Grundkurs Mathematik I
|
|
|
- Kristin Schäfer
- vor 9 Jahren
- Abrufe
Transkript
1 Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 9 In theory, theory and praxis are the same, in praxis they aren t Die Multiplikation auf den natürlichen Zahlen Zur Definition der Multiplikation verwenden wir wieder das Prinzip, dass man mit natürlichen Zahlen zählen kann. Die Addition haben wir bereits zur Verfügung und insbesondere können wir eine natürliche Zahl mit sich selbst addieren. Wir können auch Summen der Form b+b+b+ +b+b benutzen und können dabei, wegen der Assoziativität der Addition, auf Klammern verzichten. Die Anzahl der Summanden ist dabei eine wohldefinierte natürliche Zahl. Dies nehmen wir zur Grundlage für die Multiplikation. 1 Definition 9.1. Das Produkt a b zweier natürlicher Zahlen ist definiert als die a-fache Summe der Zahl b mit sich selbst. Wichtig ist hier, dass a die Anzahl der Summanden angibt, also wie oft b zu nehmen ist, und nicht die Anzahl der Additionen (die Anzahl des Pluszeichens), die dabei auszuführen sind. Diese Anzahl ist um eins kleiner. Es sprichtaberaucheinigesdafür,dassmanvon0ausgehtunddazudanna-fach die Operation +b durchführt. Dann hat man 0+b+b+ +b+b und a-fach den gleichen Prozess. Die beiden Zahlen a und b heißen Faktoren, das Ergebnis heißt das Produkt, die Verknüpfung heißt Multiplikation. 1 Man beachte, dass hier die erste Zahl angibt, wie oft die zweite Zahl mit sich selbst zu addieren ist. Bei der Definition der Adition gibt gemäß unserer Definition die zweite Zahl an, wie oft von der ersten Zahl ausgehend der Nachfolger zu nehemn ist. Bei der Potenzierung gibt wiederum die zweite hochgestellte Zahl an, wie oft die erste untenstehende Zahl mit sich selbst zu multiplizieren ist. Es gibt hier also keine einheitliche Reihenfolge, welche Zahl die Anzahl der Prozesse festlegt. In der Multiplikation soll die erste Zahl die Prozesse zählen, weil man drei Kühe sagt und nicht Kühe drei. 1
2 2 Wenn man die Addition beherrscht, so ist es einfach, die Multiplikation auszuführen und eine Tabelle für kleine Zahlen aufzustellen. Die Multiplikationstabelle für zwei Zahlen zwischen 0 und 10, das sogenannte kleine Einmaleins lässt sich so erstellen(auch in anderen Systemen). Man kann dann grundsätzlich sämtliche Multiplikationen im Zehnersystem darauf zurückführen, was im schriftlichen Multiplizieren ausgenutzt wirdfußnote. Um große Zahlen effektiv miteinander multiplizieren zu können, muss man das kleine Einmaleins auswendig kennen. Eigentlich sollte man die 10 aus dem kleinen Einmaleins herausnehmen, da die Zehnerreihe sich im Dezimalsystem auf kleinere Rechungen zurückführen lässt. Für die soeben eingeführte Multiplikation möchte man die vertrauten Eigenschaften wie beispielsweise die Kommutativität etablieren. Dies geschieht in folgendem Lemma. Lemma 9.2. Für die Multiplikation der natürlichen Zahlen (mit der in der Definition 9.1 festgelegten Multiplikation) gelten folgende Aussagen. (1) Es gilt 0 n = 0 = n 0 für alle n. (2) Es gilt 1 n = n = n 1 für alle n, d.h. 1 = 0 ist das neutrale Element für die Multiplikation. (3) Es ist k n = k n+n und n k = n k +n für alle n,k N. (4) Die Multiplikation ist kommutativ.
