt auch 3x M und x + y M. Wir wollen zeigen, dass alle Elemente von M durch 7 teilbar sind, also: x M : 7 x Induktionsanfang: 7 7 ist wahr. Induktionsschritt: Es gelte x, y M. Mit Induktionsvoraussetzung folgt 7 x und 7 y, d. h. a N : 7a = x b N : 7b = y Aus der ersten Aussage folgt 7 3a = 3x, also gilt auch 7 3x. Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
15 Fortsetzung Beispiel. Wenn wir die Gleichungen der beiden Aussagen addieren, erhalten wir 7a + 7b = x + y 7(a + b) = x + y Also gilt auch 7 (x + y). Bemerkungen: Die Induktion geht hier über die Anzahl der Ableitungsschritte, um ein Element x herzuleiten. Wir beweisen praktisch, dass die Aussage Q(n) : Eigenschaft P gilt für alle Elemente, die mit n Schritten für alle n N 0 gilt. abgeleitet werden können Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
16 Strukturelle Induktion für formale Sprachen Die wichtigsten Mengen in der Informatik, die rekursiv definiert sind, sind formale Sprachen. Strukturelle Induktion erlaubt es uns nun, Spracheigenschaften induktiv entlang der Syntaxregeln nachzuweisen. Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
17 Beispiel 4.10 Wir wollen zeigen: Beweismethoden In jeder aussagenlogischen Formel ist die Anzahl der öffnenden Klammern gleich der Anzahl der schließenden Klammern. Zur Vereinfachung führen wir folgende Notation ein: Für ein Zeichen c und eine aussagenlogische Formel α bezeichnet α c die Anzahl der Vorkommen von c in α. Die Menge A der aussagenlogischen Formeln ist rekursiv definiert (siehe Folie 43). Induktionsanfang: Atomare Formeln sind die aussagenlogischen Konstanten 0 und 1 und die Aussagenvariablen. Diese Formeln enthalten keine Klammern, also 0 ( = 0 = 0 ) 1 ( = 0 = 1 ) x ( = 0 = x ) für alle x V Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
18 Fortsetzung Beispiel. Somit gilt die zu beweisende Aussage für alle atomaren Formeln. Induktionsschritt: Für gegebene Formeln α, β A können gemäß Definition von A die Formeln γ = (α β), δ = (α β), ɛ = α gebildet werden. Nach Induktionsvoraussetzung gilt α ( = α ) und β ( = β ). Wir erhalten γ ( = α ( + β ( + 1 = α ) + β ) + 1 = γ ) δ ( = α ( + β ( + 1 = α ) + β ) + 1 = δ ) ɛ ( = α ( = α ) = ɛ ) Damit ist der Induktionsschritt für alle Fälle bewiesen. Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
19 Zusammenfassung Beweisverfahren: direkter Beweis, indirekter Beweis, Widerspruchsbeweis, Ringschluss um zu zeigen, dass eine Aussage P(n) für alle n N wahr ist. vollständige Induktion = Induktionsanfang plus Induktionsschritt Induktionsanfang kann verschoben werden, um die Gültigkeit von P(n) für alle n N k zu zeigen. Strukturelle Induktion: für formale Sprachen Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/ / 288
Fachwissenschaftliche Grundlagen
Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 8. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 8. Vorlesung 1 / 25 Themen
1 Das Prinzip der vollständigen Induktion
1 1 Das Prinzip der vollständigen Induktion 1.1 Etwas Logik Wir nennen eine Formel oder einen Satz der Alltagssprache eine Aussage, wenn sie wahr oder falsch sein kann. Die Formeln 2 = 3, 2 4, 5 5 sind
Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den
Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht
Rhetorik und Argumentationstheorie.
Rhetorik und Argumentationstheorie 2 [[email protected]] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom
Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)
WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14
Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.
Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht
Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion
Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil
Induktive Beweise und rekursive Definitionen
Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1
Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier [email protected]
Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier [email protected] 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre
TU8 Beweismethoden. Daniela Andrade
TU8 Beweismethoden Daniela Andrade [email protected] 12.12.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2
Rechenregeln für Summen
Rechenregeln für Summen Im Umgang mit Summen sind gewisse Regeln zu beachten. 1 Summe gleicher Summanden Betrachten wir folgende Summe: x Hier enthält x keinen Summationsindex, d.h. es wird x einfach n-mal
Fachwissenschaftliche Grundlagen
Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Elementare Beweismethoden
Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe
Folgen und endliche Summen
Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen
Vorlesung. Vollständige Induktion 1
WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen
Vollständige Induktion
Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen
Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung
Mathematisches Institut II.06.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 3: Elementare Beweismethoden: Direkter Beweis,
Induktive Beweise und rekursive Definitionen
Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1
Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann
Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen
3 Vollständige Induktion
3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische
Handout zu Beweistechniken
Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1
ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER
ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER FORMALE SPRACHEN Bevor wir anfangen, uns mit formaler Logik zu beschäftigen, müssen wir uns mit formalen Sprachen beschäftigen Wie jede natürliche Sprache,
Wiederholung Vorlesungen 1 bis 8
Wiederholung Vorlesungen 1 bis 8 Aufgabe 1 a) Sind die im Folgenden gegebenen Ausdrücke als Folge interpretierbar? Wenn ja, wie? i) 1,,4,8,16,3,64,..., ii)... 5, 3, 1,1,3,5,..., iii) 3,10,π,4, 1 7,10,1,14,16,18,...
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Große Übung #2 Phillip Keldenich, Arne Schmidt 10.11.2016 Organisatorisches Fragen? Checkliste: Anmeldung kleine Übungen Anmeldung Mailingliste Dies ersetzt nicht die Prüfungsanmeldung!
Themen: Kubische Gleichungen, Ungleichungen, Induktion
Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,
1 Mengen und Aussagen
Mathematik für Physiker I, WS 010/011 Montag 01.11 $Id: mengen.tex,v 1.4 010/11/01 14:19:48 hk Exp $ $Id: beweise.tex,v 1.3 010/11/05 06:40:11 hk Exp $ 1 Mengen und Aussagen Wir haben jetzt Allaussagen
Mathematische Grundlagen der Computerlinguistik
Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum
SS April Übungen zur Vorlesung Logik Blatt 1. Prof. Dr. Klaus Madlener Abgabe bis 27. April :00h
SS 2011 20. April 2011 Übungen zur Vorlesung Logik Blatt 1 Prof. Dr. Klaus Madlener Abgabe bis 27. April 2011 10:00h 1. Aufgabe: [strukturelle Induktion, Übung] Zeigen Sie mit struktureller Induktion über
Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln
Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt
Übung Grundbegriffe der Informatik
Übung Grundbegriffe der Informatik 15. und letzte Übung Karlsruher Institut für Technologie Matthias Janke, Gebäude 50.34, Raum 249 email: matthias.janke ät kit.edu Matthias Schulz, Gebäude 50.34, Raum
Hilbert-Kalkül (Einführung)
Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe
Lösungen. 1. Klausur zur MIA: Analysis I für Mathematiker
MATHEMATISCHES INSTITUT WS 006/07 DER UNIVERSITÄT MÜNCHEN Prof. Dr. M. Schottenloher Dr. S. Tappe Version 5.. Lösungen zur. Klausur zur MIA: Analysis I für Mathematiker vom 6..06 Aufgabe. ( + Punkte) a)
Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013
Übung zu Grundbegriffe der Informatik Simon Wacker 15. November 2013 Vollständige Induktion über die Wortlänge Es sei B ein Alphabet. Dann ist B = n N 0 B n. Für jedes Wort w B sei A w eine Aussage, die
Kapitel III. Aufbau des Zahlensystems
Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.
Ersetzbarkeitstheorem
Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen
A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )
Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl
Also kann nur A ist roter Südler und B ist grüner Nordler gelten.
Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf
3. Argumentieren und Beweisen mit Punktemustern
3 Punktemuster 22 3. Argumentieren und Beweisen mit Punktemustern 3.1 Figurierte Zahlen Gerade in der Grundschule bietet es sich immer wieder an, Zahlen durch Gegenstände zu verdeutlichen. Andererseits
3. rekursive Definition einer Folge
3. rekursive Definition einer Folge In vielen Fällen ist eine explizite Formel für das n-te Glied nicht bekannt, es ist hingegen möglich, aus den gegebenen Gliedern das nächste Glied zu berechnen, d.h.
Lösung zur Übung für Analysis einer Variablen WS 2016/17
Blatt Nr. 3 Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 206/7 Aufgabe Das Guthaben G setzt sich zusammen aus der Summe aller bisherigen Einzahlungen multipliziert mit ( + p) k, wobei
mathe plus Aussagenlogik Seite 1
mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet
Würzburg. Gleichungen 1 E1. Vorkurs, Mathematik
Würzburg Gleichungen E Diophantos von Aleandria einer der Begründer der Algebra Diophantos von Aleandria (um 250 n. Chr.), griechischer Mathematiker. Diophantos behandelte lineare und quadratische Gleichungen.
Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)
Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /
Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln
Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht
Induktive Definitionen
Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Induktive Definitionen
Wie werden die Vorlesungen/Übungen organisiert?
Wie werden die Vorlesungen/Übungen organisiert? Mein Name: Prof Vladimir Matveev Sprechstunden: nach jeder Vorlesung bzw in der Pause Homepage der Vorlesung: http://usersminetuni-jenade/~matveev/lehre/la13/
11. Folgen und Reihen.
- Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a
6 Reelle und komplexe Zahlenfolgen
Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun
Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1
Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:
Mathematik und Logik
Mathematik und Logik 5. Übungsaufgaben 2006-11-21 1. Beweisen Sie, daß die Aussage allgemeingültig ist. A = A Beweis. Dies ist ein Spezialfall von (((A = B) = B) = B) = (A = B), was wir wie folgt beweisen.
Resolutionsalgorithmus
112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:
Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen
Mathematik für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler Musterprüfung mit Lösungen. Sei T N. (a Unter welchen beiden Voraussetzungen an T garantiert das Induktionsaxiom (nach
Grundbegriffe der Informatik Tutorium 2
Grundbegriffe der Informatik Tutorium 2 Tutorium Nr. 32 Philipp Oppermann 13. November 2013 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls
Kapitel 1.5 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2012/13) Kapitel 1.5: Kalküle 1/30 Syntaktischer
Kapitel 3. Natürliche Zahlen und vollständige Induktion
Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine
Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau
Logik für Informatiker 1. Grundlegende Beweisstrategien Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Mathematisches Beweisen Mathematische ussagen - haben oft
Übungen Mathematik I, M
Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0) 09.0.0. Kommissar K hat 3 Tatverdächtige P, Q und R. Er weiß: (a) Wenn sich Q oder R als Täter herausstellen, dann ist P unschuldig.
Vorsemesterkurs Informatik
Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung
Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge
Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem
Thema 3 Folgen, Grenzwerte
Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N
Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen
Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,
Normalformen boolescher Funktionen
Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion
TECHNISCHE UNIVERSITÄT MÜNCHEN
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester
3 Vom Zählen zur Induktion
7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,
Logic in a Nutshell. Christian Liguda
Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung
Die Ackermannfunktion
Die Ackermannfunktion Slide 1 Die Ackermannfunktion Hans U. Simon (RUB) Email: [email protected] Homepage: http://www.ruhr-uni-bochum.de/lmi Die Ackermannfunktion Slide 2 Eine Frage zu Anfang Ist jede intuitiv
Induktive Definitionen
Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive
5 Grundlagen der Zahlentheorie
5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk
5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56
5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten
Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden:
Übungsaufgaben 1. Aufgabe 1 Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: a. x ist eine gerade Zahl. Aussageform b. 10 ist Element der Menge A.
