Rechenregeln für Summen
|
|
|
- Katharina Pfeiffer
- vor 9 Jahren
- Abrufe
Transkript
1 Rechenregeln für Summen Im Umgang mit Summen sind gewisse Regeln zu beachten. 1 Summe gleicher Summanden Betrachten wir folgende Summe: x Hier enthält x keinen Summationsindex, d.h. es wird x einfach n-mal aufsummiert: x x + x x nx {{ n mal Eine ähnliche Situation besteht bei folgender Summe: x l Hier besitzt x zwar einen Summationsindex, aber dieser ist ungleich dem Index des Summenzeichens, d.h. x l ist in diesem Fall ebenfalls als Konstante zu behandeln: x l nx l Multiplikation mit einem konstanten Faktor In der Summe cx 1 + cx cx n
2 wird jede Realisierung der Variable X mit einem konstanten Faktor c multipliziert. Dieser Faktor könnte jede beliebige Zahl sein. Aus dieser Summe kann man den konstanten Faktor herausziehen, d.h. Ein Beispiel dazu: cx 1 + cx cx n c(x 1 + x x n ). Seien x 1,..., x 5 5 verschiedene Körpergewichte (in kg): x 1 75 x 80 x 3 85 x 1 90 x Wenn es jeweils Personen mit demselben Körpergewicht gibt, dann ist das Gesamtgewicht aller Personen: 5 x i x 1 + x + x 3 + x 4 + x Eine alternative Vorgangsweise das Gesamtgewicht auszurechnen ist: 5 x i (x 1 + x + x 3 + x 4 + x 5 ) ( ) Eine oft angewendete Rechenregel ist: Falls x i Messwerte sind, dann sind x i c d linear transformierte Messwerte. Ihre Summation ergibt 5 x i 5 (c d)
3 cx 1 + d + cx + d cx n + d cx 1 + cx cx n + d d {{ n mal c(x 1 + x x n ) + nd c nd 3 Aufspalten einer Summe Es erweist sich manchmal als notwendig eine Summe aufzuspalten, d.h.: x i x x a {{ + x a x b {{ x m x n {{ a ii (1 a < b <... < m < n). b ia+1 x i im+1 Wenn z.b. eine Person die Haushaltsausgaben (monatlich) eines Jahres in die 4 Quartale aufteilen will (x i sind die Ausgaben des i-ten Monats in Euro, i 1,..., 1), dann schreibt man 1 x i x 1 + x + x {{ 3 Ausgaben 1.Quartal + x 7 + x 8 + x {{ 9 Ausgaben 3.Quartal 3 6 i4 + x 4 + x 5 + x {{ 6 Ausgaben.Quartal + x 10 + x 11 + x {{ 1 Ausgaben 4.Quartal 9 1 i7 0 x i. 4 Addition von Summen gleicher Länge Es gilt
4 (a i + b i + c i +...) a i + b i + c i +... Da die Reihenfolge der Summation von Faktoren beliebig ist, kann man z.b. die Summe i { { { { a 1 + b 1 + c 1 + a + b + c {{ a i+b i +c i auch folgendermaßen anschreiben: a 1 + a {{ + b 1 + b {{ + c 1 + c {{. a i b i c i 5 Umindizierung Wenn a eine beliebige ganze Zahl ist, gilt n+a x i x 0 + x x n x a a + x 1+a a x n+a a x j a i0 ja Das heisst, man kann die Grenzen einer Summe ändern, indem man den ursprünglichen Summationsindex substituiert. Wenn z.b. der Index i von 0 bis n läuft, und man substituiert i im Faktor x i mit j a (wobei a eine ganze Zahl ist), dann muss j a natürlich auch von 0 bis n laufen. i j a > j a + i (da i 0,..., n) a + 0, a + 1,..., a + n D.h. der neue Laufindex j läuft von a bis n + a: n+a x i x j a i0 ja
5 6 Doppelsummen Eine Doppelsumme ist folgendermaßen definiert: x i y j x 1 y 1 + x y x n y 1 j1 + x 1 y + x y x n y. + x 1 y n + x y n x n y n. Dazu ein Beispiel falls n : x i y j j1 j1 j { { { { ( x i y 1 + x i y ) {{ j1 x iy j x 1 y 1 + x 1 y {{ + x y 1 + x y {{ i x 1 y 1 + x y 1 + x 1 y + x y. 7 Weitere Regeln, die zu beachten sind Im allgemeinen ist x i y i x 1 y 1 + x y x n y n ungleich ( n ) ( n ) x i y i (x 1 + x x n )(y 1 + y y n ). Dazu ein Beispiel. Nehmen wir an, dass n. Dann ist x i y i x 1 y 1 + x y
6 und ( ( ) x i) y i (x 1 + x )(y 1 + y ) x 1 y 1 + x 1 y + x y 1 + x y, wobei im allgemeinen Weiters gilt x 1 y 1 + x y x 1 y 1 + x 1 y + x y 1 + x y. x i ( n ) x i Auch hierzu ein Beispiel (wieder für n): x i x 1 + x und ( ) x i (x 1 + x ) x 1 + x 1 x + x, wobei auch hier im allgemeinen gilt x 1 + x x 1 + x 1 x + x. 8 Sonderfälle Ein wichtiger Sonderfall ist i n n(n + 1) Beispiel:
7 Die Richtigkeit dieser Gleichung wollen wir durch vollständige Induktion beweisen. Diese Methode funktioniert folgendermaßen: Man betrachtet eine mathematische Aussage, in unserem Fall i n(n + 1), die für alle möglichen n gelten soll (wobei n eine beliebige natürliche Zahl ist). 1. Man zeigt zuerst, dass die Behauptung für ein fixes n, üblicherweise n 1, stimmt (Induktionsanfang).. Der nächste Schritt ist, dass wir annehmen, daß die Behauptung für n stimmt (Induktionsannahme). 3. Bleibt zu zeigen, dass die Behauptung für n + 1 stimmt, unter der Annahme, dass sie für n erfüllt ist (Induktionsschluss). D.h., wir zeigen zuerst, dass die Formel für n 1 gilt. Aufgrund von Punkt 3 muss die Formel für ALLE n gelten, also n 1,, 3,..., weil man immer den Schritt von n n + 1 macht. Wenn man mit 1 startet ist der Induktionsschritt 1, d.h. die Formel gilt auch für n. Wenn sie für n gilt muss sie auch für n 3 (Induktionsschritt 3) gelten, usw. Wir wollen also zuerst zeigen, dass i n(n + 1), für n 1 gilt: 1 i 1 1 1(1 + 1) also eine wahre Aussage. Jetzt zeigen wir, dass die Formel auch für n + 1 stimmt, wenn wir annehmen, daß sie für n stimmt, d.h. n+1 i (n 1) + n +(n + 1) {{ n i
8 i + (n + 1) n(n + 1) +(n + 1) {{ Ind.annahme n(n + 1) (n + 1) + n(n + 1) + (n + 1) (n + 1)(n + ), womit der Induktionsbeweis abgeschlossen ist. Ein zweiter wichtiger Sonderfall ist i n n(n + 1)(n + 1) 6 Die Benutzerin/der Benutzer dieses Lernpfades möge den Induktionsbeweis zu dieser Formel als Übung selbst durchführen.
Fachwissenschaftliche Grundlagen
Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 8. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 8. Vorlesung 1 / 25 Themen
Vollständige Induktion
30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche
Vollständige Induktion
30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n
1 Mengen und Aussagen
Mathematik für Physiker I, WS 010/011 Montag 01.11 $Id: mengen.tex,v 1.4 010/11/01 14:19:48 hk Exp $ $Id: beweise.tex,v 1.3 010/11/05 06:40:11 hk Exp $ 1 Mengen und Aussagen Wir haben jetzt Allaussagen
Mathematischer Vorkurs
Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Vollständige Induktion Kapitel 13 Vollständige Induktion Mathematischer Vorkurs TU Dortmund Seite 117 / 170 Vollständige
Summenzeichen. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri
Summenzeichen Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 2011 Inhaltsverzeichnis 1 Grundlagen: Summenzeichen 1 1.1 Der Aufbau des Summenzeichens................ 1 1.1.1 Aufgaben.........................
Vollständige Induktion
Vollständige Induktion F. Lemmermeyer. Januar 04 Aussagen, die für alle natürlichen Zahlen gelten, kann man oft mit vollständiger Induktion beweisen. Das Vorgehen ist dabei folgendes:. Man zeigt, dass
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 26. Oktober 2017 1/35 Abbildungen Boolesche Algebra Summen- und Produktzeichen Definition
Vollständige Induktion
Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass
Einführung, III: Verschiedenes
Einführung, III: Verschiedenes.1 Summennotation... 22.2 Regeln für Summen, Newtons Binomische Formeln... 22. Doppelsummen... 2.4 Einige Aspekte der Logik... 2.5 Mathematische Beweise.... 24.6 Wesentliches
2. Grundlagen. A) Mengen
Chr.Nelius: Zahlentheorie (SoSe 2019) 5 A) Mengen 2. Grundlagen Eine Menge ist durch Angabe ihrer Elemente bestimmt. Man kann eine Menge aufzählend oder beschreibend definieren. Im ersten Falle werden
Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise
Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 15. November 2010 http://www.mathematik.uni-trier.de/
Wir wollen nun die Behauptung beweisen, dass die Laufzeit von SELECT linear ist, also dass T (n) = O(n) gilt.
Abschätzung für die Rekursion von SELECT Wir wollen nun die Behauptung beweisen, dass die Laufzeit von SELECT linear ist, also dass T (n) = O(n) gilt. Wir nehmen erst einmal an, dass eine Konstante d existiert,
Dr. Regula Krapf Sommersemester Beweismethoden
Vorkurs Mathematik Dr. Regula Krapf Sommersemester 2018 Beweismethoden Aufgabe 1. Überlegen Sie sich folgende zwei Fragen: (1) Was ist ein Beweis? (2) Was ist die Funktion von Beweisen? Direkte Beweise
Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG
Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG [email protected] September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober
Aufgabensammlung Klasse 8
Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................
Grundlagen der Mathematik
Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =
Der mathematische Beweis
Der mathematische Beweis Im Studium wird man wesentlich häufiger als in der Schule Beweise führen müssen. Deshalb empfiehlt es sich, verschiedene Beweisverfahren intensiv zu trainieren. Beweisstruktur
Vollständige Induktion
Seite 1 Klaus Messner, [email protected] Seite 2 Problem: Problem Man hat eine Aussage (z.b. eine Formel) und soll zeigen, dass diese Aussage für alle natürlichen Zahlen gilt. Beispiel: Es soll gezeigt
Thema 1 Die natürlichen Zahlen
Thema 1 Die natürlichen Zahlen Wir bezeichnen mit N die Menge der natürlichen Zahlen dh N {1,,, } Falls wir das Nullelement 0 dazu nehmen, dann bezeichnen wir die resultierende Menge mit N 0 also N 0 {0,
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil
Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0
Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe
Lineare Algebra II 5. Übungsblatt
Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,
Induktion und Rekursion
Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel
4 Reihen und Finanzmathematik
4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei
Induktive Beweise und rekursive Definitionen
Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1
Grundlagen der Mathematik
Universität Hamburg Winter 016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 6 Grundlagen der Mathematik Präsenzaufgaben (P9) Die Ordnung der natürlichen Zahlen I Wir hatten in der Vorlesung
Mathematik für Wirtschaftswissenschaftler
wi Wirtschaft Pearson Studium Mathematik für Wirtschaftswissenschaftler Das Übungsbuch von Nils Heidenreich, Fred Böker, Britta Schnoor 1. Auflage Mathematik für Wirtschaftswissenschaftler Heidenreich
Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den
Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht
Angewandte Mathematik und Programmierung
Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2013/14 Inhalt Übungserklärung* Beweis durch Vollständige Induktion 2
Vollständige Induktion
Vollständige Induktion Aussageformen mit natürlichen Zahlen als Parametern kann man mit vollständiger Induktion beweisen. Ist A(n) eine von n N abhängige Aussage, so sind dazu die folgenden beiden Beweisschritte
Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg
Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen
Terme, Rechengesetze, Gleichungen
Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =
Mathematik und Logik
Mathematik und Logik 5. Übungsaufgaben 2006-11-21 1. Beweisen Sie, daß die Aussage allgemeingültig ist. A = A Beweis. Dies ist ein Spezialfall von (((A = B) = B) = B) = (A = B), was wir wie folgt beweisen.
Mathematisches Argumentieren und Beweisen Beweisarten Besipiele. Hagen Knaf, WS 2014/15
Mathematisches Argumentieren und Beweisen Beweisarten Besipiele Hagen Knaf, WS 2014/15 Im Folgenden sind einige der in der Vorlesung besprochenen Beispielbeweise für die verschiedenen Beweisarten aufgeführt
3 Vollständige Induktion
3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon
2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).
17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften
$Id: reell.tex,v /11/07 11:22:18 hk Exp $
$Id: reell.tex,v.4 206//07 :22:8 hk Exp $ Die reellen Zahlen.4 Das Vollständigkeitsaxiom Am Ende der letzten Sitzung hatten wir die sogenannte archimedische Eigenschaft der reellen Zahlen bewiesen, gegeben
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil
Mathematische Grundlagen der Computerlinguistik
Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum
Themen: Kubische Gleichungen, Ungleichungen, Induktion
Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,
1 Aufbau des Zahlensystems
1 Aufbau des Zahlensystems 1.1 Die Menge N der natürlichen Zahlen 1.1.1 Definition Die mathematischen Eigenschaften dieser durch das Abzählen von Gegenständen motivierten Zahlenmenge lassen sich auf die
Kapitel 11 Beweisführung. Mathematischer Vorkurs TU Dortmund Seite 125 / 254
Kapitel 11 Beweisführung Kapitel 11 Beweisführung Mathematischer Vorkurs TU Dortmund Seite 125 / 254 Kapitel 11 Beweisführung Grundsätzlich: ein mathematischer Satz ist eine Aussage der Form wenn... gilt,
Folgen und endliche Summen
Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen
Zahlenmengen. Bemerkung. R Menge aller Dezimalbrüche: reelle Zahlen, C = {a + i b : a, b R} mit i 2 = 1 komplexe Zahlen.
Zahlenmengen N = {0, 1,, 3,...} natürliche Zahlen, Z = {...,, 1, 0, 1,,...} ganze Zahlen, Q = {p/q : p Z, q N \ {0}} rationale Zahlen, R Menge aller Dezimalbrüche: reelle Zahlen, C = {a + i b : a, b R}
4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben.
4 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei (a k ) k N eine Folge. Wir definieren
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 018/19 Steven Köhler [email protected] mathe.stevenkoehler.de c 018 Steven Köhler Wintersemester 018/19 Inhaltsverzeichnis Teil 1 Teil Teil
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik
Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen
2 Rationale und reelle Zahlen
2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist
Jede beschränkte und monotone Folge (a n ) n N konvergiert, d.h. es gibt ein a R, so dass lim
Beispiel 3.10 ( 1) n n a n a+nd aq n 1 (a > 0) n monoton steigend d 0 q 1 nein nein streng monoton steigend d > 0 q > 1 nein nein monoton fallend d 0 0 q 1 streng monoton fallend d < 0 0 < q < 1 ja nein
Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.
Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht
1 Übersicht Induktion
Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender 0.11.01 (v1.3) 1 Übersicht Induktion 1.1 Allgemeines Unter einem induktiven Vorgehen versteht
Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann
Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen
Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n.
Die Fakultät Definition: Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. n! = 1 2 3... (n 2) (n 1) n Zusätzlich wird definiert 0! = 1 Wie aus der Definition
Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4
Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein
Kapitel 1. Grundlegendes
Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0
Hinweis: Aus Definition 1 und 2 folgt, dass die Zahl 0 zu den geraden Zahlen zählt.
Der Satz vom ausgeschlossenen Dritten. Der Satz vom ausgeschlossenen Dritten besagt, dass für jeden (wahrheitsfähigen) Satz gilt: Entweder der Satz oder seine Negation ist wahr. Wenn m. a. W. gezeigt werden
Analysis I: Übungsblatt 1 Lösungen
Analysis I: Übungsblatt 1 Lösungen Verständnisfragen 1. Was ist Mathematik? Mathematik ist eine Wissenschaft, die selbstgeschaffene, abstrakte Strukturen auf ihre Eigenschaften und Muster hin untersucht.
3 Primzahlen. j,... stets Primzahlen. 3.1 Satz. Jedes a > 1 ist als Produkt von Primzahlen darstellbar (Primfaktorzerlegung. n=1
3 Primzahlen Die Zahl 1 hat nur einen positiven Teiler, nämlich 1. Jede Zahl a > 1 hat mindestens zwei positive Teiler: 1 und a. Definition. Eine Primzahl ist eine Zahl a > 1, welche nur die Teiler 1 und
3 Vom Zählen zur Induktion
7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,
2 RECHENGESETZE 2 auch dieses Rechengesetz gilt, wenn einmal bewiesen, natürlich vorwärts wie rückwärts, also gilt dann ebenfalls: Es folgt wieder der
1 DEFINITION DER POTENZIERUNG 1 Potenzgesetze 1 Definition der Potenzierung Wir definieren für eine rationale Zahl a und eine natürliche Zahl n die Potenzierung wie folgt: a n := a a a ::: a Diese Art
Kombinatorik: Abzählverfahren (Teschl/Teschl 7) Summenregel. Allgemeiner
Kombinatorik: Abzählverfahren (Teschl/Teschl 7) Fragestellung: Wie viele verschiedene Möglichkeiten gibt es, Elemente auszuwählen, z. B. Anzahl verschiedener möglicher Passwörter, IPAdressen, Zahlenkombinationen
Brückenkurs Mathematik. Dienstag Freitag
Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................
Induktion und Rekursion
Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für
Logik für Informatiker
Dr. Christian Săcărea Babeş Bolyai Universität, Cluj-Napoca Fachbereich Mathematik und Informatik Wintersemester 2017/2018 Lösungshinweise zur 1. Übung Logik für Informatiker Gruppenübungen: (G 1)Induktion
Lösung zu Serie 3. Lineare Algebra D-MATH, HS Prof. Richard Pink. Sei K ein beliebiger Körper.
Lineare Algebra D-MATH, HS 204 Prof. Richard Pink Lösung zu Serie 3 Sei K ein beliebiger Körper.. [Aufgabe] Sei n Z 0 eine gegebene nicht-negative ganze Zahl. Übersetzen Sie die folgenden Aussagen in eine
λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n.
Folgen Es sei X eine beliebige Menge. Eine Folge mit Werten in X ist eine Abbildung von N nach X. Es wird also jeder natürlichen Zahl n (dem Index) ein Element a n aus X zugeordnet (das n-te Folgenglied).
Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau
Logik für Informatiker 1. Grundlegende Beweisstrategien Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Mathematisches Beweisen Mathematische ussagen - haben oft
Kapitel 4. Reihen 4.1. Definition und Beispiele
Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um
Fachwissenschaftliche Grundlagen
Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen
6. Induktives Beweisen - Themenübersicht
6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise
Skript und Übungen Teil II
Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 4: Wörter (und vollständige Induktion) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/29 Überblick Wörter Wörter Das leere Wort Mehr zu
Vorkurs: Mathematik für Informatiker. Wintersemester 2013/14 Lösungen
Vorkurs: Mathematik für Informatiker Wintersemester 2013/14 Lösungen Steven Köhler [email protected] mathe.stevenkoehler.de Jennifer Maier [email protected] Marcel Morisse [email protected]
1 Zahlentheorie. 1.1 Kongruenzen
3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern
1.) Rekursion und Induktion: Rechnen mit natürlichen Zahlen
1) Rekursion und Induktion: Rechnen mit natürlichen Zahlen Aufbauend auf: "Anwendungen: Sätze, Beweise, Algorithmen und Programme", "Fasern" Aufgaben: 9 > restart; Axiomatik der natürlichen Zahlen Wir
Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.
Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )
Hinweise zur Logik. Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009
Hinweise zur Logik Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009 Im folgenden soll an einige Grundsätze logisch korrekter Argumentation erinnert werden. Ihre Bedeutung
mathe plus Aussagenlogik Seite 1
mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet
6 Polynomielle Gleichungen und Polynomfunktionen
6 Polynomielle Gleichungen und Polynomfunktionen Lineare Gleichungen Eine lineare Gleichung in einer Variablen ist eine Gleichung der Form ax + b = cx + d mit festen Zahlen a und c mit a c. Dies kann man
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis 1 Beweistechniken 1.1 Prädikatenlogik..................................... 1. Direkter Beweis.................................... 3 1.3 Indirekter Beweis....................................
1 Zahlenmengen und einige mathematische Symbole
1 Zahlenmengen und einige mathematische Symbole Inhalt 1.1 Vorbemerkung................................................... 3 1.2 Zahlenmengen................................................... 4 1.3 Summenzeichen..................................................
Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann
Ordinalzahlen Im Rahmen der Ordnungsrelationen wurden bisher die Begriffe Partialordnung und Totalordnung (lineare Ordnung) erwähnt. Ein weiterer wichtiger Ordnungsbegriff ist die Wohlordnung. Wohlgeordnete
Die Standardabweichung
Die Standardabweichung Ein anderes Maß, das wir im Zusammenhang mit den Messdaten und ihrem Durchschnittswert kennenlernen, ist die sogenannte Standardabweichung der Messdaten von ihrem arithmetischen
Mathematische Grundlagen (01141) SoSe 2009
Mathematische Grundlagen (04) SoSe 2009 Klausur am 29.08.2009: Musterlösungen Aufgabe Im Induktionsanfang sei n 0 = 0. Dann gilt Somit gilt der Induktionsanfang. 0 Die Induktionsvoraussetzung ist, dass
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Wintersemester 2012/13 Lösungen Steven Köhler [email protected] mathe.stevenkoehler.de Jennifer Maier [email protected] Marcel Morisse [email protected]
Grundkurs Mathematik I
Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 9 In theory, theory and praxis are the same, in praxis they aren t Die Multiplikation auf den natürlichen Zahlen Zur Definition
A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )
Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl
Folgen und Reihen. Kapitel Zahlenfolgen
Kapitel 2 Folgen und Reihen 2. Zahlenfolgen Definition. Eine Folge reeller Zahlen a 0,a,a 2,..., die gewonnen wird durch eine Vorschrift, die jeder natürlichen Zahl n N genau eine reelle Zahl a n zuordnet,