3 3 (5) Für beliebige k,m,n N gilt k (m+n) = k m+k n (Distributivgesetz). (6) Die Multiplikation ist assoziativ. Beweis. (1) Die zweite Gleichung ist klar, da unabhängig davon, wie oft die 0 mit sich selbst addiert wird, stets 0 herauskommt. Die erste Gleichung kann man als eine Konvention oder auch als Teil der Definition ansehen: Eine Summe, in der überhaupt keine Zahl vorkommt (die leere Summe), ist als 0 zu interpretieren. (2) Die erste Gleichung ist klar, der Ausdruck 1 n besagt einfach, dass die Zahl n einmal dasteht. Die zweite Gleichung bedeutet, dass die n-fache Addition der 1 mit sich selbst gleich n ist. Dies zeigen wir durch Induktion nach n, wobei der Induktionsanfang (für n = 0,1 klar ist). Sei die Aussage also schon für n bewiesen. Der Unterschied zwischen n 1 und n 1 besteht darin, dass im zweiten Fall einmal mehr +1 dasteht. Somit ist n 1 = n 1+1 = n+1 = n. (3) Die linke Gleichung ergibt sich unmittelbar aus der Definition. Die rechte Gleichung ergibt sich aus n k = k } + +k {{} = (k +1)+ +(k +1) }{{} = k + +k }{{} = n k +n }{{} (4) Die Kommutativität beweisen wir durch Induktion nach k, und zwar beweisen wir die Behauptung n k = k n für alle n. Der Fall k = 0 ist klar, da dann beidseitig 0 steht. Sei die Gesamtaussage also für ein bestimmtes k und beliebiges n bereits bewiesen. Dann ist unter Verwendung von (3) und der Induktionsvoraussetzung (5) Das Distributivgesetz n k = n k +n = k n+n = k n. k (m+n) = k m+k n beweisen wir durch Induktion nach k für beliebige m,n. Der Fall k = 0 ist klar, da beidseitig 0 rauskommt. Unter Verwendung der
4 4 Induktionsvoraussetzung und Teil (3) ergibt sich k (m+n) = k (m+n)+m+n = k m+k n+m+n = k m+m+k n+n = k m+k n. (6) Das Assoziativitätsgesetz beweisen wir durch Induktion nach dem ersten Faktor (wobei der Induktionsanfang wieder klar ist) unter Verwendung des Distributivgesetzes und Teil (3). Es gilt n 0 = 0 und k (m n) = k (m n)+m n = (k m) n+m n = (k m+m) n = (k m) n. n k = n k +n. Diese beiden Eigenschaften legen bereits die Multiplikationsverknüpfung eindeutig fest. Lemma 9.3. Auf den natürlichen Zahlen gibt es eine eindeutig bestimmte Verknüpfung N N N, (x,y) x y, die erfüllt. x 0 = 0 für alle x N und x y = x y +x für alle x,y N Beweis. Es seien und zwei Verknüpfungen auf N, die beide diese Eigenschaften erfüllen. Wir müssen x y = x y für alle x,y N zeigen. Wir führen Induktion nach y. Der Induktionsanfang ist klar, da wegen der ersten charakteristischen Eigenschaft x 0 = 0 = x 0 ist.seidieaussagefüreingewissesy schonbewiesen.dannistunterverwendung der Induktionsvoraussetzung und der zweiten charakteristischen Eigenschaft x y = x y +x = x y +x = x y.
5 5 Die Anzahl der Produktmenge Satz 9.4. Es seien M und N endliche Mengen mit m bzw. n Elementen. Dann besitzt die Produktmenge M N genau m n Elemente. Beweis. Wir führen Induktion über m, also die Anzahl von M. Wenn m = 0 ist,soistm leerunddamitistauchdieproduktmengeleer,hatalsoebenfalls 0 Elemente, was nach Lemma 9.2 (1) mit dem Produkt übereinstimmt. Dies sichert den Induktionsanfang. Wenn m = 1 ist, so besteht M aus genau einem Element, sagen wir x, und alle Elemente der Produktmenge haben die Form (x,y) mit diesem einen x und einem beliebigen y N. Somit ist N M N, y (x,y), eine bijektive Abbildung und M N hat genau so viele Elemente wie N, nämlich n. Dies stimmt nach Lemma 9.2 (2) mit dem Produkt 1 n überein. Sei nun die Aussage für alle Mengen M mit m Elementen (und beliebige endliche Mengen N) bewiesen und es liege eine (m + 1)-elementige Menge M vor. Es sei x M ein fixiertes Element und wir betrachten die disjunkte Zerlegung M = (M \{x}) {x}. Die Menge M \{x} besitzt dann m Elemente, so dass wir auf diese Menge die Induktionsvoraussetzung anwenden können. Ferner ist M N = (M \{x}) N ({x} N) und diese Vereinigung ist disjunkt (die erste Komponente eines Paares ist entweder x oder nicht x). Daher ist nach Satz 8.12 die Anzahl von M N gleich der Summe der Anzahlen der beiden Bestandteile, also nach der
6 6 Induktionsvoraussetzung, dem einelementigen Spezialfall und Lemma 9.2 (3) gleich m n+n = (m+1) n. Das Distributivgesetz anhand der Interpretation der Multiplikation als Anzahl einer Produktmenge. Wir geben noch einen zweiten Beweis für die vorstehende Aussage. Wir behaupten, dass die Abbildung ψ: {1,...,m} {1,...,n} {1,2,...,mn}, (i,j) (i 1)n+j, bijektiv ist. Zum Beweis der Surjektivität sei z {1,2,...,mn} vorgegeben. Dieses (ganzzahlige) Intervall kann man in die disjunkten Intervalle {1,...,n} {n+1,...,2n} {2n+1,...,3n}... {(m 1)n+1,...,mn} unterteilen. Das Element z gehört somit zu einem dieser Intervalle, d.h. es gibt ein i mit z {(i 1)n+1,...,in} mit i zwischen 1 und m. Dann ist z = (i 1)n+j mit einem j zwischen 1 und n und gehört somit zum Bild. Zum Beweis der Injektivität seien (i,j),(k,l) {1,...,m} {1,...,n} gegeben, die auf das gleiche Element abbilden. Es gilt also (i 1)n+j = (k 1)n+l. Da j und l beide zu {1,...,n} gehören, sind die Summen jeweils maximal gleich in bzw. kn. Daher können die Zahlen nur dann gleich sein, wenn und dann nach der Abziehregel auch i = k j = l
7 7 ist. Potenzen Definition 9.5. Zu einer natürlichen Zahl a und einer natürlichen Zahl n nennt man die n-fache Multiplikation von a mit sich selbst a a a a (n Faktoren) die n-te Potenz von a. Sie wird mit a n bezeichnet. Die Zahl a heißt in diesem Zusammenhang die Basis der Potenz und n der Exponent. Bei n = 0 ist dies als a 0 = 1 zu verstehen. Dies gilt auch für 0, also 0 0 = 1, wobei man hier häufig auf eine Festlegung verzichtet. Für positive Exponenten n ist jedenfalls 0 n = 0. Wie gesagt, der Exponent bestimmt die Anzahl der Faktoren } a a a {{}, die Anzahl der auszuführenden Multiplikationen ist um eins kleiner. Man kann aber auch von 1 ausgehen und die Potenz als 1 a a a a auffassen. Als Rechenregeln für das Potenzieren halten wir die folgenden Eigenschaften fest. Lemma 9.6. Für das Potenzieren gelten die folgenden Eigenschaften, wobei a,b N + und m,n N seien. (1) (2) (3) a m+n = a m a n. (a m ) n = a mn. (a b) n = a n b n. Beweis. Siehe Aufgabe Definition 9.7. Eine Zahl der Form n 2 mit n N heißt Quadratzahl. Die Ordnungsrelation Wir wollen auf den natürlichen Zahlen die Größer- bzw. genauer die Größergleich-Ordnung einführen.
8 8 Definition 9.8. Eine Relation R auf einer Menge M ist eine Teilmenge der Produktmenge M M, also R M M. Definition 9.9. Eine Relation auf einer Menge I heißt Ordnungsrelation oder Ordnung, wenn folgende drei Bedingungen erfüllt sind. (1) Es ist i i für alle i I. (2) Aus i j und j k folgt stets i k. (3) Aus i j und j i folgt i = j. Definition Eine Ordnungsrelation auf einer Menge I heißt lineare Ordnung (oder totale Ordnung), wenn zu je zwei Elementen x,y I die Beziehung x y oder y x gilt.
9 Abbildungsverzeichnis Quelle = Tpitagoras.gif, Autor = webmaster del sitio (= Benutzer Liraca auf Commons), Lizenz = gemeinfrei 2 Quelle = Aples.svg, Autor = Benutzer Zaur Ahmetov auf Commons, Lizenz = CC-by-sa Quelle = Three-by-Four-Distributivitivity.jpg, Autor = Benutzer Jean-Luc W auf Commons, Lizenz = CC-by-sa
Einführung in die mathematische Logik
Prof. Dr. H. Brenner Osnabrück SS 2016 Einführung in die mathematische Logik Vorlesung 12 Wir haben bisher nur von Axiomensystemen im Sinne einer beliebigen Ausdrucksmenge Γ L S gesprochen, die im Allgemeinen
Elemente der Algebra
Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren
Analysis I. Vorlesung 4. Angeordnete Körper
Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 4 Angeordnete Körper Zwei reelle Zahlen kann man ihrer Größe nach vergleichen, d.h. die eine ist größer als die andere oder es handelt sich
Grundkurs Mathematik II
Prof. Dr. H. Brenner Osnabrück SS 2017 Grundkurs Mathematik II Vorlesung 53 Die rationalen Exponentialfunktionen Zu einer positiven Zahl b K aus einem angeordenten Körper K haben wir in der 27. Vorlesung
Analysis I. Vorlesung 1. Mengen
Prof. Dr. H. Brenner Osnabrück WS 013/014 Analysis I Vorlesung 1 Mengen Georg Cantor (1845-1918) ist der Schöpfer der Mengentheorie. David Hilbert (186-1943) nannte sie ein Paradies, aus dem die Mathematiker
Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 8 Angeordnete Körper Definition 8.1. Ein Körper K heißt angeordnet, wenn es eine totale Ordnung auf K gibt, die die beiden Eigenschaften
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren
Skript und Übungen Teil II
Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen
Lineare Algebra und analytische Geometrie I
Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 3 Gruppen In der linearen Algebra wird im Allgemeinen ein Grundkörper K zugrunde gelegt, über den sich
Grundkurs Mathematik I
Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 19 Kommutative Ringe Wir erfassen die in der letzten Vorlesung etablierten algebraischen Eigenschaften der ganzen Zahlen mit
1. Gruppen. 1. Gruppen 7
1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.
Grundlagen der Mathematik
Universität Hamburg Winter 016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 6 Grundlagen der Mathematik Präsenzaufgaben (P9) Die Ordnung der natürlichen Zahlen I Wir hatten in der Vorlesung
Lösung zu Serie 3. Lineare Algebra D-MATH, HS Prof. Richard Pink. Sei K ein beliebiger Körper.
Lineare Algebra D-MATH, HS 204 Prof. Richard Pink Lösung zu Serie 3 Sei K ein beliebiger Körper.. [Aufgabe] Sei n Z 0 eine gegebene nicht-negative ganze Zahl. Übersetzen Sie die folgenden Aussagen in eine
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 17 Potenzreihen Definition 17.1. Es sei (c n ) n N eine Folge von reellen Zahlen und x eine weitere reelle Zahl. Dann heißt
2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).
17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften
Vorkurs Mathematik. Vorlesung 5. Verknüpfungen
Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Vorurs Mathemati Vorlesung 5 Vernüpfungen Die Addition und die Multipliation auf den natürlichen Zahlen und die Hintereinanderschaltung von Abbildungen auf einer
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 2 Beispiele für Gruppen Aus der Vorlesung Mathematik I sind schon viele kommutative Gruppen bekannt. Zunächst gibt es die additiven
Grundkurs Mathematik I
Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 25 Das Archimedes-Axiom für die rationalen Zahlen Archimedes (ca. 287-212 v. C.) Lemma 25.1. Zu jeder rationalen Zahl q gibt
Mathematik und Logik
Mathematik und Logik 5. Übungsaufgaben 2006-11-21 1. Beweisen Sie, daß die Aussage allgemeingültig ist. A = A Beweis. Dies ist ein Spezialfall von (((A = B) = B) = B) = (A = B), was wir wie folgt beweisen.
Vorkurs Mathematik. Vorlesung 5. Cauchy-Folgen
Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Vorkurs Mathematik Vorlesung 5 Cauchy-Folgen Ein Problem des Konvergenzbegriffes ist, dass zur Formulierung der Grenzwert verwendet wird, den man unter Umständen
Logische Grundlagen der Mathematik, WS 2014/15
Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten
Lineare Algebra und analytische Geometrie I
Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 18 Permutationen In dieser Vorlesung stellen wir eine weitere Beschreibung für die Determinante mit Hilfe
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume
Vorkurs Mathematik. Vorlesung 2. Primzahlen
Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Vorkurs Mathematik Vorlesung 2 Primzahlen Das Sieb des Eratosthenes liefert eine einfache Methode, eine Liste von Primzahlen unterhalb einer bestimmten Größe
Mathematik III. Vorlesung 61. Abzählbare Mengen
Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 61 Abzählbare Mengen Wir erinnern daran, dass zwei Mengen M und N gleichmächtig heißen, wenn es eine bijektive Abbildung zwischen ihnen
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 7 Die Lösungsmenge eines homogenen linearen Gleichungssystems in n Variablen über einem Körper K ist ein Untervektorraum
2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN
Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 2 Grundstrukturen Notation: Sind M und N zwei Mengen, so heißt die Menge M N := {(m, n) : m M, n N} das cartesische Produkt oder auch die
Grundlagen der Mathematik
Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =
Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz
Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige
Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften.
In dieser Ausarbeitung handelt es sich es um die Menge der natürlichen Zahlen und deren Eigenschaften. In der Analysis werden häug zunächst die reellen Zahlen als vollständig geordneter Körper betrachtet
Lineare Algebra und analytische Geometrie I
Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung heißt lineare
Mathematik I. Vorlesung 9. Die eulersche Zahl e
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 9 Die eulersche Zahl e Wir besprechen eine Beschreibung der sogenannten eulerschen Zahl e. Lemma 9.1. Die Intervalle I n = [a n,b n ],
Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg
Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen
MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016
MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung
Mathematik für Anwender II
Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 32 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines
Grundkurs Mathematik II
Prof. Dr. H. Brenner Osnabrück SS 2017 Grundkurs Mathematik II Vorlesung 57 Unabhängige Ereignisse Definition 57.1. Zwei Ereignisse E und F in einem endlichen Wahrscheinlichkeitsraum (M, P) heißen unabhängig,
2. Symmetrische Gruppen
14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen
Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)
Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in
Lineare Algebra und analytische Geometrie I
Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 8 Dimensionstheorie Ein endlich erzeugter Vektorraum hat im Allgemeinen ganz unterschiedliche Basen. Wenn
Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit
Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Gleichmäßige Stetigkeit Die Funktion f: R + R +, x 1/x, ist stetig. In jedem Punkt x R + gibt es zu jedem ǫ > 0 ein δ > 0 mit f(u (x,δ))
Natürliche, ganze und rationale Zahlen
Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)
Mathematik I. Vorlesung 14. Rang von Matrizen
Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten
Zahlen 25 = = 0.08
2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 20 Multiplikative Systeme Wir wollen zeigen, dass es zu jedem Integritätsbereich R einen Körper K gibt derart, dass R ein Unterring
Vorkurs Mathematik. Vorlesung 4. Zifferndarstellung reeller Zahlen
Prof. Dr. H. Brenner Osnabrück WS 014/015 Vorkurs Mathematik Vorlesung 4 Zifferndarstellung reeller Zahlen Die Zifferndarstellung (oder Ziffernentwicklung) einer natürlichen Zahl haben wir bereits besprochen,
Grundkurs Mathematik I
Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 14 Kunst gibt nicht das Sichtbare wieder, sondern Kunst macht sichtbar Paul Klee Division mit Rest Jede natürliche Zahl lässt
1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt:
1 Körper Sie kennen bereits 2 Beispiele von Zahlkörpern: (Q, +, ) (R, +, ) die rationalen Zahlen mit ihrer Addition und Multiplikation die reellen Zahlen mit ihrer Addition und Multiplikation Vielleicht
Mathematik I. Vorlesung 16. Eigentheorie
Prof Dr H Brenner Osnabrück WS 009/00 Mathematik I Vorlesung 6 Eigentheorie Unter einer Achsenspiegelung in der Ebene verhalten sich gewisse Vektoren besonders einfach Die Vektoren auf der Spiegelungsachse
Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen
Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist
2 Mengen, Abbildungen und Relationen
Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und
Lineare Algebra I. Lösung 3.1:
Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 3 Prof. Dr. Markus Schweighofer 18.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 3.1: (a) Sei
3 Vollständige Induktion
3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon
3 Vom Zählen zur Induktion
7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,
G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag
G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN
Mathematik I. Vorlesung 22. Der Satz von Bolzano-Weierstraß. Karl Weierstraß ( )
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 22 Der Satz von Bolzano-Weierstraß Karl Weierstraß (1815-1897) Satz 22.1. (Bolzano-Weierstraß) Es sei (x n ) n N eine beschränkte Folge
: das Bild von ) unter der Funktion ist gegeben durch
% 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!
Mathematik I. Vorlesung 11. Lineare Unabhängigkeit
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 11 Lineare Unabhängigkeit Definition 11.1. Es sei K ein Körper und V ein K-Vektorraum. Dann heißt eine Familie von Vektoren v i, i I,
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 4: Wörter (und vollständige Induktion) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/29 Überblick Wörter Wörter Das leere Wort Mehr zu
Aufgaben zur Verbandstheorie
TU Bergakademie Freiberg WS 2005/06 Institut für Diskrete Mathematik & Algebra Prof. Dr. Udo Hebisch Aufgaben zur Verbandstheorie 1. Für ein beliebiges n IN sei X n die Menge aller Teiler von n. Definiert
1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:
Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.
Konstruktion der reellen Zahlen 1 von Philipp Bischo
Konstruktion der reellen Zahlen 1 von Philipp Bischo 1.Motivation 3 1.1. Konstruktion von R im allgemeine 3 2.Voraussetzung 3 2.1Die Menge Q zusammen mit den beiden Verknüpfungen 3 2.2Die Rationalen Zahlen
Chr.Nelius: Lineare Algebra (SS 2008) 1. 4: Matrizenrechnung. c ik := a ik + b ik. A := ( a ik ). A B := A + ( B). ist A =
Chr.Nelius: Lineare Algebra SS 28 4: Matrizenrechnung 4. DEF: a Die Summe A + B zweier m n Matrizen A a ik und B b ik ist definiert als m n Matrix C c ik, wobei c ik : a ik + b ik für alle i, 2,..., m
1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale
Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen
Grundlagen der Mengenlehre
mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 5 In dieser Vorlesung diskutieren wir Normalteiler, das sind Untergruppen, für die Links- und Rechtsnebenklassen übereinstimmen.
Wiederholungsblatt zur Gruppentheorie
Wiederholungsblatt zur Gruppentheorie von Christian Elsholtz, TU Clausthal, WS 1999/2000 Um Ihnen zu helfen, die Gruppentheorie zu wiederholen, stelle ich hier einige wichtige Beispiele und einige Lösungen
1.2 Eigenschaften der ganzen Zahlen
Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen
Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge)
15 Übung: Teilmengen seien Mengen. Zu zeigen ist: wenn Beweis: dann auch Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) für alle
5 Der Transzendenzgrad
$Id: trgrad.tex,v 1.6 2009/05/11 14:48:57 hk Exp $ 5 Der Transzendenzgrad Wir stellen nun einige der Tatsachen über die Mächtigkeit von Mengen zusammen, die Ihnen wahrscheinlich aus den ersten Semester
Grundkurs Mathematik I
Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 21 Ein guter Schüler lernt auch bei einem schlechten Lehrer... Kleinstes gemeinsames Vielfaches und größter gemeinsamer Teiler
Übungsblatt 1: Monoide und Gruppen
Übungsblatt 1: Monoide und Gruppen Die schriftlichen Übungsaufgaben sind durch ein S gekennzeichnet und sollen in der Übung der nächsten Woche abgegeben werden. Die Votieraufgaben sind mit einem V gekennzeichnet.
Mathematik I. k=0 c k(x a) k bilden die Teilpolynome n k=0 c k(x a) k polynomiale Approximationen für die Funktion f
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 30 Zu einer konvergenten Potenzreihe f(x) = c k(x a) k bilden die Teilpolynome n c k(x a) k polynomiale Approximationen für die Funktion
Mathematik I. Vorlesung 24. Reihen
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 24 Reihen Wir betrachten Reihen von komplexen Zahlen. Definition 24.1. Sei ( ) k N eine Folge von komplexen Zahlen. Unter der Reihe versteht
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
2.2 Konstruktion der rationalen Zahlen
2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir
Grundkurs Mathematik II
Prof. Dr. H. Brenner Osnabrück SS 2017 Grundkurs Mathematik II Vorlesung 39 Äquivalenzklassen und Repräsentantensysteme Eine Äquivalenzrelation R M M auf einer Menge M kann auch als Zerlegung der Menge
Zahlen und elementares Rechnen (Teil 1)
und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung
Lineare Algebra und analytische Geometrie II
Prof Dr H Brenner Osnabrück SS 26 Lineare Algebra und analytische Geometrie II Vorlesung 2 Orthogonalität Mit dem Skalarprodukt kann man die Eigenschaft zweier Vektoren, aufeinander senkrecht zu stehen,
Berechnung von Teilmengen
Berechnung von Teilmengen Satz Anzahl der Teilmengen 2 n = n k=0 k=0 ( ) n k Beweis Korollar aus Binomischem Lehrsatz (1 + 1) n = n ( n k=0 k) 1 k 1 n k. Oder kombinatorisch: Sei M Menge mit M = n. Die
Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen.
Kapitel 1 - Mathematische Grundlagen Seite 1 1 - Mengen Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Definition 1.1 (G. Cantor.
Einführung in die mathematische Logik
Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 7 Sprachen erster Sufe Die in der letzten Vorlesung erwähnten Konstruktionsmöglichkeiten für Aussagen sind im Wesentlichen