Mathematische Grundlagen der Ökonomie Übungsblatt 8
Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H 5+7+8 = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume
Analysis I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen
Mengen und Abbildungen
Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen
Theoretische Informatik. Alphabete, Worte, Sprachen
Theoretische Informatik Alphabete, Worte, Sprachen Alphabete, Worte, Sprachen 1. Alphabete und Worte Definitionen, Beispiele Operationen mit Worten Induktionsbeweise 2. Sprachen Definition und Beispiele
Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016
Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe16 Ronja Düffel 21. März 2016 Logik und Beweise Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe.
Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1
Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische
ist ein regulärer Ausdruck.
Dr. Sebastian Bab WiSe 12/13 Theoretische Grlagen der Informatik für TI Termin: VL 11 vom 22.11.2012 Reguläre Ausdrücke Reguläre Ausdrücke sind eine lesbarere Notation für Sprachen Denition 1 (Regulärer
äußere Klammern können entfallen, ebenso solche, die wegen Assoziativität von + und Konkatenation nicht notwendig sind:
3. Reguläre Sprachen Bisher wurden Automaten behandelt und Äquivalenzen zwischen den verschiedenen Automaten gezeigt. DEAs erkennen formale Sprachen. Gibt es formale Sprachen, die nicht erkannt werden?
Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung
Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans 23.07.2012 Dipl.-Inform. Markus Bender Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung
Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich
Lineare Algebra U Stammbach Professor an der ETH-Zürich I Vektorräume Kapitel I Vektorräume 1 I1 Lineare Gleichungssysteme 1 I2 Beispiele von Vektorräumen 7 I3 Definition eines Vektorraumes 8 I4 Linearkombinationen,
Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.
Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )
Identitätssatz für Potenzreihen
Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,
3. Grundlegende Begriffe von Logiken - Aussagenlogik
3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,
Brückenkurs Mathematik. Dienstag Freitag
Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................
1.2 Eigenschaften der ganzen Zahlen
Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen
Zur Ästhetik mathematischer Beweisführung
Zur Ästhetik mathematischer Beweisführung Jens-Peter M. Zemke [email protected] Institut für Numerische Simulation Technische Universität Hamburg-Harburg 23.10.2006 TUHH Jens-Peter M. Zemke Zur Ästhetik
5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen
5. Mathematik Olympiade Saison 1965/1966 Aufgaben und Lösungen 1 OJM 5. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und
Fibonacci-Zahlen und Goldener Schnitt
Fibonacci-Zahlen und Goldener Schnitt Arno Fehringer Gymnasiallehrer für Mathematik und Physik März 04 Treppensteigen Auf wie viele Arten kann man eine Treppe mit n Stufen begehen wenn man oder Stufen
Übungen zu Grundlagen der Logik in der Informatik - WS15/16
Übungen zu Grundlagen der Logik in der Informatik - WS15/16 1 / 11 Übungen zu Grundlagen der Logik in der Informatik - WS15/16 Donnerstag 14:15-15:45, Cauerstraße 7/9, Raum 0.154-115 Freitag 14:15-15:45,
Vertiefungskurs Mathematik
Vertiefungskurs Mathematik Anforderungen für das Universitäts-Zertifikat im Schuljahr 01/13 Grundvoraussetzung: Teilnahme am Vertiefungskurs Mathematik in Klasse 11. Inhaltliche Voraussetzungen: Aussagenlogik
Vorkurs Mathematik für Informatiker. 1 Potenzen. Michael Bader, Thomas Huckle, Stefan Zimmer Oktober Kap.
1 Potenzen Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 1: Potenzen 1 Potenzen Definition Für reelle Zahl x R (Basis) und eine natürliche Zahl n N (Exponent): x n := x x x... x }{{}
6. Induktives Beweisen - Themenübersicht
6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise
